Chromium nitride/niobium nitride superlattice coatings deposited by combined cathodic-arc/unbalanced magnetron technique

HOVSEPIAN, P. E., LEWIS, D. B., MUUNZ, W. D., ROUZAUD, A. and JULIET, P. (1999). Chromium nitride/niobium nitride superlattice coatings deposited by combined cathodic-arc/unbalanced magnetron technique. Surface and Coatings Technology, 116, 727-734. [Article]

Abstract
CrN/NbN superlattice coatings have been developed as an attempt to replace electroplated chromium in some applications. The coatings have been deposited by a combined cathodic-arc/unbalanced magnetron technique in an industrial-size physical vapour deposition (PVD) coater. The investigations have been focused on the question of maximum hardness, adhesion and tribological performance of the coatings deposited at 400 degrees C as a function of the nitrogen content in the films. All CrN/NbN superlattice coatings produced exhibit a single-phase face-centred cubic structure and {200} preferred orientation. The superlattice period of the coatings varies in the range Delta = 3.4-7.4 nm depending on the N-2 flow rate. Under the sputtering conditions used, it was possible for stoichiometric CrN/NbN coatings to be deposited only in a narrow N-2 flow rate range of around 160 seem. Both stoichiometric and sub-stoichiometric coatings showed maximum hardness values of Hk = 3580 and Hk = 3600, respectively. CrN/NbN superlattice coatings outperformed electroplated chromium by factor of 13 in dry sliding conditions. However, both coatings show similar abrasive wear in the range of 0.63 mu m N-1. Stoichiometric CrN/NbN superlattice coatings possess high oxidation resistance in the range 820-850 degrees C. (C) 1999 Elsevier Science S.A. All rights reserved.
More Information
Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Actions (login required)

View Item View Item