Numerical modelling of the electrochemical behaviour of 316 stainless steel based upon static and dynamic experimental microcapillary-based techniques: effect of electrolyte flow and capillary size

KRAWIEC, H., VIGNAL, V. and AKID, R. (2008). Numerical modelling of the electrochemical behaviour of 316 stainless steel based upon static and dynamic experimental microcapillary-based techniques: effect of electrolyte flow and capillary size. Surface and Interface Analysis, 40 (3-4), 315-319. [Article]

Abstract
objective of this work was to determine the parameters that affect the mass transport and the distribution of species in microcapillaries close to the specimen surface. Local experiments were carried out under static and flow conditions on type 316L stainless steel in 1.7 M NaCl, pH = 3, by means of the electrochemical microcell and the scanning droplet cell technique. The polarisation behaviour of pure iron (used as a model system) in an aqueous environment was calculated adopting a finite element approach and was compared to the experimental results. The corrosion system consists of three parallel electrochemical reactions: the oxygen reduction reaction (ORR), the hydrogen evolution reaction (HER) and iron dissolution. Copyright (c) 2008 John Wiley & Sons, Ltd.
More Information
Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Actions (login required)

View Item View Item