DENG, Wei, SPATHI, Charikleia, COULBECK, Teig, KILINC, Erhan, BACKHOUSE, Daniel, MARSHALL, Martyn, IRESON, Robert and BINGHAM, Paul (2019). Exploratory research in alternative raw material sources and reformulation for industrial soda-lime-silica glass batch. International Journal of Applied Glass Science. [Article]
Documents
25544:540421
PDF
Deng Bingham Exploratory research in alternative raw material sources.pdf - Accepted Version
Available under License All rights reserved.
Deng Bingham Exploratory research in alternative raw material sources.pdf - Accepted Version
Available under License All rights reserved.
Download (736kB) | Preview
Abstract
For energy saving and CO2 emissions reduction, in addition to extending the range of suitable raw material sources for glass manufacture, compositional reformulation, and alternative raw materials have been studied in the context of industrial container and float‐type soda‐lime‐silica (SLS) glasses. Lithium, potassium, and boron were applied to modify benchmark glass compositions. Reformulation impacts on key glass properties including the viscosity‐temperature relationship, thermal expansion, liquidus temperature, forming behavior and color. Compared to the benchmark glass, representative of commercial SLS glasses, melting temperatures (taken as temperatures corresponding to log (viscosity/dPa·s) = 2) of reformulated glasses are reduced by 11°C‐55°C. Investigation of four industrial by‐products (seashell waste, eggshell waste, biomass ash, and rice husk ash), and their potential suitability as alternative glass batch raw materials, was also conducted. Seashell waste and biomass ash were successfully introduced into representative green glass formulations.
More Information
Statistics
Downloads
Downloads per month over past year
Metrics
Altmetric Badge
Dimensions Badge
Share
Actions (login required)
View Item |