Theory of terahertz intervalence band polaritons and antipolaritons.

FARAGAI, Inuwa Aliyu. (2014). Theory of terahertz intervalence band polaritons and antipolaritons. Doctoral, Sheffield Hallam University (United Kingdom).. [Thesis]

Documents
19640:452888
[thumbnail of Version of Record]
Preview
PDF (Version of Record)
10694521.pdf - Accepted Version
Available under License All rights reserved.

Download (11MB) | Preview
Abstract
The work presented in this thesis is a theoretical investigation of the interaction of terahertz (THz) radiation with intersubband excitations in microcavities leading to THz polaritons and antipolaritons. The approach is based on the dielectric function formalism. The dielectric constant is derived from an optical susceptibility evaluated with Non Equilibrium Many Body Green's Functions (NEGF), which is then adjusted to a Lorentzian fit. Finally, the resulting expression is included in the wave equation describing the propagating electric field in the medium. This model is applied to GaAs/Al[0.3]Ga[0.7]As multiple quantum wells embedded in a microcavity. The energy dispersion relations leading to THz polaritons and antipolaritons are obtained and investigated for different carrier densities and cavity configurations. Recently, intersubband based THz polariton emitters and THz quantum cascade lasers are attracting major research interest due to their great importance in applications such as THz imaging, spectroscopy as well as in security control for detection of biological and hazardous materials and medical diagnosis. The coupling of THz radiation with intersubband transitions in semiconductor microcavities can lead to further tunability and improved quantum efficiency for THz devices. Here we propose a simple geometry and used a simplified modelling technique to investigate the interactions of transverse electric (TE-Mode) polarized THz cavity modes with intervalence band excitations. The model is applied to single and multiple transition problems and combinations of many body effects and scattering mechanism are included in the input dielectric constant.
More Information
Statistics

Downloads

Downloads per month over past year

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Actions (login required)

View Item View Item