Influence of Coulomb correlations on gain and stimulated emission in (Zn,Cd)Se/Zn(S,Se)/(Zn,Mg)(S,Se) quantum-well lasers

MICHLER, P., VEHSE, M., GUTOWSKI, J., BEHRINGER, M., HOMMEL, D., PEREIRA, Mauro and HENNEBERGER, K. (1998). Influence of Coulomb correlations on gain and stimulated emission in (Zn,Cd)Se/Zn(S,Se)/(Zn,Mg)(S,Se) quantum-well lasers. Physical Review B, 58 (4), 2055-2063.

Full text not available from this repository.
Link to published version:: 10.1103/PhysRevB.58.2055

Abstract

The influence of Coulomb correlations on gain and stimulated emission in (Zn,Cd)Se/Zn(S,Se)/(Zn,Mg)(S,Se) quantum-well lasers is studied under stationary conditions. Systematic temperature-dependent measurements under application of different spectroscopic techniques were performed. Optical gain is measured by means of the variable stripe-length method, whereas excitonic bleaching under lasing conditions is analyzed through two-beam photoluminescence excitation (PLE) spectroscopy. Furthermore, complementary low-density single-beam PLE spectra are recorded in order to study the temperature dependence of the heavy-hole exciton peaks. The experimental data as a whole are shown to be inconsistent with any of the usually quoted excitonic models for lasing in II-VI heterostructures. The experiments are more adequately explained by a strongly correlated electron-hole plasma described by Bethe-Salpeter-like equations for the optical response and recombination rates in the excited medium. The nonequilibrium Green’s-function approach used consistently includes, at a microscopic level, band structure, quantum-confinement, and many-body effects.

Item Type: Article
Research Institute, Centre or Group: Materials and Engineering Research Institute > Thin Films Research Centre > Electronic Materials and Sensors Research Group
Identification Number: 10.1103/PhysRevB.58.2055
Depositing User: Helen Garner
Date Deposited: 18 Nov 2014 15:54
Last Modified: 18 Nov 2014 15:54
URI: http://shura.shu.ac.uk/id/eprint/8801

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics