ROI sensitive analysis for real time gender classification

RODRIGUES, Marcos, KORMANN, Mariza and TOMEK, Peter (2014). ROI sensitive analysis for real time gender classification. In: MASTORAKIS, Nikos, PSARRIS, Kleanthis, VACHTSEVANOS, George, DONDON, Philippe, MLADENOV, Valeri, BULUCEA, Aida, RUDA, Imre and MARTIN, Olga, (eds.) Advances in information sciences and applications : Proceedings of 18th International Conference on Computers (part of CSCC'14). Recent advances in computer engineering series, 1 (22). World Scientific and Engineering Academy and Society (WSEAS), 87-90. [Book Section]

Documents
8112:17024
[thumbnail of submitted-1.pdf]
Preview
PDF
submitted-1.pdf - Submitted Version

Download (2MB) | Preview
Abstract
This paper addresses the issue of real time gender classification through texture analysis. The purpose is to perform sensitivity analysis over a number of ROI-Regions of Interest defined over face images. The determination of the smaller ROI yielding robust classification results will be used for fast computation of texture parameters allowing gender classification to operate in real-time. Results demonstrate that the ROI comprising the front and the region of the eyes is the most reliable achieving classification accuracy of 88% for both male and female subjects using raw data and non-optimised extraction and classification algorithms. This is a significant result that will drive future research on optimisation of texture extraction and linear discriminant algorithms.
More Information
Statistics

Downloads

Downloads per month over past year

View more statistics

Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Actions (login required)

View Item View Item