Ultrafast opto-magnetic effects in the extreme ultraviolet spectral range

HENNECKE, Martin, VON KORFF SCHMISING, Clemens, YAO, Kelvin, JAL, Emmanuelle, VODUNGBO, Boris, CHARDONNET, Valentin, LÉGARÉ, Katherine, CAPOTONDI, Flavio, NAUMENKO, Denys, PEDERSOLI, Emanuele, LOPEZ-QUINTAS, Ignacio, NIKOLOV, Ivaylo P., RAIMONDI, Lorenzo, DE NINNO, Giovanni, SALEMI, Leandro, RUTA, Sergiu, CHANTRELL, Roy, OSTLER, Thomas, PFAU, Bastian, ENGEL, Dieter, OPPENEER, Peter M., EISEBITT, Stefan and RADU, Ilie (2024). Ultrafast opto-magnetic effects in the extreme ultraviolet spectral range. Communications Physics, 7 (1): 191.

[img]
Preview
PDF
42005_2024_Article_1686.pdf - Published Version
Creative Commons Attribution.

Download (975kB) | Preview
[img]
Preview
PDF
42005_2024_1686_MOESM1_ESM.pdf - Supplemental Material
Creative Commons Attribution.

Download (2MB) | Preview
Official URL: https://www.nature.com/articles/s42005-024-01686-7
Open Access URL: https://www.nature.com/articles/s42005-024-01686-7... (Published version)
Link to published version:: https://doi.org/10.1038/s42005-024-01686-7

Abstract

Coherent light-matter interactions mediated by opto-magnetic phenomena like the inverse Faraday effect (IFE) are expected to provide a non-thermal pathway for ultrafast manipulation of magnetism on timescales as short as the excitation pulse itself. As the IFE scales with the spin-orbit coupling strength of the involved electronic states, photo-exciting the strongly spin-orbit coupled core-level electrons in magnetic materials appears as an appealing method to transiently generate large opto-magnetic moments. Here, we investigate this scenario in a ferrimagnetic GdFeCo alloy by using intense and circularly polarized pulses of extreme ultraviolet radiation. Our results reveal ultrafast and strong helicity-dependent magnetic effects which are in line with the characteristic fingerprints of an IFE, corroborated by ab initio opto-magnetic IFE theory and atomistic spin dynamics simulations.

Item Type: Article
Additional Information: ** From Springer Nature via Jisc Publications Router ** Licence for this article: http://creativecommons.org/licenses/by/4.0/ ** Acknowledgements: I.R. acknowledges funding from the Federal Ministry of Education and Research (BMBF) through project 05K16BCA (Femto-THz-X) and the European Research Council through project TERAMAG (Grant No. 681917). C.v.K.S., P.M.O. and S.E. would like to thank the German Research Foundation (DFG) for funding through CRC/TRR 227 projects A02 and MF (project ID 328545488). S.R. gratefully acknowledges the support of ARCHER UK National Supercomputing Service via the project e733. S.R. and T.O. gratefully acknowledge the financial support from the EPSRC TERASWITCH project (project ID EP/T027916/1). L.S. and P.M.O. acknowledge support by the Swedish Research Council (VR), the K. and A. Wallenberg Foundation (Grants No. 2022.0079 and 2023.0336), and the European Union’s Horizon 2020 Research and Innovation Programme under FET-OPEN Grant Agreement No. 863155 (s-Nebula). Part of the calculations were provided by the Swedish National Infrastructure for Computing (SNIC), funded by VR through grant No. 2018-05973. The authors acknowledge Elettra Sincrotrone Trieste for providing access to its free-electron laser facilities and thank all members of the different departments at FERMI for their outstanding assistance during the preparation and realization of the experiment. The authors also thank the Helmholtz-Zentrum Berlin für Materialien und Energie for the allocation of synchrotron-radiation beamtime. **Journal IDs: eissn 2399-3650 **Article IDs: publisher-id: s42005-024-01686-7; manuscript: 1686 **History: collection 01-12-2024; online 14-06-2024; published_online 14-06-2024; registration 05-06-2024; accepted 04-06-2024; submitted 25-10-2023
Identification Number: https://doi.org/10.1038/s42005-024-01686-7
SWORD Depositor: Colin Knott
Depositing User: Colin Knott
Date Deposited: 24 Jun 2024 10:50
Last Modified: 24 Jun 2024 11:00
URI: https://shura.shu.ac.uk/id/eprint/33837

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics