Recognition of emotions in gait patterns by means of artificial neural nets

JANSSEN, D, SCHÖLLHORN, W I, LUBIENETZKI, J, FÖLLING, K, KOKENGE, H and DAVIDS, K (2008). Recognition of emotions in gait patterns by means of artificial neural nets. Journal of Nonverbal Behavior, 32 (2), 79-92.

Full text not available from this repository.
Official URL: http://www.springerlink.com/content/0191-5886/
Link to published version:: https://doi.org/10.1007/s10919-007-0045-3
Related URLs:

    Abstract

    This paper describes an application of emotion recognition in human gait by means of kinetic and kinematic data using artificial neural nets. Two experiments were undertaken, one attempting to identify participants’ emotional states from gait patterns, and the second analyzing effects on gait patterns of listening to music while walking. In the first experiment gait was analyzed as participants attempted to simulate four distinct emotional states (normal, happy, sad, angry). In the second experiment, participants were asked to listen to different types of music (excitatory, calming, no music) before and during gait analysis. Derived data were fed into different types of artificial neural nets. Results showed not only a clear distinction between individuals, but also revealed clear indications of emotion recognition in nets.

    Item Type: Article
    Research Institute, Centre or Group - Does NOT include content added after October 2018: Centre for Sports Engineering Research
    Identification Number: https://doi.org/10.1007/s10919-007-0045-3
    Page Range: 79-92
    Depositing User: Carole Harris
    Date Deposited: 18 Mar 2011 15:40
    Last Modified: 19 Mar 2021 00:45
    URI: http://shura.shu.ac.uk/id/eprint/3271

    Actions (login required)

    View Item View Item

    Downloads

    Downloads per month over past year

    View more statistics