Application of a Fourier Transform Infrared (FTIR) Principal Component Regression (PCR) Chemometric Method for the Quantification of Respirable Crystalline Silica (Quartz), Kaolinite, and Coal in Coal Mine Dusts from Australia, UK, and South Africa

STACEY, Peter, CLEGG, Francis, RHYDER, Gary and SAMMON, Christopher (2022). Application of a Fourier Transform Infrared (FTIR) Principal Component Regression (PCR) Chemometric Method for the Quantification of Respirable Crystalline Silica (Quartz), Kaolinite, and Coal in Coal Mine Dusts from Australia, UK, and South Africa. Annals of Work Exposures and Health.

[img]
Preview
PDF
Clegg-ApplicationFourierTransformInfrared(VoR).pdf - Published Version
UK Government Open licence (OGLv3.0).

Download (1MB) | Preview
Official URL: https://academic.oup.com/annweh/advance-article/do...
Link to published version:: https://doi.org/10.1093/annweh/wxab119
Related URLs:

    Abstract

    This article describes the approach used to assess the performance of a Fourier transform infrared (FTIR) and principal component regression (PCR) chemometric method when measuring respirable quartz, kaolinite, and coal in samples from a variety of mines from different countries; relative to target assigned values determined using X-ray diffraction (XRD). For comparison, FTIR results using the partial least squares regression (PLSR) method are also available. Bulk dusts from 10 Australian mines were scanned using XRD and grouped into three sets based on the levels of quartz, kaolinite, and feldspar within their crystalline mineral composition. Prediction samples were generated from 5 of these Australian mine dusts, Durrans coal dust, 2 mine dusts from the UK, and a single South African mine dust (71 samples in total) by collecting the aerosolized respirable dust onto 25-mm diameter polyvinylchloride filters using the Safety in Mines Personal Dust Sampler (SIMPEDS) operating at 2.2 l min−1. The predicted values from the FTIR chemometric methods were compared with assigned target values determined using a direct on-aerosol filter XRD analysis method described in Method for the Determination of Hazardous Substances (MDHS) 101. Limits of detection (LOD) and uncertainty values for each analyte were calculated from a linear regression between target and predicted values. The uncertainty was determined using the calibration uncertainty equation for an unweighted regression. FTIR results from PCR and PLSR are very similar. For the PCR method, the LOD for quartz, kaolinite, and coal were 5, 25, and 71 µg, respectively. For quartz, an LOD of 5 µg corresponds to an airborne quartz concentration of 10 µg m−3, assuming a 4-h sampling time and collection flow rate of 2.2 l min−1. The FTIR measurement met the expected performance criteria outlined in ISO 20581 when sampling quartz for more than 4 h using a flow rate of 2.2 l min−1 at a concentration of 0.1 mg m−3 (100 µg m−3), the current workplace exposure limit in Great Britain. This method met the same performance criteria when measuring exposures at the Australian Workplace Exposure Standard (WES) concentration of 0.05 mg m−3, although in this case a sampling period greater than 8 h was needed.

    Item Type: Article
    Additional Information: A correction was made to this article on 04/05/2022 - https://doi.org/10.1093/annweh/wxac027
    Identification Number: https://doi.org/10.1093/annweh/wxab119
    SWORD Depositor: Symplectic Elements
    Depositing User: Symplectic Elements
    Date Deposited: 26 Apr 2022 15:31
    Last Modified: 15 Jun 2022 11:00
    URI: https://shura.shu.ac.uk/id/eprint/30151

    Actions (login required)

    View Item View Item

    Downloads

    Downloads per month over past year

    View more statistics