Effect of long‐term maximum strength training on explosive strength, neural, and contractile properties

BALSHAW, Thomas G., MASSEY, Garry J., MADEN-WILKINSON, Tom, LANZA, Marcel B. and FOLLAND, Jonathan P. (2022). Effect of long‐term maximum strength training on explosive strength, neural, and contractile properties. Scandinavian Journal of Medicine & Science in Sports.

[img]
Preview
PDF
sms.14120.pdf - Published Version
Creative Commons Attribution.

Download (681kB) | Preview
Official URL: https://onlinelibrary.wiley.com/doi/10.1111/sms.14...
Open Access URL: https://onlinelibrary.wiley.com/doi/epdf/10.1111/s... (Published version)
Link to published version:: https://doi.org/10.1111/sms.14120

Abstract

Abstract: The purpose of this cross‐sectional study was to compare explosive strength and underpinning contractile, hypertrophic, and neuromuscular activation characteristics of long‐term maximum strength‐trained (LT‐MST; ie, ≥3 years of consistent, regular knee extensor training) and untrained individuals. Sixty‐three healthy young men (untrained [UNT] n = 49, and LT‐MST n = 14) performed isometric maximum and explosive voluntary, as well as evoked octet knee extension contractions. Torque, quadriceps, and hamstring surface EMG were recorded during all tasks. Quadriceps anatomical cross‐sectional area (QACSAMAX; via MRI) was also assessed. Maximum voluntary torque (MVT; +66%) and QACSAMAX (+54%) were greater for LT‐MST than UNT ([both] p < 0.001). Absolute explosive voluntary torque (25–150 ms after torque onset; +41 to +64%; [all] p < 0.001; 1.15≤ effect size [ES]≤2.36) and absolute evoked octet torque (50 ms after torque onset; +43, p < 0.001; ES = 3.07) were greater for LT‐MST than UNT. However, relative (to MVT) explosive voluntary torque was lower for LT‐MST than UNT from 100 to 150 ms after contraction onset (−11% to −16%; 0.001 ≤ p ≤ 0.002; 0.98 ≤ ES ≤ 1.11). Relative evoked octet torque 50 ms after onset was lower (−10%; p < 0.001; ES = 1.14) and octet time to peak torque longer (+8%; p = 0.001; ES = 1.18) for LT‐MST than UNT indicating slower contractile properties, independent from any differences in torque amplitude. The greater absolute explosive strength of the LT‐MST group was attributable to higher evoked explosive strength, that in turn appeared to be due to larger quadriceps muscle size, rather than any differences in neuromuscular activation. In contrast, the inferior relative explosive strength of LT‐MST appeared to be underpinned by slower intrinsic/evoked contractile properties.

Item Type: Article
Additional Information: ** Article version: VoR ** From Wiley via Jisc Publications Router ** Licence for VoR version of this article: http://creativecommons.org/licenses/by/4.0/ **Journal IDs: issn 0905-7188; issn 1600-0838 **Article IDs: publisher-id: sms14120 **History: published 15-01-2022; accepted 23-12-2021; rev-recd 30-11-2021; submitted 02-06-2021
Uncontrolled Keywords: ORIGINAL ARTICLE, ORIGINAL ARTICLES, agonist muscle, antagonist muscle, rate of torque development, strength training, surface electromyography
Identification Number: https://doi.org/10.1111/sms.14120
SWORD Depositor: Colin Knott
Depositing User: Colin Knott
Date Deposited: 18 Jan 2022 11:01
Last Modified: 18 Jan 2022 11:01
URI: https://shura.shu.ac.uk/id/eprint/29622

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics