Continuous m-Health Data Authentication Using Wavelet Decomposition for Feature Extraction

ENAMAMU, Timibloudi, OTEBOLAKU, Abayomi, MARCHANG, Jims and DANY, Joy (2020). Continuous m-Health Data Authentication Using Wavelet Decomposition for Feature Extraction. Sensors, 20 (19), p. 5690.

[img]
Preview
PDF
sensors-20-05690.pdf - Published Version
Creative Commons Attribution.

Download (8MB) | Preview
Open Access URL: https://www.mdpi.com/1424-8220/20/19/5690 (Published version)
Link to published version:: https://doi.org/10.3390/s20195690
Related URLs:

    Abstract

    The World Health Organization (WHO) in 2016 considered m-health as: “the use of mobile wireless technologies including smart devices such as smartphones and smartwatches for public health”. WHO emphasizes the potential of this technology to increase its use in accessing health information and services as well as promoting positive changes in health behaviours and overall management of diseases. In this regard, the capability of smartphones and smartwatches for m-health monitoring through the collection of patient data remotely, has become an important component in m-health system. It is important that the integrity of the data collected is verified continuously through data authentication before storage. In this research work, we extracted heart rate variability (HRV) and decomposed the signals into sub-bands of detail and approximation coefficients. A comparison analysis is done after the classification of the extracted features to select the best sub-bands. An architectural framework and a used case for m-health data authentication is carried out using two sub-bands with the best performance from the HRV decomposition using 30 subjects’ data. The best sub-band achieved an equal error rate (EER) of 12.42%.

    Item Type: Article
    Uncontrolled Keywords: Analytical Chemistry; 0301 Analytical Chemistry; 0805 Distributed Computing; 0906 Electrical and Electronic Engineering; 0502 Environmental Science and Management; 0602 Ecology
    Identification Number: https://doi.org/10.3390/s20195690
    Page Range: p. 5690
    SWORD Depositor: Symplectic Elements
    Depositing User: Symplectic Elements
    Date Deposited: 07 Oct 2020 13:30
    Last Modified: 07 Oct 2020 13:30
    URI: http://shura.shu.ac.uk/id/eprint/27365

    Actions (login required)

    View Item View Item

    Downloads

    Downloads per month over past year

    View more statistics