Effect of Sand on Knee Load During a Single-Leg Jump Task : Implications for Injury Prevention and Rehabilitation Programs

RICHARDSON, Mark C, MURPHY, Sinead, MACPHERSON, Tom, ENGLISH, Bryan, SPEARS, Iain and CHESTERTON, Paul (2020). Effect of Sand on Knee Load During a Single-Leg Jump Task : Implications for Injury Prevention and Rehabilitation Programs. Journal of Strength and Conditioning Research, 34 (11), 3164-3172.

[img] PDF
Macpherson-EffectSandKneeLoad(AM).pdf - Accepted Version
Restricted to Repository staff only until 1 November 2021.
Creative Commons Attribution Non-commercial.

Download (299kB)
Official URL: https://journals.lww.com/nsca-jscr/Fulltext/2020/1...
Link to published version:: https://doi.org/10.1519/jsc.0000000000002623
Related URLs:

    Abstract

    Richardson, MC, Murphy, S, Macpherson, T, English, B, Spears, I, and Chesterton, P. Effect of sand on knee load during a single-leg jump task: implications for injury prevention and rehabilitation programs. J Strength Cond Res 34(11): 3164–3172, 2020—The purpose of the study was to determine potential differences in landing strategies and subsequent joint loads at the knee (knee abduction moment [KAM], anterior-posterior [AP] tibial translation, and total knee shear force) when jumping onto sand and firm ground from both a level surface and a 30-cm height. Firm ground would act as the control for the study. Seventeen subjects (age: 23.6 ± 3.7 years; body mass: 67.7 ± 10.3 kg; height: 168.5 ± 7.4 cm) performed 3 single-leg jumps on their dominant leg for each of the 4 conditions tested (ground level, sand level, ground height, and sand height). A repeated-measures design investigated the effect of sand on KAM, AP tibial translation, and total knee shear force. Data were analyzed using magnitude-based inferences and presented as percentage change with 90% confidence limits. Results indicated that sand had a clear beneficial effect on KAM, which was possibly moderate during a drop jump (30 cm) and possibly small from a level jump. Sand also had a possibly moderate beneficial effect on AP tibial translation from a level jump. The effect of sand on total knee shear force was unclear. These results suggest that sand may provide a safer alternative to firm ground when performing jump tasks commonly used in anterior cruciate ligament and patellofemoral joint injury prevention and rehabilitation programs. Sand may also allow for an accelerated rehabilitation program because jumping activities could potentially be implemented more safely at an earlier stage in the process.

    Item Type: Article
    Uncontrolled Keywords: Sport Sciences; 1106 Human Movement and Sports Sciences; 1116 Medical Physiology
    Identification Number: https://doi.org/10.1519/jsc.0000000000002623
    Page Range: 3164-3172
    SWORD Depositor: Symplectic Elements
    Depositing User: Symplectic Elements
    Date Deposited: 18 May 2021 08:45
    Last Modified: 18 May 2021 10:00
    URI: http://shura.shu.ac.uk/id/eprint/26638

    Actions (login required)

    View Item View Item

    Downloads

    Downloads per month over past year

    View more statistics