Developmental changes in the dynamical structure of postural sway during a precision fitting task

HADDAD, J. M., EMMERIK, R. E. A., WHEAT, J. S. and HAMILL, J. (2008). Developmental changes in the dynamical structure of postural sway during a precision fitting task. Experimental brain research, 190 (4), 431-441.

Full text not available from this repository.
Link to published version:: https://doi.org/10.1007/s00221-008-1483-9

Abstract

Recent research using measures to assess the time-dependent structure of postural fluctuations has provided new insights into the stability and adaptability of human postural control in adults. To date, little research has examined how postural dynamics reflecting the stability and adaptability of postural control may change as a function of development, especially during supra-postural tasks. The goal of this study was to examine the dynamics of postural fluctuations during a manual-fitting task in which precision, visual and postural task constraints were altered in children and adults. Three age groups were tested: 7-, 10-year olds and college aged adults. Recurrence quantification analysis (RQA) was used to assess the regularity (percent determinism) and complexity (entropy) of the center of pressure (CoP) in the anterior–posterior (AP) and medial-lateral (ML) directions. The CoP patterns exhibited by adults were more deterministic and more complex (higher entropy) than those of the 7-year-old children under the different experimental manipulations. No differences between the adults and the 10-year-old children were observed. The increase in determinism with a corresponding increase in entropy exhibited by the adults and older-children during a manual fitting task may be a prospective mechanism over which postural movements follow a more predictable path allowing for stable and flexible task performance. Our results also support the notion that complex postural fluctuations (as measured by RQA entropy) are functional and typically increase as the precision requirements of a manual task increase.

Item Type: Article
Uncontrolled Keywords: UoA26
Research Institute, Centre or Group - Does NOT include content added after October 2018: Centre for Sports Engineering Research
Identification Number: https://doi.org/10.1007/s00221-008-1483-9
Page Range: 431-441
Depositing User: Carole Harris
Date Deposited: 25 Jun 2010 13:26
Last Modified: 18 Mar 2021 21:15
URI: https://shura.shu.ac.uk/id/eprint/2186

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics