Design and development of an event related potential measurement system.

SOUTH, Andrew. (1999). Design and development of an event related potential measurement system. Doctoral, Sheffield Hallam University (United Kingdom)..

[img]
Preview
PDF (Version of Record)
10701033.pdf - Accepted Version
All rights reserved.

Download (7MB) | Preview

Abstract

Event-related potentials have been found to be a useful indicator of brain states and brain abnormality. The contingent negative variation, P300 and bereitschafts potential are well researched event-related potentials of particular interest. Many factors have to be considered in the design of measurement systems to record multiple channels of these signals accurately. The correlation between channels must be high and channel noise and distortion must be minimal, whilst the system as a whole must meet the requirements of the medical safety standards. For further research there was found to be a requirement for a dedicated thirty-two channel ERP measurement system that met these criteria. This has been achieved in a PC based system that utilises simultaneous sampling of all channels, and filters that extend to very low frequencies. Software control of the system enables user adjustment of recording parameters and paradigm implementation. Data processing using high level software enables digital signal processing techniques to be applied for further noise removal and signal analysis. The system has been tested using synthetically generated signals and by limited recording of the three ERPs. The results prove that the system is a suitable tool for high accuracy, multi-channel recording of ERPs.

Item Type: Thesis (Doctoral)
Additional Information: Thesis (Ph.D.)--Sheffield Hallam University (United Kingdom), 1999.
Research Institute, Centre or Group - Does NOT include content added after October 2018: Sheffield Hallam Doctoral Theses
Depositing User: EPrints Services
Date Deposited: 10 Apr 2018 17:22
Last Modified: 26 Apr 2021 12:28
URI: https://shura.shu.ac.uk/id/eprint/20387

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics