On comparing estimates of low-l solar p-mode frequencies from Sun-as-a-star and resolved observations

CHAPLIN, W. J., APPOURCHAUX, T., ELSWORTH, Y., ISAAK, G. R., MILLER, B. A. and NEW, R. (2004). On comparing estimates of low-l solar p-mode frequencies from Sun-as-a-star and resolved observations. Astronomy and Astrophysics, 424 (2), 713-717.

Full text not available from this repository.
Link to published version:: https://doi.org/10.1051/0004-6361:20040501
Related URLs:

    Abstract

    Low-angular-degree (low-l) solar p modes provide a sensitive probe of the radiative interior and core of the Sun. Estimates of their centroid frequencies can be used to constrain the spherically symmetric structure of these deep-lying layers. The required data can be extracted from two types of observation: one where the modes are detected in integrated sunlight, i.e., a Sun-as-a-star view: and a second where the visible disc is imaged onto many pixels, and the collected images then decomposed into their constituent spherical harmonics. While the imaging strategy provides access to all of the individual components of a multiplet, the Sun-as-a-star technique is sensitive to only about two thirds of these (average over l = 0 to 3) with those modes that are detected having different levels of visibility. Because the various components can have contrasting spatial structure over the solar surface, they can respond very differently to changes in activity along the solar cycle. Since the Sun-as-a-star and resolved analyses take as input a different "subset" of modes, the extracted frequency estimates are expected to differ depending upon the phase of the cycle. Differences also arise from the types of models used to fit the modes. Here, we present expressions that allow the sizes of these differences to be predicted.

    Item Type: Article
    Research Institute, Centre or Group - Does NOT include content added after October 2018: Materials and Engineering Research Institute > Thin Films Research Centre > Nanotechnology Centre for PVD Research
    Identification Number: https://doi.org/10.1051/0004-6361:20040501
    Page Range: 713-717
    Depositing User: Ann Betterton
    Date Deposited: 17 Jun 2010 12:53
    Last Modified: 18 Mar 2021 09:45
    URI: http://shura.shu.ac.uk/id/eprint/2022

    Actions (login required)

    View Item View Item

    Downloads

    Downloads per month over past year

    View more statistics