Investigation of production of continuous off axis fibre reinforced thermoplastic material.

MCDONALD, Philip C. (2014). Investigation of production of continuous off axis fibre reinforced thermoplastic material. Masters, Sheffield Hallam University (United Kingdom)..

[img]
Preview
PDF (Version of Record)
10697345.pdf - Accepted Version
All rights reserved.

Download (86MB) | Preview

Abstract

Fibre reinforced composites have been used in the engineering industry for many years since the discovery of glass fibre in 1930 and its first use to reinforce phenolic resin to form Bakelite. Since then thermoplastic and thermosetting composites have spread into almost every industry from marine to aerospace, automotive to motorsport, luggage to the hobby industry and even fashion. This vast range of applications for composite materials is due to their high strength to weight ratio, excellent impact absorption properties, lack of corrosion, and reformability. In recent years a government directive has forced automotive manufacturers to look at lighter and more efficient vehicles to reduce carbon emissions. This can be achieved by using fibre reinforced thermoplastics to replace steel panels throughout the vehicle.Steel panels from a Nissan Qashqai were tested to determine the failure loads of each panel which the replacement thermoplastic material had to match or better. After extensive testing in a laboratory a tailored laminate lay-up with 5 laminate layers has been developed to replace structural steel components in vehicles. This tailored laminate stack up has a higher failure load than the steel components tested from the Nissan Qashqai while reducing the mass by at least 50%. The key drivers within the automotive industry are fuel savings and reduced vehicle mass, the use of this material and the potential it has in the mass production automotive industry can have a high impact on the overall mass of the vehicle which would invariably have a positive effect to the fuel consumption, thereby improving fuel economy in petrol and diesel vehicles, and increasing the range of electric vehicles.Throughout this project a prototype machine was developed and built to achieve mass production of this 5 ply laminate at a rate of more than 345,000 laminates per year with a processing cost of 3 1p making it available to the mass production market. The estimated production cost represents approximately 2.4% of the finished product price.

Item Type: Thesis (Masters)
Contributors:
Thesis advisor - Cockerham, Graham
Thesis advisor - Hassan, Syed
Additional Information: Thesis (M.Phil.)--Sheffield Hallam University (United Kingdom), 2014.
Research Institute, Centre or Group - Does NOT include content added after October 2018: Sheffield Hallam Doctoral Theses
Depositing User: EPrints Services
Date Deposited: 10 Apr 2018 17:21
Last Modified: 26 Apr 2021 12:12
URI: https://shura.shu.ac.uk/id/eprint/20038

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics