Solid-state bonding of bulk PbTe to Ni electrode for thermoelectric modules

FERRERES, Xavier, GAZDER, Azdiar, MANETTAS, Abdrew and AMINORROAYA YAMINI, Sima (2018). Solid-state bonding of bulk PbTe to Ni electrode for thermoelectric modules. ACS Applied Energy Materials.

[img]
Preview
PDF
Revised Manuscript.pdf - Accepted Version
All rights reserved.

Download (2MB) | Preview
Official URL: http://pubs.acs.org/doi/abs/10.1021/acsaem.7b00010
Link to published version:: https://doi.org/10.1021/acsaem.7b00010
Related URLs:

Abstract

The efficiency of thermoelectric generators is defined by the thermoelectric performance of materials, as expressed by the thermoelectric figure-of-merit, and their contacts with electrodes. Lead chalcogenide thermoelectric materials, and in particular PbTe, perform well in the 500 - 900 K temperature range. Here, we have successfully bonded bulk PbTe to Ni electrode to generate a diffusion barrier, avoiding continuous reaction of the thermoelectric legs and conducting electrodes at the operating temperature. We have modified the commonly used spark plasma sintering assembly method to join Ni electrode to bulk PbTe by driving the total supplied electrical current through the Ni and PbTe solid interfaces. This permits the formation of a thin diffusion layer, roughly 4.5 µm in thickness, which is solely comprised of nickel telluride. This new technique towards the bonding of PbTe with the electrode is beneficial for thermoelectric materials, since high temperatures have proven to be damaging to the quality of bulk material. The interphase microstructure, chemical composition, and crystallographic information were evaluated by a scanning electron microscope equipped with electron back-scattered diffraction analysis. The obtained phase at the Ni/PbTe contact is found to be β2 Ni3±xTe2 with a basic tetragonal crystallographic structure of the defective Cu2Sb type.

Item Type: Article
Departments - Does NOT include content added after October 2018: Faculty of Science, Technology and Arts > Department of Engineering and Mathematics
Identification Number: https://doi.org/10.1021/acsaem.7b00010
Depositing User: Sima Aminorroaya Yamini
Date Deposited: 22 Jan 2018 14:44
Last Modified: 18 Mar 2021 06:56
URI: https://shura.shu.ac.uk/id/eprint/18445

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics