Periodic point data detects subdynamics in entropy rank one

MILES, Richard and WARD, Thomas (2006). Periodic point data detects subdynamics in entropy rank one. Ergodic Theory and Dynamical Systems, 26 (6), 1913-1930.

Full text not available from this repository.
Official URL: https://doi.org/10.1017/5014338570600054x
Link to published version:: https://doi.org/10.1017/5014338570600054x

Abstract

A framework for understanding the geometry of continuous actions of $\mathbb Z^d$ was developed by Boyle and Lind using the notion of expansive behaviour along lower-dimensional subspaces. For algebraic $\mathbb Z^d$-actions of entropy rank one, the expansive subdynamics are readily described in terms of Lyapunov exponents. Here we show that periodic point counts for elements of an entropy rank-one action determine the expansive subdynamics. Moreover, the finer structure of the non-expansive set is visible in the topological and smooth structure of a set of functions associated to the periodic point data.

Item Type: Article
Departments: Faculty of Social Sciences and Humanities > Teacher Education
Identification Number: https://doi.org/10.1017/5014338570600054x
Depositing User: Richard Miles
Date Deposited: 26 Jan 2018 13:27
Last Modified: 26 Jan 2018 13:27
URI: http://shura.shu.ac.uk/id/eprint/17238

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics