Power efficient dataflow design for a heterogeneous smart camera architecture

BHOWMIK, Deepayan, GARCIA, Paulo, WALLACE, Andrew, STEWART, Robert and MICHAELSON, Greg (2017). Power efficient dataflow design for a heterogeneous smart camera architecture. In: Design and Architectures for Signal and Image Processing (DASIP), 2017 Conference on. IEEE.

Documents
16301:204254
[thumbnail of SCA_FPGA.pdf]
Preview
PDF
SCA_FPGA.pdf - Accepted Version
Available under License All rights reserved.

Download (452kB) | Preview
Abstract
Visual attention modelling characterises the scene to segment regions of visual interest and is increasingly being used as a pre-processing step in many computer vision applications including surveillance and security. Smart camera architectures are an emerging technology and a foundation of security and safety frameworks in modern vision systems. In this paper, we present a dataflow design of a visual saliency based camera architecture targeting a heterogeneous CPU+FPGA platform to propose a smart camera network infrastructure. The proposed design flow encompasses image processing algorithm implementation, hardware & software integration and network connectivity through a unified model. By leveraging the properties of the dataflow paradigm, we iteratively refine the algorithm specification into a deployable solution, addressing distinct requirements at each design stage: from algorithm accuracy to hardware-software interactions, real-time execution and power consumption. Our design achieved real-time run time performance and the power consumption of the optimised asynchronous design is reported at only 0.25 Watt. The resource usages on a Xilinx Zynq platform remains significantly low.
More Information
Statistics

Downloads

Downloads per month over past year

View more statistics

Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Actions (login required)

View Item View Item