Modelling the sulfate capacity of simulated radioactive waste borosilicate glasses

BINGHAM, Paul, VAISHNAV, Shuchi, FORDER, Sue, SCRIMSHIRE, Alex, JAGANATHAN, Balaasaran, ROHINI, Jiji, MARRA, James, FOX, Kevin, PIERCE, Eric, WORKMAN, Phyllis and VIENNA, John (2017). Modelling the sulfate capacity of simulated radioactive waste borosilicate glasses. Journal of Alloys and Compounds, 695, 656-667. [Article]

Documents
13996:79471
[thumbnail of JALCOM_Sulfate_Bingham_Accepted_Manuscript_Elsevier_Nov2016.pdf]
Preview
PDF
JALCOM_Sulfate_Bingham_Accepted_Manuscript_Elsevier_Nov2016.pdf - Accepted Version
Available under License All rights reserved.

Download (1MB) | Preview
Abstract
The capacity of simulated high-level radioactive waste borosilicate glasses to incorporate sulfate has been studied as a function of glass composition. Combined Raman, 57Fe Mössbauer and literature evidence supports the attribution of coordination numbers and oxidation states of constituent cations for the purposes of modelling, and results confirm the validity of correlating sulfate incorporation in multicomponent borosilicate radioactive waste glasses with different models. A strong compositional dependency is observed and this can be described by an inverse linear relationship between incorporated sulfate (mol% SO42−) and total cation field strength index of the glass, Σ(z/a2), with a high goodness-of-fit (R2 ≈ 0.950). Similar relationships are also obtained if theoretical optical basicity, Λth (R2 ≈ 0.930) or non-bridging oxygen per tetrahedron ratio, NBO/T (R2 ≈ 0.919), are used. Results support the application of these models, and in particular Σ(z/a2), as predictive tools to aid the development of new glass compositions with enhanced sulfate capacities.
More Information
Statistics

Downloads

Downloads per month over past year

Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Actions (login required)

View Item View Item