Environmental design shapes perceptual-motor exploration, learning, and transfer in climbing

SEIFERT, L, BOULANGER, J, ORTH, D and DAVIDS, Keith (2015). Environmental design shapes perceptual-motor exploration, learning, and transfer in climbing. Frontiers in Psychology, 6.

Davids Environmental design shapes perceptual motor exploration.pdf - Published Version
Creative Commons Attribution.

Download (3MB) | Preview
[img] PDF (Acceptance e-mail)
Davids - 12544.pdf - Other
Restricted to Repository staff only

Download (14kB)
Official URL: http://journal.frontiersin.org/article/10.3389/fps...
Link to published version:: https://doi.org/10.3389/fpsyg.2015.01819


This study investigated how environmental design shapes perceptual-motor exploration, when meta-stable regions of performance are created. Here, we examined how creating meta-stable regions of performance could destabilize pre-existing skills, favoring greater exploration of performance environments, exemplified in this study by climbing surfaces. In this investigation we manipulated hold orientations on an indoor climbing wall to examine how nine climbers explored, learned, and transferred various trunk-rolling motion patterns and hand grasping movements. The learning protocol consisted of four sessions, in which climbers randomly ascended three different routes, as fluently as possible. All three routes were 10.3 m in height and composed of 20 hand-holds at the same locations on an artificial climbing wall; only hold orientations were altered: (i) a horizontal-edge route was designed to afford horizontal hold grasping, (ii) a vertical-edge route afforded vertical hold grasping, and (iii), a double-edge route was designed to afford both horizontal and vertical hold grasping. As a meta-stable condition of performance invite an individual to both exploit his pre-existing behavioral repertoire (i.e., horizontal hold grasping pattern and trunk face to the wall) and explore new behaviors (i.e., vertical hold grasping and trunk side to the wall), it was hypothesized that the double-edge route characterized a meta-stable region of performance. Data were collected from inertial measurement units located on the neck and hip of each climber, allowing us to compute rolling motion referenced to the artificial climbing wall. Information on ascent duration, the number of exploratory and performatory movements for locating hand-holds, and hip path was also observed in video footage from a frontal camera worn by participants. Climbing fluency was assessed by calculating geometric index of entropy. Results showed that the meta-stable condition of performance may have afforded utilization of more adaptive climbing behaviors (expressed in higher values for range and variability of trunk rolling motion and greater number of exploratory movements). Findings indicated how climbers learn to explore and, subsequently, use effective exploratory search strategies that can facilitate transfer of learning to performance in novel climbing environments.

Item Type: Article
Research Institute, Centre or Group - Does NOT include content added after October 2018: Centre for Sports Engineering Research
Identification Number: https://doi.org/10.3389/fpsyg.2015.01819
Depositing User: Carole Harris
Date Deposited: 20 Jul 2016 08:48
Last Modified: 18 Mar 2021 04:55
URI: https://shura.shu.ac.uk/id/eprint/12544

Actions (login required)

View Item View Item


Downloads per month over past year

View more statistics