A multi-objective approach to evolving artificial neural networks for coronary heart disease classification

SHENFIELD, Alex and ROSTAMI, Shahin (2015). A multi-objective approach to evolving artificial neural networks for coronary heart disease classification. In: 2015 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB). IEEE, 1-8. (In Press)

PDF (Copyright IEEE)
cibcb2015_paper_final_submission_v2.pdf - Accepted Version
All rights reserved.

Download (208kB) | Preview
Link to published version:: https://doi.org/10.1109/CIBCB.2015.7300294


The optimisation of the accuracy of classifiers in pattern recognition is a complex problem that is often poorly understood. Whilst numerous techniques exist for the optimisation of weights in artificial neural networks (e.g. the Widrow-Hoff least mean squares algorithm and back propagation techniques), there do not exist any hard and fast rules for choosing the structure of an artificial neural network - in particular for choosing both the number of the hidden layers used in the network and the size (in terms of number of neurons) of those hidden layers. However, this internal structure is one of the key factors in determining the accuracy of the classification. This paper proposes taking a multi-objective approach to the evolutionary design of artificial neural networks using a powerful optimiser based around the state-of-the-art MOEA/D-DRA algorithm and a novel method of incorporating decision maker preferences. In contrast to previous approaches, the novel approach outlined in this paper allows the intuitive consideration of trade-offs between classification objectives that are frequently present in complex classification problems but are often ignored. The effectiveness of the proposed multi-objective approach to evolving artificial neural networks is then shown on a real-world medical classification problem frequently used to benchmark classification methods.

Item Type: Book Section
Research Institute, Centre or Group - Does NOT include content added after October 2018: Cultural Communication and Computing Research Institute > Communication and Computing Research Centre
Identification Number: https://doi.org/10.1109/CIBCB.2015.7300294
Page Range: 1-8
Depositing User: Alex Shenfield
Date Deposited: 16 Feb 2016 10:14
Last Modified: 18 Mar 2021 15:53
URI: https://shura.shu.ac.uk/id/eprint/10889

Actions (login required)

View Item View Item


Downloads per month over past year

View more statistics