Analytical, experimental and numerical study of a graded honeycomb structure under in-plane impact load with low velocity

GALEHDARI, S.A., KADKHODAYAN, M. and HADIDI-MOUD, Saeid (2015). Analytical, experimental and numerical study of a graded honeycomb structure under in-plane impact load with low velocity. International Journal of Crashworthiness, 20 (4), 387-400.

Hadidi-Moud_-_Analytical_experimental_and_numerical-final2.pdf - Accepted Version
Available under License All rights reserved.

Download (1MB) | Preview
Official URL:
Link to published version:: 10.1080/13588265.2015.1018739


Given the significance of energy absorption in various industries, light shock absorbers such as honeycomb structure under in-plane and out-of-plane loads have been in the core of attention. The purpose of this research is the analyses of graded honeycomb structure (GHS) behaviour under in-plane impact loading and its optimisation. Primarily, analytical equations for plateau stress and specific energy are represented, taking power hardening model (PHM) and elastic–perfectly plastic model (EPPM) into consideration. For the validation and comparison of acquired analytical equations, the energy absorption of a GHS made of five different aluminium grades is simulated in ABAQUS/CAE. In order to validate the numerical simulation method in ABAQUS, an experimental test has been conducted as the falling a weight with low velocity on a GHS. Numerical results retain an acceptable accordance with experimental ones with a 5.4% occurred error of reaction force. For a structure with a specific kinetic energy, the stress–strain diagram is achieved and compared with the analytical equations obtained. The maximum difference between the numerical and analytical plateau stresses for PHM is 10.58%. However, this value has been measured to be 38.78% for EPPM. In addition, the numerical value of absorbed energy is compared to that of analytical method for two material models. The maximum difference between the numerical and analytical absorbed energies for PHM model is 6.4%, while it retains the value of 48.08% for EPPM. Based on the conducted comparisons, the numerical and analytical results based on PHM are more congruent than EPPM results. Applying sequential quadratic programming method and genetic algorithm, the ratio of structure mass to the absorbed energy is minimised. According to the optimisation results, the structure capacity of absorbing energy increases by 18% compared to the primary model.

Item Type: Article
Additional Information: Published online: 11 Mar 2015
Research Institute, Centre or Group: Materials and Engineering Research Institute > Structural Materials and Integrity Research Centre > Centre for Corrosion Technology
Identification Number: 10.1080/13588265.2015.1018739
Depositing User: Saeid Hadidimoud
Date Deposited: 19 Jun 2015 08:15
Last Modified: 20 Oct 2016 00:24

Actions (login required)

View Item View Item


Downloads per month over past year

View more statistics