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I thought to myself, "Look, I have grown and increased in wisdom more
than anyone who has ruled over Jerusalem before me; I have experienced
much of wisdom and knowledge." Then I applied myself to the
understanding of wisdom, and also of madness and folly, but I learned
that this, too, is a chasing after the wind. For with much wisdom comes
much sorrow; the more knowledge, the more grief.

King Solomon, Book of Ecclesiastes 1:16-18, The Bible

Man's greatest asset is the unsettled mind.

Isaac Astmov



Abstract

This Thesis is dedicated to computer simulation investigations of the phase be-
haviour of binary and ternary liquid crystals mixtures represented using the Lebwohl-
Lasher lattice model. The binary mixture is studied in the Canonical and Semi
Grand Canonical Ensembles over a comprehensive set of temperatures, concentra-
tions and the relative coupling constants. The ternary mixture is studied in the
Canonical Ensemble only, over a comprehensive set of temperatures and concentra-

tions and single set of coupling constants.

In order to determine the boundaries between different phase regions in the Canoni-
cal Ensemble, the thermal and concentration dependencies of three different observ-
ables are used. The first observable is the potential energy of the system, the second
is the second rank orientational order parameter and the third is the short-range
radial distribution function. The long-range radial distribution function and the

system snapshots are used as auxiliary observables.

In order to determine the phase boundaries in the Semi Grand Canonical Ensemble,
the concentration dependence of the chemical potential is used. The order parameter
is also used as an auxiliary observable in order to establish the symmetries of the

phases on each side of the various coexistence regions encountered.

Some features of the phase diagram (e.g. phase re-entrance) are shown to be difficult
to determine in the Canonical Ensemble, whereas other features (e.g. the boundary
between two phase coexistence regions) are difficult to determine in the Semi Grand
Canonical Ensemble. The remaining data from both ensembles are found to be in

good agreement.

As well as homogeneous nematic (N) and isotropic (I) phases, regions of N+I and
N+N phase coexistence are identified. For mixtures of similar particle types, two
distinct coexistence regions are found, but as the particle types are made increasingly
dissimilar, these two regions are found to coalesce. This leads to a distortion of the
I-N transition temperature curve away from the behaviour predicted by classical

ideal mixing rules.



The ternary mixture results show further departures from ideal mixing behaviour,
while maintaining consistency with the data obtained from the equivalent binary
systems. Also, unexpectedly, the cooperative ordering and phase separating of the
intermediate particle type takes place at the same temperature for all concentrations
considered. Overall, the results from ternary mixtures provide a focus for future work

into the phase behaviour of multi-component and poly-disperse mesogenic systems.
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Chapter 1

Introduction

In this chapter, we give a brief outline of this thesis. The work described in this
thesis relates to computer simulations performed with the aim of promoting greater
understanding of the mechanisms responsible for ordering and phase separation in
liquid crystal (LC) mixtures, since no single theoretical model has completely de-
scribed these processes satisfactorily. Specifically, attention has been focussed on the
phase behaviour of the Lebwohl-Lasher [1] lattice model, which has been modified

to simulate binary and ternary mixtures.

Aside from this introduction, this thesis is organised as follows. A brief introduction
to LCs and a description of the main types of LC and their properties follows in
Section 1.1. In Chapter 2, a background to theoretical and experimental approaches
is given, including various methods of measuring the order parameter and structural
behaviour of LC systems. Next, in Chapter 3 we give a background to the simulation
development. Here, Monte Carlo techniques and the Lebwohl-Lasher lattice model
are introduced. This is followed in Chapter 4, by a detailed description of the model
used to generate the results presented in this Thesis. Here, the implementation of
Caponical and Semi-Grand Canonical Ensemble simulation are discussed, along with
other simulation details, such as the calculation of relevant observables. In Chapter
5 we present the results from the first systems of interest. These are binary mixtures
of mesogenic particles studied in the Canonical Ensemble. We present data from
these simulations, and use the same to construct phase diagrams, before discussing
the results. In Chapter 6 we present simulation results from the same set of binary

mixtures of mesogenic particles, but this time studied in the Semi-Grand Canonical



CHAPTER 1. INTRODUCTION

Ensemble. In Chapter 7 we present the last systems of interest - ternary mixtures
of mesogenic particles. In Chapters 5-7 we adopt the following structure when
presenting the results. The original data are presented first, followed by a discussion
of the presented results. The discussion for each chapter builds on those of the
previous chapters. In Chapter 8 we summarize, briefly, all of the results presented
and discussed in previous chapters and suggest possible future developments and

research. Two appendices and a bibliography are also included.

1.1 Liquid Crystals

LCs are organic materials which exhibit an intermediate phase (a mesophase) be-
tween the isotropic liquid and crystalline solid states. Most of the mechanical prop-
erties exhibited by LCs are found in other liquids, the difference being that the
properties of LCs are anisotropic, that is, they vary according to the direction in
which they are measured. In addition, in ordered fluid phases, LCs exhibit long range
orientational order. Long range translational order may also be present, in LCs, but

they do not exhibit the full three-dimensional order of ordinary solid crystals. Owing

Figure 1.1: Structure of 5CB, a typical mesogen.

to their ability to form mesophases, LCs are often called mesogens. Mesogens are
classified into two distinct categories: thermotropic and lyotropic. Thermotropic
LCs form different mesophases due to changes of temperature, whereas lyotropic
LCs do so with a change in concentration. Thermotropic mesogens are called enan-
tiotropic if the process of moving from one mesophase to another is reversible; where

the reverse process does not return the material into its original mesophase, they

2



CHAPTER 1. INTRODUCTION

are known as monotropic. Thermotropic mesophases have been found to be pro-
duced by two distinct types of molecular shape. The first of these is rod-like; LCs
of this type are called calamatic (kalauos - ‘reed’ or ‘straw’ in Greek) [2], and were
discovered by Vorlander [3] at the beginning of the twentieth century. The second
type, which are disk-like, are called discotic LCs (dtokos - ‘disk’ or ‘plate’ in Greek)
and were discovered only relatively recently [4]. The molecular structure of 5CB, a

typical calamatic, is presented in (Figure 1.1).
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Figure 1.2: Isotropic (a), nematic (b) and smectic (c¢) phases of LC [5]

There are two main types of LC phase (Fig.1.2): nematic (vepatos - ‘thread’, ‘web’)
and smectic (ounypa - ‘soap’, and ounkrikos - ‘that which is used for cleaning’).
In the nematic phase there is orientational order, such that the long axes of the
molecules are aligned in a preferential direction, but there is no translational order.
In the smectic phases, the molecules are arranged in regularly spaced layers, such
that there is a density wave running through the material, but the molecules have
only short range positional order within these layers. Other phases formed are
simply derivatives of these two main phases with additional properties - for example:

cholesterics, chiral nematics, ferroelectric LCs, epitropic LCs [6] and so on.

1.1.1 Nematic Liquid Crystals

Of all LC phases, the nematic has the highest symmetry [7,8]. As was mentioned
earlier, a nematic LC has long range orientational order, but no long range transla-

tional order. Thus it differs from the isotropic liquid (Fig.1.2) in that its molecules

3



CHAPTER 1. INTRODUCTION

are spontaneously oriented with their long axes approximately parallel to the direc-
tor. The director is the preferred orientation of the molecules. The director usually
varies from point to point in the medium, but a uniformly aligned specimen is opti-
cally uniaxial, positive and strongly birefringent. The mesophase owes its fluidity to
the ease with which the molecules slide along one another while still retaining their

mutual alignment.

Figure 1.3: Uniaxial (a) and biaxial (b) symmetries

In order to avoid confusion concerning the terminology used to describe nematic
mesophases, let us begin by clarifying the definitions of the various types of symme-
try. We call an object uniaxial if it possesses cylindrical symmetry. Thus rotation
about the Z axis by any angle translates the object into itself and its orientation is
explicitly defined by only one axis Z (Figure 1.3(a)). Biaxial objects, on the other
hand, are affected by rotation around the Z axis and their orientation requires two
axes, Z and Y, to be defined (Figure 1.3(b)).

Another difference in symmetry relates to polarity. If an object is indifferent to
the inversion through a point (or mirror reflection in the plane perpendicular to the
Z axis), so that ‘head’ and ‘tail’ prove to be interchangeable, then such an object
is called apolar (Fig.1.4(a)). If however, such an inversion (reflection) does not

translate an object into itself then the object is polar (Fig.1.4(b)).
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Figure 1.4: apolar (a) and polar (b) symmetries

Another consideration is the distinction between two types of symmetry: that of
the mesogen and that of the mesophase. Biaxial mesogens may form a uniaxial
mesophase, and polar mesogens may give an apolar mesophase, but uniaxial particles
very rarely form biaxial phases and apolar mesogens do not form polar phases. One
of the usual cases is that of a rod-like LC with longitudinal quadrupoles, which can
yield chiral phases. In practice, however, the symmetry of the mesophase is almost
always the same as or higher than that of the mesogens which form it, unless an
external force (field, pressure, confinement) is applied to lower the symmetry of the

mesophase.



CHAPTER 1. INTRODUCTION
1.1.2 Ordering In LC

Most phases differ with respect to their symmetry; they may be, for example,
isotropic (spherical) or nematic (cylindrical). The transition between different phases
usually corresponds to the breaking of a particular symmetry and can be described
in terms of an order parameter . In general, the order parameter characterising
the transition between the isotropic and nematic phases must satisfy the following

requirements:

e () =0 in the less ordered, isotropic phase (higher symmetry), and

e (Q # 0 in the more ordered, nematic phase (lower symmetry).

There are two approaches to measuring or defining the order parameter in LC:

microscopic (mainly theoretical) and macroscopic (mainly experimental).

Microscopic order parameters are functions that give a description of the system on
the intermolecular scale. They are constructed in relation to a specific molecular
model and, by definition, may contain information above that which relates to the
symmetry of the phase. It is convenient to present the microscopic order parameters
of various LC mesophases as expansion coefficients of the singlet distribution function
p, which depends on orientational (£2) and positional (7) coordinates [9-11]:
P, = poy_ 3 (+ 1D, (@)e 7Dy (@) (1)
G Lmn
The functions D}, () are the Wigner rotation matrices, the angular brackets rep-
resent an ensemble average and G is the set of reciprocal lattice vectors of the
crystalline phase [12]. Equation (1.1) can be rewritten as
P =0 Y Quun(G)e™ 67D, () (1.2)
G Lmn
where Q,mn(é) is a set of order parameters. These are logically divided into three

sub-categories:
e Quoo (é) are positional order parameters for a monoatomic lattice,
e Qimn(0) (or D ) are the orientational order parameters and

~

o Quo(G) are the mixed (orientational-positional) order parameters.

6



CHAPTER 1. INTRODUCTION
1.1.3 The Nematic Order Parameter

The most fundamental characteristic of LCs is their property of long range orienta-

tional order. From Equation(1.2), all orientational order parameters read:

Qum(0) = @1+ 10D, = (552) [dranpr @ 9

The orientation of a molecule can be described by the Euler angles (8,7,%). In
the apolar nematic mesophase, only terms with even ! can contribute to Equation
(1.3). In addition, if one assumes that the mesogenic molecules possess cylindrical
symmetry then n must be equal to zero. Finally, if the coordinate system is chosen
such that the director coincides with the Z axis, then m must also equal zero. Thus,
the orientational order parameter @;00(0) depends on only one of the Euler angles

(0) - the angle between the long axis of each molecule and the director:

Qloo(O) = <PI(COS 0)) (14)

where (P,(cosf)) is an ensemble average of an even Legendre polynomial, and the
angular brackets denote an average over all molecules in the system. Legendre
polynomials are a convenient tool for use in this situation, since they were designed

to deal with problems of broken spherical symmetry.

Higher rank Legendre polynomials (I = 4,6,8,...) are seldom used, owing to their
relatively insignificant contribution to p in Equation (1.2). Only after the 1970s did
the measuring of Py become possible experimentally [13]. Ranks six and higher are
still hard to obtain experimentally [14] owing to the fluctuations in the systems.
Usually, only the second rank Legendre polynomial P, is used to define uniaxial

nematic order parameter S, as was first proposed by Tsvetkov in 1942 [15):

S = (Py(cos)) = %((3 cos? 0 — 1)) (1.5)

In most cases, the microscopic order parameters, as described above, provide an
adequate description of real mesogenic systems. However, in some experimental sit-
uations, this is not readily accessible and some other means must be found to specify
the order parameter. A significant difference between the isotropic and liquid crys-
talline phases is observed in the measurements of all macroscopic tensor properties

(diamagnetic susceptibility, refractive index, etc); these properties can, therefore, be

7



CHAPTER 1. INTRODUCTION

used to identify the macroscopic order parameter. One of the macroscopic properties
of an LC which has been measured experimentally [8] is the diamagnetic suscepti-
bility x. The relationship between ¥ and molecular properties is relatively well
understood when compared with other macroscopic properties. The relationship

between the value of an applied field H and the magnetic moment M reads as:
Afi = Xinj (16)

where 1, j are the r,y, z indices of X. The tensor ¥ is symmetric in the case of static
H, and its diagonal elements in the case of the isotropic (/) and uniaxial nematic

(UN) phases read as:

X 00 X1 0 0
xn=10 x 0 Xom=] 0 x1 0 (1.7)
00 X 0 0 X”

where x| and x, are the susceptibility components, respectively, parallel and per-

pendicular to the Z axis. To determine Q from the diamagnetic susceptibility, the

requirement
_l( -
X|| — XL) 0 0
~ Axi; .1 3\Xll 1
@iy = AXmaz ?= Ao 0 —3la = xu) 0
0 0 -2(xL —x1)

(1.8)
is imposed where AXpq, is the maximum anisotropy which would be observed for a

perfectly ordered mesophase, chosen as normalization.

1.1.4 Radial Distribution Function

From Equation.(1.2), all positional order parameters Qgoo(G) read:

A 1 -
Qooo (G) = N /dfde(f, Q)ei6] (1.9)

Positional order parameters for a monoatomic lattice are characterized by the set of
reciprocal lattice vectors G. Therefore this function does not contain information

about molecular orientations. Often, the radial distribution function is denoted
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g(r). g(r) provides structural information about the system. It is defined as the
probability of finding a pair of molecules separated by distance r, relative to the

probability expected for a completely random distribution at the same density.

A further extension of the radial distribution function is its use in defining the
degree of positional order in mixtures. In this case Equation (1.9) is rewritten to
calculate the probability of finding a pair of like (g4a(r), g88(r)) or unlike (ga5(r))
molecules at distance r. In our simulations, the distribution function gap(r) is used
to measure the positional correlations of unlike spins on the lattice employed. The
like distribution functions, g44(r) and ggp(r) are found to adopt very similar shapes,
the only difference being their amplitudes which depend on the concentration ratio
of the compounds. It is also the case that gag(r) = gpa(r). However, this identity
does not hold for real systems, where these functions can be used to characterise
transitions between liquid and solid crystal phases as well as different mesophases

(nematic, smectic, etc).

1.1.5 Second-Rank Orientational Correlation Function

Using Equation (1.2), orientational-positional order parameters are given by:

Quo(G) = (QIT+1) /dfde(f,Q)e‘i[é";]ﬂ(cosﬁ) (1.10)

In the present work only the second-rank (! = 2) orientational correlation function
is used, this being denoted g»(r). This correlation function can be looked on as
being the orientational order parameter for molecules separated by distance r and
allows for independent evaluation of short range and long range orientational order

correlations.

The value of go(r) levels off at large separations r and can be related to the usual

nematic order parameter via:

S=1/g2(r >1) (1.11)

In small systems, such as those investigated in this thesis, short range orienta-



CHAPTER 1. INTRODUCTION

tional correlations become significant when calculating the average order parameter
(Py(cos 8)). Also, the value of (P,(cos6)) fluctuates considerably in the vicinity of
the isotropic-nematic transition, which makes it difficult to detect the exact tem-
perature of the transition. Because of this, both go(r) and (P(cos8)) were used
to calculate the orientational order parameter of the system. The method used to

obtain the g,(r) function is described in Section 4.4.3.

1.2 LC Mixtures

The use of LC mixtures is now widespread, each application having its own set of
requirements. These requirements can be met by using specially designed mixtures

of various compounds. LC mixtures can be divided into two main categories:

e Mesogen-mesogen [16]. These are either mixtures that include LCs which are
of the same type, but have different properties (elastic constants, I-N transition
point, etc), such as, a nematic-nematic mixture; or mixtures that include LCs

of different types, for example, smectic-nematic, discotic-calamatic, etc.

e Mesogen-non-mesogen [17]. These are mixtures that include isotropic materi-
als, polymers and other non-mesogens, for example, LC-isotropic mixture, LC
and chiral dopant, LC and dye molecules, PDLC, PNLC, etc.

In addition, mixtures can be either bi-dispersed (binary) or poly-dispersed (ternary,
quaternary, etc). Most theoretical and simulation studies have been devoted to
the former. However, real LC mixtures are almost always poly-dispersed, owing to
the technological difficulty of obtaining 100% pure material. Binary LC systems
have been widely exploited in contemporary technology because of the facility with
which they change their physical parameters in response to changes in composition
[18,19]. For example, mixing LCs that have different phase transition temperatures
T, usually results in a lower transition temperature for the mixture (Figure 1.5)
than that of the pure component with the higher T}, [20], while the Fréedericksz
transition point for the critical field may either remain at the level of one of the

components or change in either direction [21-24].

10
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T

100%() A 100%( A)

Figure 1.5: Isotropic-nematic transition temperature of a generic binary mixture

[7,8].

Theoretical studies of binary mixtures predict rather more complicated phase be-
haviour than that presented in Figure 1.5. In such studies, the coexistence region
in the vicinity of the isotropic-nematic phase transition not only becomes narrower
near to the region of high concentration, but also deviates from having approxi-
mately linear dependence on the concentration; this was predicted by Maier-Saupe
theory, which was later extended by Humphries et al [25]. Subsequently, Palffy-
Muhoray et al [26] developed another theory designed to investigate the properties

of binary mixtures. These investigations have led to the following conclusions:

e For certain values of the parameters, it is possible to have a nematic-nematic
coexistence region. Coexisting nematic phases have been observed in mixtures
of LC polymers [27], other low molecular mass LCs [28], and in mixtures of

rod-shaped and disc-shaped nematogens [29].

11
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e The order parameter of the mixture and its variation with temperature agree
with the Maier-Saupe universal curve. However, the order parameter of the
individual components of the mixture may differ from each other significantly
[30].

In theory, it is possible to obtain a mixture with virtually any combination of required
characteristics. In practice, however, certain difficulties can arise, such as phase
separation between the various components under certain conditions. Therefore
the investigation of mixtures, and particularly of their phase behaviour and their
dependence on the parameters of each LC involved (weight percentage, coupling
constants, elastic constants, etc.), has attracted major interest. Further progress
in the study of LC mixtures depends on better understanding of the processes and
theoretical background, since the physical properties of LCs change non-trivially

when other compounds are added.

12



Chapter 2

Experimental Approaches And
Theory

For a considerable period after their discovery in the late nineteenth century by the
Austrian botanist Reinitzer [31], LCs were the subject of very few studies [32-36].
The earliest of these involved, essentially, optical observation through a polarizing
microscope [32]. Some attempts were made to synthesize mesogens [3,37-39] and
to understand the structure of their phases [35,36]. In the early twentieth century,
nematic, cholesteric and smectic A mesophases were observed and their structures
clarified by Friedel [32]. Thereafter, interest in mesogenic materials seemed to di-
minish; there were a few publications in the 1930s [40-42] on the discovery of the
electro-optical effect in LC [40], in the 1940s [15,43,44] on the high magnetic bire-
fringence of LCs, and in the 1960s on the Kerr effect in LCs [45], along with studies
of LC mixtures [22,46]. Only in the 1970s was the importance of potential ap-
plications to thermography and electro-optic devices realized, and this gave a new
impetus to the investigation of the properties of LCs, employing such experimen-
tal techniques as switching measurements [47-49], dielectric spectroscopy [50-53],
electro-optic spectroscopy [54,55] and pyroelectric measurements [56]. Recent de-
velopments in experimental techniques such as scanning probe microscopy have been

developed mainly in relation to the behaviour of LCs near the surface.

13



CHAPTER 2. EXPERIMENTAL APPROACHES AND THEORY

2.1 Order Parameters

Let us consider the properties of mesogenic materials in the isotropic and nematic
phases. One of the signs of an I-N phase transition is a change in the order parameter
S. Experimental observations using various techniques show that the order param-
eter decreases monotonically as the temperature is raised in the mesophase range,
and drops suddenly to zero at the transition temperature T'/T;, = 1 (Figure 2.1).
The fact that the I-N transition is first order leads to large pretransitional changes
in other thermodynamic properties (which can be measured experimentally), such
as the specific heat. However, the I-N transition is a weak first-order transition. The
changes in entropy and volume associated with this transition are typically only a
few percent of the corresponding values for the solid-nematic transition. For exam-
ple, the energetic barrier between the equilibrium states of the isotropic and nematic

phases at the transition temperature 7}, is only of the order 1kJ/mol.
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Figure 2.1: Orientational nematic order parameter [57]. Notation T, used in [57)] is
equivalent to T3,.
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CHAPTER 2. EXPERIMENTAL APPROACHES AND THEORY

A number of different techniques have been employed to determine the second-
rank orientational order parameter: optical birefringence experiments [31, 38] and
magnetic susceptibility measurements [8] as well as the conventional X-ray diffraction
[58-61] technique (which found its application in the shear flow studies of LC [59,62-
64]), etc. However, the usefulness of these techniques is limited because microscopic
order parameters calculated from measured macroscopic properties are based on
assumptions about molecular properties such as, for these examples, the magnetic

polarizability and the optical polarizability.
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Figure 2.2: Second Rank Orientational Order Parameters: obtained from SANS
(open circles) and NMR (filled circles) experiments. The solid line shows the pre-
diction of the Maier-Saupe theory. [14]

Other methods which study the molecular orientational ordering in the nematic
phase, and which have been widely used recently, are the various spectroscopic
techniques such as nuclear magnetic resonance (NMR) [65-77], electron spin res-
onance (ESR) [78-80], fluorescence depolarization [81] and polarized Raman spec-
troscopy [82-84], etc. Most of these techniques can provide results for order param-

eters up to rank four.

Spectroscopic techniques have also been used in measurements of LC mixtures. Bur-

nell et al [76] investigated the temperature dependence of the NMR spectra of the
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CHAPTER 2. EXPERIMENTAL APPROACHES AND THEORY

solutes. Measured order parameters were related to the intermolecular forces of
mean field theory. In [66] the anisotropic intermolecular forces that are responsible
for the orientational ordering in LC were studied by comparing computer simulations
of hard ellipsoids with experimental NMR results for solutes in a nematic LC. All
long range interactions were ‘minimized’ with a special LC mixture. The short range
interactions calculated from the NMR experimental solute order parameters were in
good agreement with the simulation results. In [70] NMR was used to determine
the degree of order of the solute and solvent molecules of a nematic LC in a zero
gradient electric field. The comparison indicated that for a variety of molecules dif-
fering in size, shape and flexibility, the degree of order could be described by a single
orientation mechanism. This mechanism was found to be adequately modelled by a
simple phenomenological mean field model based on the size and shape anisotropy
of the dissolved species. The use of zero field gradient in mixtures, in combination
with this mean field model, allowed the prediction of solute order parameters to an

accuracy of approximately 10%.

In the 1990s, small angle neutron scattering (SANS) was employed to study the
long range orientational order in LCs [14]. The advantage of this method is that the
diffraction does not depend on the properties of a certain rank and, according to [85],
can be used to obtain a virtually complete set of orientational order parameters.
In [14], however, it was found that in practice a significant statistical contribution
could be made only to the second- and fourth-rank terms in the expansion of the
single molecule scattering, which means that only the second- and fourth-rank order
parameters could be obtained. These order parameters were obtained from the
anisotropic single molecule scattering, isolated at small scattering angles. The results
for the orientational order parameters were compared with those obtained by NMR,
and with those predicted by the Maier-Saupe theory. For the studied nematogen, the
Maier-Saupe theory was found to underestimate the second-rank order parameter
and its dependence on the reduced temperature T/Ty;. However, the measured
values of the fourth-rank order parameter were in very good agreement with the
theory. For the same materials, order parameters obtained by NMR were found to

be slightly lower than those determined by the SANS experiment (Fig.2.2).

A number of approaches such as Raman spectroscopy [84], neutron scattering ex-
periments [86] and others [87] have been adopted in the study of orientational order

and radial distribution functions, using the so-called Guest-Host technique. In [86],
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the orientational distribution function in an LC was studied. Isotropically labelled
guest molecules were inserted into a host-LC environment and studied by means
of the neutron scattering technique. A very similar approach was used in both in-
frared linear dichroism experiments on nematic solutions [87], designed to investigate
the orientation of guest molecules in nematic hosts, and in FT-Raman polarization
spectroscopy of non-mesogenic guest molecules oriented in nematic LC solvents [84].
Attempts were made to obtain an orientational distribution function from the in-

version of the wide angle scattering data [88].

2.2 Phase Transition

The early experimental determination of the critical-like behaviour of the I-N phase
transition employed a light scattering technique [89-91]. Later, the Kerr effect [92],
the Cotton-Mouton effect [93-96] and the non-linear dielectric effect [97-101] were
used. Differential scanning calorimetry (DSC) [102-104] was also used in locating
phase transitions. All of these studies showed a pretransitional anomaly in the
isotropic phase of nematogens. Nematic LCs have long range correlations even well
away from critical points or hydrodynamic instabilities [105]. The results of early
investigations [106-108] of the heat capacity anomaly near the I-N transition were
so contradictory that at times they did not allow even a qualitative interpretation.
Anisimov et al [109] measured the temperature dependence of the specific heat for
MBBA near the I-N transition, and analysis of this dependence showed that fluctu-
ations of the order parameter were not inconsiderable at the phase transition point.
Recently, Rzoska et al [98,99] discussed the critical behaviour of the dielectric per-
mittivity in the isotropic phase of nematogens, and showed that the near the I-N
transition the dielectric permittivity follows the same pattern found in binary so-
lutions at critical points. Subsequently, high-pressure studies [100] were made of
the pretransitional effects of the I-N transition of MBBA, and of the low-frequency
non-linear dielectric effect in the isotropic phase of the mesogen. This investiga-
tion also showed the close relationship between the pretransitional behaviour in the
isotropic phase of nematogens and that in the homogeneous phase of solutions at
critical temperatures. All of these studies of fluctuation phenomena near to weakly
first-order phase transitions contributed to an understanding of the physical reasons

for their ‘closeness’ to the second order.
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Figure 2.3: Phase diagrams (filled symbols) of mixtures (a) s-SCLCP and E44, (b)
s-SCLCP and Ejg [20]. Solid lines represent theoretical prediction based on FH-MS
theory with relative strength of the cross-nematic interaction to that of the pure
mesogens taken to be (a) ¢=0.95. (b) ¢=0.945.
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Mixed liquid crystal formation has been extensively studied by Dave and Vasanth
[46], Yu and Labes [110], and Gupta and Vora [16], and their work has provided
a foundation for studies of systems consisting of both mesogens and non-mesogens.
Binary [111], ternary [112] and quaternary [113] mixtures of both enantiotropic and
monotropic LC were studied by Naoum et al [114]. Unfortunately, the materials
they used exhibited not a nematic, but a smectic, phase. However, the behaviour of
the isotropic - liquid crystalline curve on the phase diagrams from [111] may have

some relevance to our simulation results for the I-N curve for binary mixtures.

Also, nematic mixtures (mainly binary) which contain polymers have been exten-
sively studied experimentally with a view to informing the design of novel devices
(PDLC [115], PNLC [116], etc. [117]). In such mixtures of LCs and polymers
(isotropic or mesogenic), miscibility and phase separation boundaries are of great
importance in photopolymerization [118] and other processes {119]. Recently, many
experimental studies have been devoted to this problem [20,120-122]. As will be
shown shortly, there are two main mechanisms whereby phase separation may occur
in the mixture: immiscibility driven separation (leading to liquid-liquid phase co-
existence) and nematic order driven separation (leading to nematic-nematic phase
coexistence). With regard to the former, it was found that the most significant
characteristic of LC-polymer mixtures was the molecular mass of the compound
containing a polymer; whereas the latter was largely controlled by the difference in

I-N transition temperatures for the pure compounds.

Experimental investigation of such mixtures was conducted and reported in 1998
[20]. Using the methods of light scattering and optical microscopy, two different
systems were studied. For both systems, the mixtures used contained both LC
polymer (s-SCLCP [20]) and another compound, this being a low molecular mass
mesogen which was different for each system (E44 and Eyg [20]). The main difference
between the two systems was the I-N transition temperature of the two types of
LC component. Photo pictures of both samples at various temperatures, which
explicitly showed droplet formations and phase separation, were used to construct
phase diagrams of the experimental mixtures (Figure 2.3(a),(b)). The results were
compared in the context of a combination of the Flory-Huggins theory for isotropic
mixing and the Maier-Saupe theory of nematic ordering [123). These phase diagrams
revealed the existence of liquid-liquid as well as N, — N, coexistence phases in

one of the mixtures (Fig. 2.3(b)), while in another, the system formed a single
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nematic phase instead of Ny — N,, which is indicative of miscibility (Fig. 2.3(a)). A
similar phase diagram was reported in 1982 by Finkelmann and co-workers [120] for

a different LC-polymer mixture.

In another study, an LC - isotropic polymer mixture was studied using light scatter-
ing, optical microscopy and DSC techniques [121]. The resultant phase behaviour
was found to be influenced by the molecular mass of the polymer. In such mixtures,
liquid-liquid coexistence was present when there was a high molecular mass isotropic
polymer. As the molecular mass of the polymer was decreased, however, the liquid-
liquid coexistence region disappeared. The results were compared with other studies
of such mixtures [122], with the Flory-Huggins theory for isotropic mixing and with

the Maier-Saupe theory of nematic ordering.
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Figure 2.4: Phase diagram of LC and PLC with larger (filled square) and smaller
(open square) chain size [104] obtained from the experiment. Dashed and solid lines
respectively represent theoretical calculations for different lengths of the polymer

chain.

However, the molecular mass of the polymer compound of the mixture is not always
the main factor in the phase behaviour of the system. Experimental data from [104]
show only a slight dependence of the I-N transition curve and miscibility regions

on the molecular mass of the polymer chain in the solution. Such a mixture of
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two mesogens (LC and polymer LC each having low molecular mass molecules) was
investigated by Benmouda et al using DSC and optical microscopy [104]. The exper-
imental technique they used allowed them to obtain thermograms with errors in the
range of less than 1°C. Studies were concentrated on the phase separation and mis-
cibility of the solution. A phase diagram (Fig.2.4) obtained from the experimental

data was compared with the Maier-Saupe and Flory-Huggins theories.

According to the rule of Arnold and Sackman [124], a mixture consisting of types
of mesogens with the same mesomorphic structure should be miscible over a wider
range of concentrations than was found to be the case in this experiment (Figure
2.4). The miscibility region starts at a very low concentration of the polymer com-
pound and continues up to a concentration of 50%. In spite of the lack of data at
concentrations lower than 10%, there is strong evidence from other experimental
data [20], that one might expect no changes in that region. In the area of higher
polymer concentrations, the binodal is virtually a horizontal line coinciding with
the nematic-isotropic transition of the monomer rich phase. The demixing is in-
duced by the nematic order. While the polymer and the monomer are miscible in
the isotropic state, they demix as soon as the nematic order appears. The authors
of [104] concluded that the mixture of the polymer LC and its low molecular mass
equivalent exhibit an extended miscibility gap and an increase in the I-N transition

temperature, which were due to the influence of the polymer backbone.

2.3 Theoretical Background

Theoretical understanding of the nematic phase both at and in the vicinity of its
phase transitions has been developed in several directions. A density-functional
theory by Onsager [125] minimizes the grand potential = F — uN with respect
to variations of the single-particle density; this theory is based on the fact that the
isotropic-nematic transition occurs at low density for highly elongated molecules.
Another approach uses the theory of Landau and de Gennes [126,127], in which
the Helmholtz free energy is expressed in powers of the order parameter and its
gradients. Yet another approach, developed by Faber [128], treats the nematic phase
as a continuum, in which a set of modes involving periodic distortion of an initially

uniform director field is thermally excited. All orientational order is assumed to
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be due to mode excitation. Unfortunately, this theory works well only near the
solid-nematic transition and fails close to the isotropic-nematic transition. Maier-
Saupe theory [129] attributes the formation of the ordered phase to the anisotropic
attractive interactions only. This theory describes nematic ordering, while Flory-
Huggins theory for example, describes isotropic mixing and ignores orientational
properties of the particles. In many theories of the van der Waals type [130-132],
both anisotropic repulsions and attractions are included. These latter types of theory
are physically more precise than of Maier and Saupe; however, the main difficulty

attending them is that they require precise knowledge of intermolecular interactions.

Different approximations are used for describing different phenomena and different
properties of the system. As described in Section 1.1.2, long range order vanishes
abruptly at Tjy. However, certain anomalous effects in the isotropic phase reveal
that a significant degree of quasi-nematic short range order persists above the tran-
sition point. The most direct evidence of this is the very high value of the mag-
netic birefringence, which in the neighbourhood of T;y may be of the order of 102
as compared with an ordinary organic liquid [42,43]. Similar anomalies are seen
in the flow birefringence [44], the Kerr effect [45] and the nuclear spin lattice re-
laxation [133], and this confirms the existence of strong orientational correlations
between the molecules. Foex observed in 1933 that the magnetic birefringence ex-
hibits behaviour similar to that of a ferromagnet above the Curie temperature [41}.
More recently, de Gennes proposed a phenomenological description of these pretran-
sitional effects - the Landau-de Gennes (LDG) theory [126,134]. The LDG theory is
based on Landau’s general description of phase transitions [127] which was further
developed by de Gennes [126]. The strengths of the LDG theory are its simplicity
and its ability to encapsulate the most important elements of the phase transition.
Landau’s original theory was restricted to second-order phase transitions. The rea-
son for this limitation lies in the continuity of the change of state in a second order
phase transition, as a result of which the order parameters show continuous values
near the transition point. Mathematically it is simpler than the mean field theory.
The inclusion of the spatial variation of the order parameters gives it an additional
dimension not found in mean field theory. More detailed analysis can be found
in [126,127).
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Chapter 3

Simulation Approach

It is well known that theory is often a crude projection of the true processes that
operate in the real world. Nevertheless, theoretical approximations and models have
served well in furthering an understanding of nature and in applying, in numerous
ways, the knowledge thus gathered. Only relatively recently, through advances in
the mathematical apparatus of statistical mechanics, has it become possible, for ex-
ample, to solve analytically the two-dimensional Ising model. A number of problems

in many-body models are, however, insoluble.

On the other hand, experimental measurements are the only way in which science can
make contact with nature; and here too there are many problems. A large number of
these flow from our inability to create ideal conditions for experiments: inability to
switch off heat transfer in the isothermal bath, for example, or to avoid mechanical
vibration in obtaining an interference picture. In other cases, the impossibility of
studying the system directly is due to the fact that the very process of trying to
measure it changes its state. The list of problems, including financial ones, could be

extended indefinitely.

A middle way or a bridge between theory and experiment may, perhaps, be found in
simulation. Simulation plays an important role in providing essentially exact results
for problems in statistical mechanics without too frequent a use of approximation.
Simulation experiments (as they are sometimes called) allow one to verify theories in
an accurate way without producing undesirable effects. Simulation as a recognised
science started in the twentieth century. Morrell and Hildebrand [135] represented

molecules as large gelatinous balls, packed in a three-dimensional volume. The BZ
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Reaction, discovered in 1951 [136] by Belousov and later studied by Zhabotinskiy
in 1958 [137], was analogous to many systems occurring in nature, such as the
growth pattern of fungi, the fibrillation of heart tissue and circadian rhythms [138].
Biochemists, biophysicists and mathematicians therefore used the BZ reaction as a
model for their studies. Mathematicians also saw the oscillatory nature of the BZ
reaction as arising from problems of differential equations yet to be explored, while
biologists found that the chemical model furthered their understanding of of the

reason behind malfunctioning heart tissue.

Along with physical and chemical models, a number of mathematical or computer
models were also being developed. However, owing to the limited processing power
(or complete absence) of computers, mathematical or computer simulations started
to develop only in the late twentieth century. The problems involved in physical
simulations (the influence of gravity on a model consisting of metal balls, for exam-
ple), as well as the increasing power of computers, made it logical to move towards

to mathematical, rather than physical, models.

It is now almost half a century since the first computer simulation of liquids was
performed, on the most powerful computer of that time, by Metropolis et al [139].
Computer simulation is both a test of the underlying model being used, and an
aid to interpretation of new experimental results. Computer simulations are also
often designed to check the accuracy of a particular approximation employed in the
analytical treatment of a model. Opinions vary concerning the role of simulation
relative to other methods. Allen and Tildesley, in their book on computer simula-
tion, give one view when they assert the dual role of simulation, as a bridge between
models and theoretical predictions on the one hand, and between models and ex-
perimental results on the other [140]. Computer simulation is a direct link between

the microscopic scale of the system and the macroscopic details of the experiment.

The simulation technique used to obtain the dynamic properties of many-particle
systems is called Molecular Dynamics (MD). It is based on the solving the classical
equations of motion for a set of molecules. This was first accomplished, for a system
of hard spheres, by Alder and Wainwright [141,142], but it was several years before
a successful attempt was made to solve the equation of motion for a set of Lennard-
Jones particles {143]. Unlike those performed using MD, a simulation which employs

the Monte Carlo (MC) method does not operate with true dynamics, but rather uses
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an abstract mathematical-statistical approach which achieves averaged results in
agreement with the correct statistical mechanics ensemble. The MC method can be
used in various guises and can even be used in combination with MD. In other words,
the MC method can be defined in general as the branch of experimental mathematics

which is concerned with experiments which employ random numbers [144].

In liquid physics, the term MC is now universally reserved for the technique devised
by Metropolis et al [145] to evaluate statistical averages. If we consider a system with
known potential energy U, then in the Canonical Ensemble (constant N,V,T) any
time-independent configurational property of interest can be written as the average
weighted with the Boltzmann factor e #Y, where 8 = Tc';_f* The system evolves
through a series of trial moves generated using random numbers. If a subsequently
generated random number (usually this number is distributed uniformly between 0
and 1) is less than a certain value, the move is accepted and the system changes its
configuration; otherwise, the move is rejected and the system remains in its original
configuration. This value is given by e #Ue~Un) where U, and U, are the total
energies of the system before and after the trial move, respectively. The procedure is
then repeated hundreds or thousands of times. It should be noted that the processes
involved in proceeding along the MC trajectory have no relationship with real time.
A crucial difference between the MC and MD techniques is, therefore, that in MD
the true dynamics are followed whereas in MC all that can be said is that the process
leads eventually to equilibrium, in the sense that configurations will occur with a

frequency proportional to their Boltzmann factors.

As mentioned earlier in this section, it is possible to use not only different techniques
(MC or MD), but also different models to describe a given system of interest. Various
different potentials between particles can be used: the Lennard-Jones potential, the
Gay-Berne potential, the hard particle potential, the Maier-Saupe potential etc. In
our work we have used the Lebwohl-Lasher lattice model, based on the simple Maier-
Saupe pair potential [129,146,147]. We have used the MC technique to perform
the simulations. This technique and model are described further in the following

sections.
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3.1 Monte Carlo Technique

If a system is ergodic, then an observable can be calculated either as an average
measured during a time interval ¢ — oo, or as an ensemble average of n trials where
n — oo. In a MD simulation, the total energy E and the total linear momentum P
are constants of motion. Motion involves time in the calculations. Therefore, MD
must measure time averages in an ensemble for which the thermodynamic constants
are N, V, E, and the momentum P. MC simulations often operate in the Canonical
Ensemble, where the number of particles NV, the system volume V, and the temper-
ature T are constants. Depending on the model used and the observables measured,
however, alternative ensembles can be used. For MC, the range of ensembles is very
wide: the isobaric-isothermal (N, P, T) [148], the constant-stress-isothermal [149],
the grand-canonical (u, V, T) [150], the microcanonical (N, V, E) [151], and the
so-called Gibbs-ensemble [152,153] have all been successfully implemented. In the
present work, MC simulations have been conducted using the Canonical and the
Semi Grand-Canonical Ensembles. The Canonical Ensemble is the most appropri-
ate ensemble to work with, taking into account the Lebwohl-Lasher model and the
observables to be measured, there being no pressure or momentum involved. The
weakness of this ensemble, when applied to a lattice model of a binary mixture, is
that phase coexistence can be found at some state points. For this reason, the Semi

Grand-Canonical Ensemble was also used so as to clarify various phase boundaries.

Let us consider first a system where the number of particles, the temperature and

the volume are constant. The partition function for the Canonical Ensemble is:

1

QNVT) = oy [ deap® exp -7 (e, p") (3.1)

The kinetic (momentum dependent) part of the integral (3.1), called the partition
function for an ideal gas Q(N, V,T)", can be solved analytically, leaving only the
potential part of H under the integral:

Q(N,V,T) = sahpy [ dr¥ exp [-PU(EN)] = YTV [ deN exp [-SU(N)] =
(3.2)
= Q(N,V, TV~ [dr¥ exp[-BU(N)] = Q(N,V, T)“Q(N, V, T)*

where A = \/h?/(2rmkgT) is the thermal de Broglie wavelength. The use of the V¥

factor is essential in making Q(N, V, T)¢* dimensionless, and so the thermodynamic
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function of the Canonical Ensemble (the Helmholtz free energy) can be written as:

In Q% (N, V,T)
B

From this point onward, only the excess part of the partition function will be consid-

A= -

(3.3)

ered. Moreover, in numerical calculations, the V¥ factor can be set to unity, since
it is constant throughout the simulation. This is a common device - the use of the

configurational integral Z(N,V,T) instead of Q(N, V,T)** (Equation 3.4):
Z(N,V,T) = /dr” exp [-BU(™)] (3.4)

The partition function provides information about probability distribution - that is,
about the probability of finding any configuration of the system at a given energy.
If all momenta and all coordinates (locations and orientations) of the system are
written as components of a generalised ‘hyper-vector’ I', then any of the set of
states can be represented by a point in ‘hyper-space’. The probability of finding a
configuration can then be represented as a density distribution within this ‘hyper-
space’ :

N(T) < exp [-BH(T)] (3:5)

On the lattice, I has potentially only 6N dimensions, since there are no momenta
involved (N being the total number of particles). For the systems considered in this
thesis, another N dimensions disappear owing to the cylindrical symmetry of the
particles, leaving only 5N dimensions for I'. Thus, the average value of the order
parameter {S), described in Section 1.1.2, can be written as an integral over all

states I, normalised with the configurational integral Z(NV,V,T) (3.1):

S = o7 [ e AU (3.)

The application of MC in equilibrium statistical mechanics consists in approximat-
ing equation (3.6) initially by replacing integrals with sums over all possible states

'{T',T,...}. Equation3.4 can be rewritten as :
Z(N,V,T) =) _exp[-pU(D)] (3.7)
T

Let us consider the average value of an observable A. The average A is:
1

(AD)) = Z(TVT)Z exp [-BU(T)]A(T) (3-8)
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However, to make calculations covering all possible states of the system would be
immensely time-consuming; but by employing the Monte Carlo method, an accept-
able calculation of this sum is achieved through the use of random numbers. Instead
of calculating the contribution from all possible states I, effort is concentrated on
those states with greatest significance. The sum over these states must then be nor-
malised, yielding a result with an accuracy proportional to the number of random
trials. Simple random sampling is not efficient in practice because random states
(points on a surface) are not chosen according to their importance. In fact, nothing
is gained by visiting states that make a zero contribution to the average, and the -

exclusion of these requires the use of importance sampling.

In the simple sampling, each successive state I'; does not depend on its predecessor
- each is chosen independently of what went before it. In 1953, Metropolis et al
[139] introduced the Markov process into the sampling procedure, such that each
state I';;, is derived from the previous state I'; via a suitable transition probability.
Therefore each step in the Markov chain depended solely on the preceding state of
the system but remained independent of all previous states. In an ergodic system,
two more conditions must be satisfied. The first is that it must eventually be possible
for all states to be accessible as the system moves along the chain. The second is
that in transition probabilities from state I, to state I',, a detailed balance must be
satisfied (Equation (3.9)).

P(Ta)Tnm = p(Cm) Timn (3.9)

Here, the matrix # contains information about the probabilities of transition from

state to state and p(I',,) is the probability of the state I',, (Equation (3.10)):
p(Tm) = Q(N,V,T) L exp [~ BH(T'm)] (3.10)

Under the Metropolis scheme, an element ., of the transition matrix # is given

by:

Qnm p(Cm) > p(Tn) n#m
Tom = 4 Ot (;f(‘;’:;) p(Tm) < p(Tn) n#m (3.11)
1- ZLm Tam n=m

where & is a symmetrical stochastic matrix, often called the underlying matrix of

the Markov chain (apm = amy).

In a biased MC simulation, & can be made non-symmetrical. In the present work,

symmetrical & are used and in the calculation of Equation (3.11) all of its elements
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are set to 1. The sum of probabilities for transitions from state ', to all states of "

must necessarily return 1:

r
D =1 (3.12)

In the Canonical Ensemble we wish to sample the distribution (3.5). This can be

done uSing the following scheme:

1. Select a particle (either at random or according to a predetermined pattern)
and calculate the potential energy of the current configuration of the system
U..--. In this work, a chess board pattern was used to select particles for trial

moves. This technique is described in Section 4.3.

2. Give the chosen particle a random deviation. The energy for the next config-

uration is denoted as Uyezs-

3. Depending on energy difference AU = Upezt — Ueurr and a randomly generated
number, decide whether to accept the move. A key role in making this decision
is played by peurr and ppest, probabilities respectively of the current (I'cyrr)
and the next (I',er:) states or configurations of the system. Therefore the

probability of the transition from I'¢y;r to [peye is given by

nex N,KT -1 — Unezt
Zcur: - gEN v, T;-l :ﬁg LgUu} = exp [-BAU] (3.13)

In accepting a move with a probability of exp [-SAU], a random number x is

generated uniformly on the interval (0,1). If this random number is less than

the calculated Boltzmann factor, then the move is accepted:

x < exp [-BAU] (3.14)

3.2 The Lebwohl-Lasher Lattice Model

The history of the development of computer simulation techniques began about fifty
years ago, when the first computer simulation of a liquid was carried out. This
very earliest work [139] laid the foundations of modern MC methods. The original

models were highly idealized representations of molecules, such as hard spheres, but
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within a few years MC simulations were carried out using the Lennard-Jones [154]
interaction potential [155]. Such potentials were used in early chemical models of
mesogens, where the individual molecule was approximated to a set of soft Lennard-
Jones particles representing atoms [156]. The concept of the soft potential with both
attractive and repulsive parts was also exploited by Berne and coworkers [157], who

devised a series of anisotropic single site potentials.

Figure 3.1: Schematic view of the Lebwohl-Lasher lattice model for a two component
mixture.

In a crystal, molecular translation is restricted, while rotational motion may still
occur (plastic crystal). A simplified model of this situation may be devised, in which
the molecular centres of mass are fixed at their equilibrium crystal lattice sites, and
the potential energy is written as a function of molecular orientations. The model
may be further simplified in that interactions may be restricted to nearest neighbours
only. This is exactly what Lebwohl and Lasher proposed in 1972. Their model for
a liquid crystal consisted of particles with cylindrical symmetry located on the sites
of a simple cubic lattice (Figure 3.1). The interactions are restricted to nearest
neighbours and for these the intermolecular potential takes a purely anisotropic
form [1]. Basically, the Lebwohl-Lasher model is the lattice version of the Maier-
Saupe model [129] of an anisotropic liquid. Thus, the system energy is defined by

the sum of interaction potentials, full details of which are given in Section 4.2.
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The Lebwohl-Lasher model neglects the coupling between translational variables
and orientational variables which is present in a real nematogen. It is, therefore,
an approximate model for orientational ordering in a solid, which neglects several
important properties of liquid crystals. Nevertheless, it is believed that this model
is capable of revealing some of the essential properties of a LC near the nematic-

isotropic phase transition.

It may be deemed unwise to use a model of a LC in which the molecules are con-
strained on lattice sites, since one of the characteristics of a nematic LC is that
orientational order coexists with transitional freedom. However, this objection may
be countered by pointing out that in choosing a lattice model the aim is not to
seek to reproduce the properties of a real LC; such an aim would be somewhat over-
ambitious. Rather, the main reason for studying a lattice model lies in its simplicity,
which makes it capable of being studied to greater precision or for a larger number

of particles than would otherwise be possible.

In the Lebwohl and Lasher model [1] particles are allowed to rotate on their sites
around their centres of mass, interacting via a simple pair potential. In other words,
molecules are represented by centres of interaction located at the sites of a simple

cubic lattice and interacting with an anisotropic pair potential:

U,'J' = —EijPQ(COS ¢ij) (3.15)

where ¢;; is a positive coupling constant for neighbouring sites i and j . ¢;; is the

relative orientation of particles 2 and j and P»(x) is the second Legendre polynomial.

The model works remarkably well even for a relatively small number of particles,
compared to real life LC. In fact, experimental measurements of the order param-
eter dependence on temperature on cyanobiphenyl nematics [158,159] were consis-
tent with the simulation studies of the model by Pasini et al [160]. A particle in
the Lebwohl-Lasher model is usually thought to represent a closely packed group of
molecules. This domain of mesogens maintains its local structure at various tem-
peratures across the nematic-isotropic phase transition [161]. According to Zannoni

et al [162], these domains seem to include a few tens of particles.

To investigate LC behaviour near its orientational phase transition, Fabbri and Zan-

noni in 1986 performed an extensive study of the Lebwohl-Lasher model. Their
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system consisted of a cubic lattice of size 30x30x30 [163], to which they applied
periodic boundary conditions. This was continuation of the work published in [11],
where the phase transition of the model was located by monitoring, as a function of
temperature, the constant volume specific heat. In {163}, the authors also increased
significantly the number of runs near the transition to allow a more precise deter-
mination of the orientational transition temperature. The transition temperature
was found to be kpT/e;; = 1.1232 & 0.0006, refining previous estimates. Orienta-
tional order parameters (P,), (P;) were also calculated and a new algorithm was
proposed for the computation of (P;). Particular attention was devoted to pre-
transitional properties. Pair correlation functions go(r) and g4(r), as well as the
second-rank go-factor were reported. g, was found to diverge at a temperature
kpT/e;; = 1.1201 +£0.0006 and to fit the Landau-de Gennes behaviour except in the
proximity of the transition. These results indicated that the Lebwohl-Lasher model
can show the small difference between the nematic-isotropic transition temperature
and the isotropic phase limiting instability temperature without the introduction of
additional terms in the potential. Later, Pasini et al [164] determined transition by
solving an integral equation, since the smoothing required at times by the numerical
differentiation, made the transition impossible to identify. Apart from investigating
the heat capacity [11,163,164] and orientational order parameters [160, 165], these
and other authors also investigated the orientational correlation functions [166,167)
as well as working on generalisations of the model [160,165,168,169] and its further
development [170-172] to investigate other aspects of LC, not covered in this thesis.

The studies of Zhang et al in 1992 revealed more detail concerning the nature of the
orientational phase transition. Using the three-dimensional Lebwohl-Lasher model,
along with reweighting techniques and finite-size scaling analysis, they calculated
the ordering susceptibility and energy distribution function. From this, they found
the transition temperature to be kpT'/e;; = 1.1232 & 0.0001 [173]

In 1997 Gonin and Windle described structural aspects of the nematic-isotropic
transition in a LC [174]. Using the Lebwohl-Lasher model, they calculated an order
parameter, which supplied information about the average director structure. They
also calculated the angular pair correlation function g,(r), so as to form a picture
of orientational order as a function of distance between the sites. The g,(r) results
were limited by the size of the lattice. Preliminary studies of the model were made

below the transition temperature in order to investigate the influence of boundary
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conditions. A structural description of the transition was used, based on molecular
director maps and the identification of more ordered and less ordered regions. This
was achieved by dividing the distribution of local energies into two sub-distributions
with widths in accord with the mean values of their energies. The existence of
such a double-well structure of the free energy had already been found by Zhang
and Zuckermann in 1993 [175]. As the transition was approached from above, the
isotropic melt structure was seen to contain nematic nuclei which increased in volume
fraction as the temperature was decreased. It was shown that, at the transition,
these nuclei appeared to join in the network to produce a percolating phase having
a single orientation across the whole system. As the temperature was decreased
within the nematic region, isolated regions of disorder were continuously reduced,

with a corresponding increase in the overall order parameter.

The situation becomes even more complicated with simulations of mixtures. The
first testing of the validity of the molecular field approximation in the Humphries-
James-Luckhurst theory of liquid crystalline mixtures was performed by Hashim
et al in 1985 [176]. They used the standard cubic lattice model described previously,
but with the extension to three pair potentials, each with a particular interaction
parameter €,,, €5 and €45. They further assumed that e, could be ignored, owing to
the low concentration of the more anisotropic particles b which they used. Because
the concentration of particles b was very small, these were referred to as a solute,
while particles a were referred to as a solvent. It is important to note that the
solute was placed at random on the lattice sites (with the additional constraint that
no two b-particles were allowed to be nearest neighbours) and that this random
distribution remained unchanged during the simulation so that phase separation
could not occur. Hashim et al showed that the results did not depend on the
particular random distribution used. They obtained results for the heat capacity
and ascertained the transition temperature for the mixture. The results for the
second-rank order parameter for both the solvent and the solute yielded the expected
behaviour; the order parameter for the solute was considerably larger than that for

the solvent.

In 1990 same authors improved their model, making it capable of phase separation.
They now used a mixture of which one component was a nematic LC, the other
consisting of isotropic particles. The model chosen for the nematogenic solvent was,

once again, that proposed by Lebwohl and Lasher. This choice enabled them, as
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they point out in their paper [177], to construct a phase diagram for the mixture of
cylindrical and spherical particles predicted by the Humphries-Luckhurst molecular
field theory, and also to devise a test of that theory for spherical solutes. It should
be noted that the isotropic particles were represented as vacancies on the simple
cubic lattice and the cylindrical particles were allowed to move onto vacant sites.
The simulation results which were obtained confirmed the existence of the biphasic

regions predicted by molecular field theory for such mixtures.

In 1997 Polson and Burnell, in an investigation into the phase behaviour of a
Lebwohl-Lasher binary LC mixture, calculated the nematic-isotropic phase coex-
istence region and the orientational order parameters for the two mesogens along
the phase boundaries. For a system with equal concentrations of the two types of
mesogen, they found that the free-energy barrier between the two minima at the
I-N transition increased monotonically with lattice size, and, since it varied with
the square of the lattice size, they were able to deduce the first-order nature of the
phase transition. They also found deviations from the results predicted by mean
field theory. In particular, they found that an increase in the difference between the
isotropic components of the pair potential of the two species comprising the mixture

resulted in a broadening of the coexistence region [178].

When this section was written, Bates published a simulation study on a LC-isotropic
fluid mixture performed using a Lebwohl-Lasher type model [179]. In this he used
a modified interaction potential in the Semi-Grand Canonical Ensemble. He ex-
tended the model by adding an isotropic term to the interaction potential, achieving
the isotropic-isotropic coexistence (termed isotropic-vapor in [179]). He found that
depending on the strength of the isotropic term, the model exhibits either a di-
agram containing isotropic fluid and nematic phases or distinct isotropic-isotropic
coexistence in addition to the orientationally ordered nematic. More on this will be
discussed in Chapter 6 where our own Semi-Grand Canonical Ensemble results are

presented for binary LC mixtures.
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Chapter 4

Model Basis And Details

As was mentioned earlier, it is possible to use not only different simulation ap-
proaches (MC or MD), but also different models to study a system of interest. In
the present work the Lebwohl-Lasher model is used to study ordering and phase
behaviour in a liquid crystalline system, particularly in the region of the I-N tran-
sition. The model is based on a cubic lattice, each site of which contains a vector
representing the net orientation of a liquid crystalline domain (henceforward called
a particle). No empty sites are present in the model and the ‘density’ distribution
of the particles on the lattice is uniform in all directions irrespective of the director.
The energy of each particle is determined by the relative orientations of its six near-
est neighbours, and the probability of a vector being rotated to another, randomly
chosen, orientation depends on the Boltzmann factor of the difference between the
current and new energies (Equation (4.2)). All simulations were performed using
an importance MC technique similar to that described in [177] (Section 4.3). To
simulate the bulk propertics of the system Periodic Boundary Conditions (PBC)
were applied [180]. Polydispersity (i.e. binary and ternary systems) in the system
was simulated by introducing the notion of an ‘identity’ for each particle. The inter-
action potential between two neighbouring sites were then made to depend on the
‘identities’ of the sites (Section 4.2). In the simulation, a number of global observ-
ables were obtained, such as the order parameter, heat capacity, radial distribution

function, etc.
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4.1 General Details - NcVT, NAuVT Ensembles

In the simulation, the bulk properties of the model are of great interest. Unfortu-
nately, the power of the computer does not allow operations with N = 10?3 particles.
Usually, computer simulations are performed on a relatively small number of par-
ticles N < 10%* The size of the system is limited mainly by the speed and the
memory capacity of the computer. It will be shown later in this chapter that many
of the calculations performed in a simulation are proportional to N2. Therefore, it
1s necessary to keep the number of particles in the system relatively low. On the
other hand, in a cubic lattice model with a size of, say N = 16 x 16 x 16 = 4096, the
number of particles which appear on the surface is 1536. This means that 37.5% of
the particles experience forces very different from those that obtain in the bulk. In
such system, the contribution of the particles on and near the surface is immense.
Thus, for bulk property studies one must employ approximations which reduce this
surface effect; here it was effectively avoided by implementation of PBC [181]. As
an aid to picturing PBC in 3D space, let us first consider a simpler example - a
2D lattice whose opposite edges are connected to each other (Figure 4.1), so that
the 2D lattice forms a toroidal topology in 3D space. As is shown in Figure 4.1, a
Site Sp41,m+1 NEXt to the site on the edge spm is an ‘imaginary’ site which, in fact,
corresponds to s;; owing to the way in which the edges are connected to each other.
In such a system there are no particles at the surface, because there is no surface as

such, even though the system is finite.

Owing to the finite size of the system, there remain, in spite of the approximation
of PBC, some limitations. One is that for such parameters as radial distribution
functions it is possible to calculate correct data only for distances r < Teutof f, Where

Tcutoff Telates to the system size as:

ol

Teutof f S (41)

Here L is the size of the smallest side of the simulation box (if the sizes of the
sides differ). In this way, the minimum image convention can be satisfied. This
means that in PBC only the closest distance between particles is considered and
particles cannot be counted twice. Another effect of the system size is the long
range orientational correlation it imposes between the mesogenic particles, which

increase the transition temperatures of the system; finite size scaling can be applied
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in order to correct for this effect. The running of large-scale MC simulations requires
the generation of a uniform distribution of non-correlated random variables. RAN2
is a random generator based on [182], the repeat period of which is virtually infinite.
It provides random numbers x between 0 and 1 with precision of seven digits after
the floating point for use in the definition of new rotation angles (4.15 ) and for

acceptance (4.2), etc.

......................................................................................................

.....................................................................................................

Figure 4.1: The Periodic Boundary Conditions in 2D lattice.

4.1.1 Canonical Ensemble

In MC simulation, the decision regarding acceptance and rejection of a move is based
on the calculation of the energy of the system (Equation (4.2)). To be more precise,
it is based on the energy difference AFE between the present state of the system and
the state to which it is attempting to transform (see Section 3.1). So the general

acceptance/rejection condition (3.14) reads as:

accept if y < exp(—BAFE) (4.2)
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where X is a random number between 0 and 1 and § = 1/kgT. In Section 3.1 the
partition function for the Canonical Ensemble was introduced and the distribution
sampling scheme of relation (3.5) was explained. The probability of a transition
from any state [, to a new configuration ['n.;; was presented in Equation (3.13).
The general acceptance condition (3.14) is then applied to the system. In the lattice
model used here only one site was changed at a time, so that it was not necessary to
calculate the energy difference of the entire system. Rather AF in this model was
given by the local energy change (Ef%™ — E'¢"t) between the current and the next

local configuration respectively.

(=]

curr curr nezt next
loc E : loc § :Uij (4'3)

The local energies Ef¥™ and EJ¥** in Equation 4.3 are the sums over the six in-
teraction potentials U;; between particle 7 (in the current (curr) and prospective
(next) orientations) and its six neighbouring particles j (which remain unchanged
in both the curr and next local configurations). The analytical view of interaction

potentials will be given in Section 4.2.

4.1.2 Semi-Grand Canonical Ensemble

At the end of Chapter 5 and the beginning of Chapter 6, it will be suggested that it
is much more convenient to carry out simulations in a Grand Canonical Ensemble
when dealing with sharp thermal dependencies of the phase boundaries. Owing to
the ‘incompressibility’ of the lattice model used in our simulations it was appropriate
to use a Semi-Grand Canonical Ensemble (NAuVT) in which the total number of
particles (N = N4 + Np) and the difference in chemical potential Ay are constant,
while the concentration ¢ (N4 : Np ratio) is subject to variation. The partition

function for this ensemble is:

Qsc = Zexp(ﬁ(AE + ApAN)) (4.4)

where AN = Ny — Np and can be AN = —N...0... + N. Ap is the chemical

potential difference between the two species and AF is the difference between the
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total energy of the system before and after the move. As in the Canonical Ensemble
simulations, AE was calculated as the difference in local energies (see Equation 4.3),
since attempts to exchange particles with those of an unlike type were performed
singly, and involved only one particle at a time (AN = £2). The acceptance rule for
such a move is then easily formulated by modifying that of the Canonical Ensemble

to incorporate an additional term into the Boltzmann factor:

_ AE + %AuAN
P, =min{1l,exp |- T

(4.5)

The sign before the AuAN term depends on whether a particle of type A is being

exchanged with one of type B or vice versa; and a 3 is introduced for convenience.

4.2 Interaction Potentials

The energy difference AE, used in formulating acceptance rules for both ensembles
used is calculated from the interaction potential between neighbouring particles
(Equation 4.3). The interaction potential describes how particles interact in the
system. The interaction potential used in the simulation is presented in Equation
4.6 and is that proposed by Lebwohl and Lasher [1]. The anisotropic interaction

potential between two particles, then, is given as:
Uij = —€ij Py(cos ¢;;) (4.6)

where ¢;; is a positive coupling constant for neighbouring sites ¢ and j. The relative
orientation of two particles is denoted by the angle ¢;;. In the model, only the
interactions between nearest neighbours are taken into account, which means that
the local energy minimum of each particle is defined by its six neighbouring particles
only. This allows a relatively rapid simulation timescale. In the case of a single
component system, €;; = € is a positive scalar value which is normally set to 1.
However, for binary and ternary mixtures the coupling constant in the interaction
potential (Equation 4.6) needs to be modified. For the sake of clarity, the value of
€i; 18 selected from a n x n symmetric matrix of positive scalar values (Definition
4.7). Here, n is the number of components in the mixture and cy, ¢, ..., ¢, are values
used in determining the coupling (C,4). ¢; value selects the ‘identity’ of the particle

from the various types present in the mixture.
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ccﬁ c1 c2 . ¢Cn
a Cn Cag - Cin
O = @ Ca Cyy - Con (47)

Cn C’nl Cn2 " Cnn

Each individual element Cy g of the matrix C denotes the coupling between two
different types of particle, where o, 8 = 1...n. If particles ¢ and j have identities
c1 and ¢, respectively, then ¢;; = Cj,. The identities c(..n), in fact, represent
the magnitude of anisotropy for the particles and range between 0 and 1, so that
the two extremes (0 and 1) represent a sphere-like and a strongly rod-like particle
respectively. The presentation of €;; as an array of elements is convenient when
further modifications to the interaction potential are needed. For example, in our
simulations we used a simple relation between the identity of the particles and the
coupling constant:

€ij =Cop=CaCp (4.8)
and this relation can be changed to satisfy more sophisticated relations between
particles, such as, for example, the addition of a further interaction coefficient for

interactions of like particles:
_ CaCpEiag

€ij = Cap 5

(4.9
Thus, following from Equation (4.8), in the case of the binary system the difference
in coupling between particles is expressed as a product of identities, ¢,=1 (for type
1, henceforward referred to as type A) and ¢;=0.5 (for type 2, also referred to as

type B). €;; for the binary system with the parameters described above reads:

Eij =1 A — A interaction oo e
€; =05 A—Binteraction <« © 1.00 0.50 (4.10)
€ij = 0.25 B — B interaction 2 050 0.25

For the sake of convenience, the identity (or magnitude of anisotropy) of type A
particles is always set to 1, so the coupling between particles can be defined by
only one value of € = ¢;. Thus, depending on the types of both particles involved,

Equation (4.6) appears as:
Uij = —P(cos ¢;;) A — A interaction (4.11)
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U;; = —ePy(cos ¢;;) A — B interaction (4.12)

U;; = —€Pa(cos ¢;;) B — B interaction (4.13)

Therefore, the interaction potentials (Equations (4.11), (4.12), (4.13)) depend on
the identities of both interacting particles. Similarly, as a third type of particle (C)

is introduced, more values of €;; are calculated, based on Equation (4.8).

4.3 Moves

There are three types of move in the simulation: rotation of a particle; exchange
of location of two neighbouring unlike particles (swap); and change of particle type
or identity (NAxVT Ensemble only). Each of the moves requires the generation
of random numbers. Two numbers were needed for obtaining random angles for
the rotation move; four numbers for the swap move (random location of the site
(z,v,2) and random choice of one of the six neighbours with which the original site
is exchanged); and three numbers for the change of particle type. In addition, further
random numbers were needed to assess the relevant acceptance criteria. There now
follows a detailed description of the algorithms involved in making each of these

moves.

The rotation move involves a random deviation from the original orientation of
the particle. On the one hand, the trial rotation move will frequently be rejected
if the maximum deviation angle 0,,,, is set too high. On the other hand, when
the maximum deviation angle 8,,,, is very small, the move will virtually always be
accepted but phase-space exploration will be limited. In both cases, the system is
likely to reach equilibrium after a very large number of simulation steps. In order to
set Omaz to the optimal value, a number of equilibration runs can be performed at the
beginning of the simulation, until the percentage of attempted moves being accepted
falls in the interval of 40%-60%. No calculation of observables is attempted at the
time of the equilibration runs. After this procedure, 6,,,; needs to be held constant
during the entire simulation run. The procedure is repeated for every simulation
in which any of the parameters change, such as temperature, chemical potential
difference, etc. The trial rotation moves, limited by 6,,,;, must always satisfy the

following conditions:
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e Two angles, 6 and ¢, which fully determine the orientational deviation of the

uniaxial particle from its current position %.,.r, must be selected randomly.

e The set of randomly chosen orientations of the particles must form the uniform
distribution of the points made on the surface £ of the imaginary partial sphere

that is embraced by 0,,0..

Equation 4.14 ensures the uniform distribution of points on the surface . All values
from f; are generated by random number x and are homogeneously distributed on
surface £, which is limited by the angle 6,.,;. X ranges uniformly in the interval
[0...1]. In this way the local density of points does not depend on 6 and is constant

across surface .
fd = X(l — COS omaz) (414)

Using distribution f, for cos # and uniform distribution for ¢, random values of cosf,

sin @ and cos @, sin ¢ can be derived (Equation (4.15)).

cosf@=1-f4
sinf = /1 — cos?6

. (4.15)
cos ¢ = cos (x27)

sin ¢ = sin (x27)

Equation 4.15 ensures angle ranges 0 < ¢ < 27 and 0 < 6 < 7/2. These values form

the transponent rotation matrix RT (Equation (4.16)).

cosfcosyp cosfsiny —sinf
RT(x) = —sin cos 0 (4.16)
sinfcosy sinfsinp cosf
RT denotes the random deviation of the particle from its current orientation @cyrr-
The relationship between ., and a new t,.,; orientation is given by Equation
(4.17). These two vectors are then used in Equations (4.3) and (4.6) and in condition
(4.2), which determines the acceptability of the trial move. In the case of a successful
move, Ucyrr 1S set to U,e: Whereas when the move is rejected, the present orientation

of the particle 4., is preserved. In successive runs this operation is repeated for

every particle in the system.
Gineze = RT (x) x 4L, (4.17)
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For the rotation move, each successive site must be chosen in a way that it is un-
correlated with the location of the site visited previously. This is due to possible
commensurabilities, which might interfere with the equilibration process in the sys-
tem. One way of solving this problem is to pick sites randomly. We, however, have
chosen a different route, which is a chess-board order. The locations in the 3D lattice
were designated as notional ‘black’ and ‘white’ sites, as on a chess board. Next, for
each particle on a ‘white’ site the rotation move is attempted according to step 2
as set out in Section 3.1. The acceptance decision was made according to Equation
(3.13), given in step 3, and the operation repeated for all particles on ‘white’ sites
one by one in any order. After this, the particles on ‘black’ sites were treated in
exactly the same manner. It is important to note, however, that when the peri-
odic boundary conditions are applied, the size of the lattice must always be of even
number, so that the chess-board pattern is continuously propagated throughout the
periodic boundaries without neighbouring sites being marked in the same colour. It
should be noted, however, that for the swapping move the chess-board pattern was
not used; instead, each particle was chosen randomly. After rotation trials had been
performed on all particles, 20% of them were chosen randomly and an attempt made

to swap their identities with those of neighbouring particles.

For calculation of the order parameter and the correlation function, the angular coor-
dinates of the particles must be noted in the global system of coordinates. However,
the rotation move of the particle vector involves random angles used with respect
to the orientation of a particle within its local system of coordinates. Therefore, the
standard geometrical formula of a rotational matrix was applied so as to transform
the coordinates of the particles from their local to the global system of coordinates
and vice versa. Since the number of rotation moves made during the simulation run
exceeded the number of calculations that used global coordinates, only the rotational

matrixes of the particles were stored.

The next step is to allow particles to move within the simulation box (swap).
This adds an extra degree of freedom (translational) and allows new phenomena
to emerge. The swapping of particles was kept as simple as possible, the main

points being as follows:

e Since there were no empty sites in the lattice, the move was implemented by

attempting to swap neighbouring sites that had different identities. It should
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be noted that only particles of different types were considered. For example
if, of a site’s six neighbours only m were different from it in type, then the
probabilities of a successful move were < for each of the m unlike particles
and O for the other (like), particles. It worth noting, however, that in some
circumstances, such a method does not satisfy the accepted rule of microscopic
reversibility [140,144,180]. Justification for this approach follows in Section
6.5.5.

e Moving the entire particle (both its identity and orientation) is a disruptive
procedure, as most moves are likely to be rejected. Thus, the orientations
of the particles were kept unchanged and only the identities were exchanged.
This is based on the assumption that the local energy associated with the

orientation is already minimized.

e The local current Ef*" and prospective E]¢* energies of the two particles
considered have to be calculated in a different way from that used in the case
of the rotation trial move (Equation (4.3)), since this kind of move involves a
configurational change in not one, but two sites. Therefore, in the calculation
of local energies, integration with the nearest neighbours of both particles must

be taken into account.

In order for the notation for local energies to be consistent with that used in Equation

(4.3), let us then write local energies (Ef“") and (EPe*t) for the two particles which

loc loc

are to be swapped. These will contribute to the local energies (E%™) and (EJ¢*

loc loc

from Equation (4.3). Current and prospective local energies for particle A, whose

identity is changed, are denoted as:

lc:crr Z Ucurr = Z “EijPQ(COS ¢,‘j) (418)
i=1
[ 6
(AEREY = Z Unest = Z —¢1;P2(cos ¢y5) (4.19)
j=1 ji=1

And for particle B, current and prospective energies are denoted as:

lc‘:::rr Z UG = Z —€klP2(COS d’kl) (4.20)
1=1

BEpesty Z Upett = Z —&4, P2 (cos di) (4.21)
=1
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Here ¢;; and €}, are the coupling constants chosen from matrix C, but each corre-
sponds to a different element of the matrix, since the identity of particle A in the
curr and next configurations is different. The same situation applies to particle B
and the coupling constants ex; and €;. 7 is the index of the particle (particle A),
the identity of which is to be exchanged with one of its neighbouring particles of
a different type (particle B), the indexing of which is denoted by k in Equations
(4.20,4.21). 7 and ! are indices for particles that neighbour the particle of type A
and type B respectively.

Therefore, the local energy (Ef%™) (Equation (4.22)) used in the definition of AF

loc

comprises the sum of (Ef%")’ of both particles, A and B.
6 6

EQm = (AETY + (PEQ™) =) —eiiPa(cos ¢i) + > —enPalcosdu)  (4.22)
j=1 =1

Following an analogous procedure, the local energy (E]¢*t) (Equation (4.23)) com-

prises the sum of (EJ€**)’ of particles A and B.

6
Z,ecxt - (AEI ezt) + (B {:;Zzt = Z _EUP2 Ccos ¢z] + Z —5HP2 COS ¢k[) (423)
J=1 =1

So the full equation for the energy change reads:

6 6
AE = Z —&}; Pa(cos ¢;;) + Z —€5 Pa(cos dr1)

j=1 =1
6 6
- Z —€ijPy(cos ¢y;) — Z —eg Pa(cos ¢rr) (4.24)
j=1 =1

The value of the coupling constant for the interaction between particles A and B
is the same before and after the move, e;; = ey = €}; = ¢, as is the relative
orientation between particles. Thus, this part of the sum does not contribute to the
local energy difference. In addition, owing to the fact that the coupling constant is
constructed via the simple product of two numbers (identities), there is no need to
recalculate the potentials in the sum fully, since all the neighbouring particles (5 and
I) remain unchanged. Therefore, in the case of the binary mixture being modelled,
where ¢;; is denoted only as a product of the identities of two interacting particles,
further simplification of Equation (4.24) is possible. Let us therefore, rewrite the

coupling constants for this specific case as a product of the two constants, which
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make up each element in matrix C:

£ij = cacg  where a = aA), and B = B(j)
€l; =cCaCg  where a = a(B), and 8 = B(j) (4.25)
Exl = CoCy  Where a = a(B), and v = ()
gl = caCy  where a = a(A4), and v = (1)

Here, « is the index corresponding to the identity of particle A or B, depending
on whether the system is in its current or prospective configuration. f is the index
corresponding to the identities of all the neighbouring particles. ¢, can possess only
two values c4 and cg, which are the identities of particles A and B respectively.

Equation (4.24) for this case is rewritten in the following way:

6

6
AE = Z —(cpeg) Pa(cos ¢i;) + Z —(cacy)Pa(cos ¢r) —
=17k I=1,1£i
6

6
- —(cacg) Pz(cos ¢;) — Z —(cpey) Pa(cos ¢y) =

j=1,5#k 1=1,1#i

6
= —cp (— Z ¢y Pa(cos ¢ry) + Z cBPz(cosgbij)) - (4.26)
!

=1L1#4 J=Lj#k

6 6
— ca ( z cyPo(cos ¢yy) — Z cﬁPQ(COSQSij)) =

1=11#i j=1i#k

6 6
= (cg—ca) ( Z cyPa(cos ¢pt) — Z CﬂP2(COS¢ij))

I=1,l#i J=1,j#k

Mathematically this is may seem an insignificant simplification, but in a system with
over 4,000 particles, 20% of which are processed at each of the 20,000 to 100,000

sweeps comprising a typical simulation, it is a useful improvement.

4.4 Calculation of Microscopic Parameters

4.4.1 The Director And The Orientational Order Parameter

The orientation of the uniaxial particle i is defined by unit vector €;, which in turn
is defined by the three components in the cubic system of coordinates. We rewrite

Equation 1.5 for the nematic order parameter in terms of the‘direct vector product’
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E;, where the z—, y— and z— components of €; in the global coordinate system are

used instead of angles:

Y= Qu= LS 31k . 4.27
Q=Qaﬂ—‘ﬁ;(§[ 1o~ 30) (4.21)

Here E; is obtained according to Equation (4.28), o and 8 are the coordinates of E;

and N is the number of unit vectors (particles) in the system.

B 1 2 3

R 1 . . T -

Bi= S (4.28)
2 yz yyyz

3 z-x zy z-2

The ( tensor has three eigenvectors ny, n and n3. The next step is to determine
which of these represents the director of the system n. For this purpose, the Q tensor
is diagonalised using the Jacobian Transformation [182]. The trace of Q is equal to
0. The highest eigenvalue of the diagonalised matrix Q;; (i = 1,2, 3), relates to the

second-rank order parameter of the apolar uniaxial mesophase as:

The eigenvector corresponding to this highest value of @;; is, in fact, the director of
the mesophase of the system 7i It should be noted that this eigenvector denotes the
true director of the apolar uniaxial mesophase, since the signs of €; have disappeared

in (E).

4.4.2 Radial Distribution Function Calculations

In a lattice model where all the sites are occupied, the g(r) function is fixed and
does not yield useful information. However, in a system of two or more components,
which can move within the simulation box, the distribution functions of the like
(e-g. gaa(r)) and unlike (e.g. gap(r)) particles can yield information on the phase

behaviour and micro-structure of the system. As was explained in Section 1.1.4,
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the generic function g(r) can be described as the average probability of finding
a particle at distance r from another particle, the result being normalized by the
random uniform distribution. However, owing to the discretisation of a lattice model,
the distribution of the particles is normalized not by the probability expected for a
completely random distribution at the same density, but by the ‘density’ expected for
a 100% distribution in that lattice at a given radius r. This normalization function,
n(r), is constant and determined by the nature of the (cubic) lattice used in the
model. In the simulation of the binary system, the calculation of the distribution
functions of the like and unlike particles was performed according to the following

steps:

1. Select a particle i. Calculate gf*4(r), which is the distribution of all particles
having the same identity as the selected particle 1, normalized by 7(r). n(r)
represents the total number of particles at a radius r =1, V2,2, \/3...rcutof f

GAA(r) = —— > 8(eirc)) (4.30)

Here, 6(ci,c;) is the Kroneker symbol, which equals one if the identities of
particles 7 and j are the same, and is zero otherwise. The information carried
by g{4(r) about the distribution of like particles at various distances r relates

to particle ¢ only.

2. In a manner similar to Step 1, calculate the distribution of unlike particles
( g2B(r) for the binary and g{*®(r), gZ%(r) for the ternary mixture). The
analytical view of unlike distribution functions for particle 4 is similar to that
shown in Equation (4.30), except that the term under the sum returns one if

the identities of particles ¢ and j are different, and zero otherwise.

3. Visit all particles in the system one by one repeating steps 1 and 2, calculating

like and unlike distributions.

4. Calculate the averages of all N single-particle radial distribution functions
gi(r) (like and unlike), following the general rule in Equation (4.31) (suffices

are omitted for simplicity):

9(r) = 5 D_ailr) (4.31)
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5. Repeat steps 1-4 with appropriate frequency during the simulation run, to
ensure that the resulting average functions have acceptable accuracy (a satis-
factory number of repetitions for the system of size N = 16 x 16 x 16 was found
to be R = 10,000). The distribution functions are then given by the following
general equation, angular brackets denoting an ensemble average (NcVT or
NApuVT):

o) = () = 2 > 9(0) (432)

For the system size mentioned above, the calculation of distribution functions in step
3 would require N? if-statements. The final result, obtained from step 5 requires

RN? j f-statements, which is equal to 1.67721 - 101,

4.4.3 Orientational Correlation Function Calculations

As was shown in Section 1.1.5, go(r) in general describes a second-rank order param-
eter of the particles separated by distance r. Like the radial distribution function,
the orientational correlation function g»(r) is subject to normalization by the to-
tal number of sites present at each discrete radius r, i.e. the normalization factor
n(r). Thus, for the calculation of g,(r), we further develop the algorithm of the
calculation of g(r). Briefly, the total g»(r) function was normalized by the same
n(r) factor as was used for g(r), but the g,(r) function when calculated separately
for each individual type of particle, was normalized by the number of particles of
the same type present at each radius r, this being the distribution function of like
particles, g% (r) (gf°(r) = {g4(r), gB8(r), g C(r)}). Thus, in the general case of
the n-dispersed system (binary, ternary, etc), the calculation of the orientational
correlation functions of the total (g;(r)) and subsystems g5(r) where the identities

¢ = {e, 2, ..., ¢} Was performed according to the following steps:

1. Select a particle 7 and note its identity co (o = 1,2,...n). Calculate g{=(r) for
particle ¢ (using the procedure Step 1 in Section 4.4.2). Using the method de-
scribed in Section 4.4.1, calculate the sum of the second Legendre polynomials

Py )(r) for particle ¢ and all like particles j (i.e. those of identity ¢,) at radius

2(ij
7. Finally normalize the result with g/ (r):
1 g;o(r)
950(r) = ey D P (1) (4.33)
g; (T) j=1
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2. Repeat Step 1 for all N particles in the system. This results in IV functions,
the analytical view of which is g; o )( T).

3. Average all g,g‘(’i)(r) functions with the same c,. It should be noted that al-
though the sum in Equation (4.34) is over all N functions, only the functions

which correspond to particles of the same identity actually contribute.

N Z goey(r (4.34)

Here, the normalization is equal to the number of particles which have appro-
priate identity, hence (z, - N), where z, is the concentration of particles in
the system with identity co. The result is n functions, g5*(r), each of which
represents the orientational correlation between particles of like type (identity

Ca). For binary and ternary mixtures n = 2 and n = 3, respectively.

4. Average the g3%, (r) functions over all NV particles, irrespective of their identities

o, to obtain the total orientational correlation function of the system.

Z E ggay(r (4.35)

i=1 a=1
This yields a function that ignores particle identity, i.e. the total second-rank

orientational correlation function g»(r). Note that the orientational correlation

function is already normalized here (sce Equation (4.33)).

5. Perform Steps 1 and 4 with satisfactory periodicity throughout the simula-
tion to gain the necessary accuracy (a satisfactory number of repetitions for
a system of size N = 16 x 16 x 16 was found to be R = 10,000). Thus the
correlation functions g;(r) and ¢5*(r) (¢ = {e1,¢z,...,ca}) are given by the

following equations:
g5°(r) = (g5 (")) = Zg (4.36)

0r) = (65 () = = S aalr) (437)

As was mentioned earlier, for N particles in the system the calculation of the g(r)
function is a process of N? steps. In the calculation of go(r), however, this scaling

increases to at least N4, since the calculation of the order parameter itself is a process
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of N2. For this reason, the Fast Fourier Transform (FFT) procedure was used [182]
instead for the majority of the go(r) calculations. FFT reduces the scaling of the
calculation time to N2. Both direct and FFT techniques were compared and found

to yield the same results.

4.4.4 Histogram Re-weighting Technique

The histogram re-weighting technique was introduced in 1988 [183], and then mod-
ernised 1993 [175]. It allows data obtained from a single simulation to be used to
generate ‘continuous’ thermodynamic functions across a chosen region of parameter
space. The technique has been found to be useful when the behaviour of the system
displays sharp peaks, as for example near phase transitions, and it has proven to be

a useful tool for determining the nature of various transitions.

The histogram re-weighting technique allows one to reproduce an energy histogram
for a new set of input parameters using an existing one, obtained with a relatively
close set of input parameters. This means, for example, that it becomes possible
to determine the many histograms that represent the state of the system at differ-
ent temperatures, using data from a single long simulation run performed at one
fixed temperature. The concept behind this technique is fairly simple. Histograms
are obtained from equilibrium statistical mechanics calculations. The form of the

partition function is:
__H
Z=3 T (4.33)
r

By calculating a distribution at a particular temperature, pressure, density, etc. that
part of the partition function which is significant for those constant parameters is
sampled. Let us consider an example of two histograms (Ps and Pg) obtained at a

slightly different values of the input parameter 8 = 1/kgT.

Pp(oi) = ﬂ(;ﬂ (4.39)

Py (o) = Eﬁ(;i@ (4.40)

The partition function Z is unchanged in both cases, since it is a sum over all states.

More accurately, only the sum over limited range of —o; is used, which is sufficient
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for Equations 4.39 and 4.40, providing that # and g’ are close. Thus

Psloi) _ _ Pp(oi)

exp (—=0;8)  exp (—0;8) (4.41)

Thus, if the difference in value between § and §' is sufficiently small, the region of
Z sampled in the calculations at B can also be used to calculate a new histogram at

B’. Following this notion through more formally, it can be shown that [175]

exp (—0i(8 - B))
(exp (=0i(B - 8))s

,Pﬂr (0’,’) = ’Pﬂ(a,-) (442)
In theory, this method could be used to cover a large parameter space. In practice,
however, the original histogram is sampled with finite statistics; energy values o;
are approximated by discrete bins and the distribution function itself, P(o;), is not
continuous and, as a result, is truncated at both sides of ¢; axis. For this reason,

care has to be taken when extrapolating too far from the original simulation point.
4.4.5 Estimating Errors

As with real life experiments, computer simulations are subject to systematic and
statistical errors. Sources of systematic error include size-dependence, the possible
effects of poor random number generators, non-equilibration, etc. Another signifi-
cant cause of statistical error in the calculated mean values is the finite length of
a simulation run. The general approach to estimating statistical error is based on
finding the mean (A4), and the variance 02({.A),) of the measured values .4;, where
7 is the length of the simulation run. In simulation, 7 is a discrete value and usually

represents the number of measurements taken.

(A)r = -i— i A (4.43)

2 ((A),) = w—f:z)l, where (A%, = %ZT: (A; = (A),)? (4.44)

i=1
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We assume that 4 is a Gaussian process, such that (§.4%), is essentially given by
the sum of a large number of ‘random’ quantities. Eventually, when 7 — oo, (A),
gives a true value of .A. However, for finite 7, (A4), almost always differs from
A. In addition, the data points from which (A), is calculated may not be truly
independent; they may have been stored sufficiently frequently that they are highly
correlated with one another. Therefore the 7 measurements that were taken during
simulation cannot necessarily be treated as being the ‘true’ simulation length in
Equation 4.44. The correct number of measurements is actually the number that
were taken from configurations of the system that were totally independent of each
other. In this case the error of evaluation of {A), can be estimated as:

o((4),) = 1/ S 1.0), (4.45)
Here the correlation length £, due to Friedberg and Cameron [184], is defined as
being the limiting ratio of the observed variance of an average to the limit expected

on the assumption of uncorrelated Gaussian statistics (Eq.4.46).

e i PO(A)

Jlim = (4.46)

This ratio can be determined on the computer as follows. Take a data set of length
7 and divide it into blocks each of length 7, to give ny = T’—b blocks. Calculate the
mean value of A for each block, following Equation 4.43. This gives n, mean values
(A)p, one for each block b. These values for all the blocks can be further used to

estimate the variance
ny

() = 2 3 (Ao = (A’ (1.47)

b=1
Then change the length of the block and recalculate the variance. The dependence
of this variance on the reciprocal length (or number) of data blocks can then be
plotted and £ obtained by extrapolating to the limit in 4.46. £ also can be used as
an indicator of inefficiency in the simulation. More accurate data are obtained when

€ is small, so various algorithms can be tested objectively by finding which has most

efficient value for &.

Having said this, for most of our simulations we used a run length 7 of only 20,000

steps per particle plus 5,000 steps for equilibration, whilst for our system the cor-
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relation length & calculated from total energy data was found to be between 1,500
and 5,000 steps depending on the temperature. Thus, in the worst case scenario,
effectively we obtained and used only 4 independent values to estimate the mean
energy value for each point on the phase diagram. Below follows a justification for

such a choice.

The data for the P, values presented in the next chapter were calculated using run
lengths of at least 200,000 steps per particle plus 15,000 steps for equilibration. Here,
each successive simulation run was performed with a different value of T, starting
from the previous configuration, with AT = 0.1. It was later discovered that by
decreasing AT to 0.005, we could significantly reduce 7, yet obtain similar results.
The values of P, calculated using long runs and the large temperature step matched
those calculated using short runs and tiny temperature step. In both methods the
previous configuration was used to start the next simulation. In addition, a num-
ber of long run simulations were performed at different temperatures, each starting
from the same, random or isotropic configuration. The results obtained from this
were also consistent with those obtained from the other two methods. Also, the
consistency of the mean values for P, and U at neighbouring temperatures indi-
cates small error bars. Finally, the same observable dependencies on 7', obtained
using both decreasing and increasing temperature cycles did not yield a hysteresis
loop. The calculations of the energy histograms at 3,000,000 steps per particle in
the area of phase transition were also consistent with the values obtained from short
simulation runs. In conclusion to all this, we would like to point to the work of
Cleaver and Allen [185], published on the single component Lebwohl-Lasher model,
which used the simulation lengths of a similar magnitude, 50,000 steps. Values for
7 of a similar magnitude were also used for simulations of binary mixtures using the
Lebwohl-Lasher model the in works of Bates {179] and Luckhurst [177]. The long
correlation length in our simulations, could be explained by the fact that we used
the total energy to estimate & while in [185] the primary observables, the elastic
constants, were used. Also, the introduction of binary mixture might have increased

the value of £ in our simulations.

Thus, for calculations of U and g¢(r) we used AT = 0.005 and 7 = 20,000. The
reason for using such a small AT value was the desire to identify, to high resolution,

the location of any phase transition exhibited by the simulated system.

54



Chapter 5

Results And Discussion.

Bi-Dispersed System. NcVT

In this chapter we present and discuss the results for the phase behaviour of binary
system, based on the Lebwohl-Lasher lattice model. The results were obtained
by performing Monte Carlo simulations in the Canonical Ensemble (NcVT). The
model basis was described in Chapter 4. For most calculations we used a system
in which the cubic simulation box consisted of sixteen sites on each side of the box
(i.e. a system size of 16x16x16 particles). All results presented in this chapter were
obtained using this unless otherwise stated. The correlation length of runs for the
given system was estimated around 5,000 run steps. Therefore, for such observables
as average energy function (E(T))ncvT, and the average radial distribution function
(gAB(r = 1,T)) runs with 20,000 steps per point were performed, with an additional
5,000 steps included for equilibration. At low temperatures these run-lengths were
doubled. For the calculation of the energy histograms number of steps per point
was increased to 3,000,000. For the calculation of the second rank order parameter
(P(T))nevr we used from 50,000 to 200,000 steps per point. The temperature
step for all (E(T))nevr and (g*B(r = 1,T)) data was AT = 0.005. The largest
temperature step used for calculation of (P2(T))ncvr was AT = 0.1. The energy
histograms were only calculated for a few specific temperatures, normally in the

vicinity of the transition.

In Section 5.1 we present a set of results for six binary systems with coupling con-

stants ¢ = 0.9,0.6,0.45,0.3,0.1,0.0. The lower the coupling constant ¢, the less
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anisotropic is one of the components of the binary mixture in the system. The set of
results for each system is divided into four main parts. In the first part, we present
calculations of the average internal energy of the system (E)nc.vr and its depen-
dence on temperature T and concentration ¢, (E(T,c))ncyr. The energy of the
system was calculated using the Hamiltonian of the system described in Section 4.2
of Chapter 4. In the second part we present results of the second rank orientational
order parameter (P;)nc 1 and its dependence on temperature T' and concentration
¢, (P(T,c))nevr- We used the second rank correlation function gy(r) to calculate
the value of (P;)ncvr. More on gy(r) is covered in Section 4.4.1 of Chapter 4. The
second rank orientational order parameter indicates the level of orientational order
in the system of anisotropic particles, hence the symmetry of the system or phase.
When (P,) = 0 - or, in the case of the finite system we investigated, when (P,) ~ 0
- then the system exhibits an isotropic phase. When (P,) # 0 (or (F,) > 0 in
case of the investigated system) then the system exhibits an anisotropic phase. In
addition we present the results of the second rank orientational order parameter
calculated for each component of the binary system separately. In the third part,
we present the results of the radial distribution function of unlike particles g42(r).
Owing to the specifics of the model, the all-particle radial distribution function has
static periodicity and hence gives no information. However, the properties of the
model considered here allow us to calculate the radial distribution functions of the
like and unlike particles. The method of calculation of g42(r) in the binary lattice
system was described in Section 4.4.2 of Chapter 4. The results in this part are
organised into two categories - results for the short range and the long range radial
distribution function. These functions show how well the system was mixed and
indicate any structural changes. In the fourth and last part of each set of results we

present a phase diagram based on the results presented previously.

In Section 5.3 of this chapter we present an alternative view of these phase diagrams
by considering three slices with fixed concentrations ¢ = 0.2,0.5,0.7. The difference
between phase diagrams presented in this section and those presented in Section 5.1
is that the former show the phase behaviour of the system in a phase space plane

perpendicular to that considered in the latter - coupling constant versus temperature.

In Section 5.4 of this chapter we discuss the results presented in Sections 5.1-5.3 and
present additional results to clarify some particular characteristics of the behaviour

of the system. The discussion in Section 5.4 proceeds in the following order. Firstly,
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we examine the results of the energy dependencies and discuss energy histograms.
Then we consider the dependencies of the order parameter, the radial distribution
function and their correlation with the results of the internal energy and with each
other. After that, we move on to explain phase diagrams and compare with our pre-
dictions and expectations. This is followed by an explanation of certain anomalous

phase behaviour in the light of further results and the existing literature.

Since all observables presented in this chapter were obtained at constant Nc¢V'T,
we omit the index (Nc¢VT) in our notation. In this chapter, the more anisotropic
particles are indexed as particles A and the less anisotropic particles, as particles B.
In all the systems covered in this chapter, only €, the anisotropy of particles B, is

subject to change.

5.1 Results for systems with varying ¢
5.1.1 System with € =0.9

The first system investigated is the binary system with coupling constant ¢ = 0.9.
Of all the systems presented here, this system has the smallest difference between
the anisotropies of its two components. Thus this system is the closest to its single
component counterpart. The first observable of the system that we present is the
average internal energy of the system (E). Figure 5.1 shows the dependencies of the
energy (E(T)) on temperature for various concentrations c¢. For all concentrations
the energy decreases with decreasing temperature. Apart from this anticipated
behaviour, we observe a deviation from the characteristic curve at temperatures
T;-(c) on the (E(T')) curves for the entire concentration range. Numerical differential
of (E(T)) (heat capacity) reveals peak at T3, (c). Thus we consider this temperature
as a point of discontinuity of (E(T)) and, thus, a transition of the system. At first,
the energy (E) has a low negative value at high temperatures. Then it decreases
slowly with the lowering of temperature until at T = T}, (c) it decreases quite rapidly.
The internal energy (F(T')) then decreases continuously, but with a changed slope,
until it reaches temperature T = 0. The temperature of the maximum gradient
T:r(c) is unique for each concentration in the given system with ¢ = 0.9. The values
of such temperatures T}, (c) are presented in Table 5.1. From the Table it is clear

that T, (c) increases monotonically with increase in concentration ¢. The tendency
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Figure 5.1: Dependence of the average internal energy on the temperature, (E(T)).
Each curve represents (E(T)) dependence for the unique concentration c.

for all (E(T')) curves is that the entire curve displaces down in energy with a decrease
in the concentration c of the more anisotropic particles (A). All (E(T')) curves seem
to be ‘parallel’ to each other for the region of the temperatures below T}, (c). At
temperatures above Ti,(c), they approach a common point (E,7 — oo). Equal
steps of concentration change shift the (E(T)) curve in equal steps of energy value

throughout the entire concentration range.

The next observable we present for the system with ¢ = 0.9 is the second rank
orientational order parameter (S = (P,)). Both in experiment and theory, there are a
number of approaches to calculating (P2). We obtain results for the order parameter
from the pair correlation function g»(r) (Sec. 4.4.1,4.4.3). go(r) shows how well the

orientation of the anisotropic particles is correlated throughout the bulk. In Fig.5.2
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[ concentration ¢ | Temperature Ty, (c) |

0.0 0.93+0.01
0.1 0.95+0.01
0.2 0.98 +0.01
0.3 1.00 £+ 0.01
0.4 1.02 + 0.01
0.5 1.04 £0.01
0.6 1.06 £+ 0.01
0.7 1.08 £ 0.01
0.8 1.11+0.01
0.9 1.13+0.01
1.0 1.15+0.01

Table 5.1: Table of Temperatures T}, (c) obtained from (E(T)) data. Ti.(c) were
derived as a point where the tangent of (E(T)) is the steepest. System with ¢ = 0.9.

we present the dependence of the orientational correlation on distance gz(r) for the
system with € = 0.9 and concentration ¢ = 0.5. Each g(r) curve represents the pair
correlation function taken at a different temperature. From Fig.5.2 it is clear that at
short range (r < 3) there is a higher orientational correlation between particles than
at the long range (r >> 3) at most temperatures. At high temperature, g»(r < 3)
grows with the reduction of T', while the long range correlation function g,(r >> 3)
remains unchanged and is equal to ~ 0. Then, as temperature decreases further,
at Ti-(c) the long range correlation function starts to increase rapidly, catching up
with the value of the correlation function at the short range. As the temperature
decreases, the difference between the short range and long range correlations becomes
smaller. Eventually, it becomes the same for all values of r as T — 0. Figure 5.3
shows how the value of the pair correlation function at long range go(r >> 3)
changes with temperature T in the system with € = 0.9. The value on the vertical
axis, (P5(T)), relates to the g,(r >> 3) as a square root of the latter (Eq.1.11). Let
us study the graphs in Fig. 5.3, starting from the highest concentration and moving

down.

With the concentration of more anisotropic particles ¢ = 1.0 the system is pure
or single-component (¢ = 1.0). For such a system, the order parameter exhibits
a transition from the isotropic to nematic phase at the temperature Tyy a 1.18

(See Table 5.2). When the concentration c is reduced to ¢ = 0.9 (Fig.5.3) the
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Figure 5.2: The pair correlation function, go(r) for the system with ¢ = 0.9, ¢ =
0.5. Dependence on 7. Different curves represent the function taken at different
temperatures.

system undergoes isotropic-nematic (I-N) transition at a lower temperature. Moving
down the concentration we find the system exhibiting similar behaviour. Let us
consider the system with ¢ = 0.5 in Fig. 5.3 and refer to Fig.5.2. Starting from
T = 1.2 >> T, (c = 0.5), the value of (P,) remains unchanged and equal to = 0,
which corresponds to the value of go(r >> 3) in Figure 5.2. Then, at T}, (c) ~ 1.08,
(P,) starts to increase rapidly with increasing temperature and levels off to the
value of (P,) — 1.0 at T — 0. As the concentration of the mixture decreases, the
transition temperature reduces, until c— 0.0. As ¢—0.0 the transition temperature
of the mixture approaches the transition temperature of the pure system 7,,(c =
0.0) = 0.96 with all the particles of type B (See Table 5.2 and discussion in Section
5.4).
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Figure 5.3: Dependence of the second rank orientational order parameter on tem-
perature, (P»(T)). Different curves represent different concentrations ¢ in the binary
mixture with € = 0.90.

Table 5.2 shows the values of T}.(c¢) for the full set of concentrations. From the
Table we see that the I-N transition temperature 7}, (c) decreases with reduction of
concentration c¢. These values of T}, (c) are found to be in good agreement with the
values of T}, (c) obtained from the energy calculations, presented earlier (Table 5.1).
Note, T}.(c) in Table 5.2 was determined as point of inflection of the (P»(T')) curve
projected on T axis. This is different from the usually used notion of 7, (c) being at
the point of (P,(T)) ~ 0.3, which partially explains higher values of T}, (c) compared
to the energy data.
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Figure 5.4: Dependence of the second rank orientational order parameter on tem-
perature, (P,(7T)), individually for particles A and B.

For the ¢ = 0.9 system, the shape of the (P,) curve does not seem to change
significantly with concentration. In general, here, the (P,(7")) curves are simply su-
perpositions of the order parameter curves of each individual component. Therefore,
separate consideration of the results of (P(T')) curves for the more anisotropic (A)
and for less anisotropic (B) components might give us more insight into the nature of
phase transition. One of the advantages of simulation is that in the binary mixture
it is straightforward to calculate such observables separately for each component.
In Figure 5.4 we present separately the results of the order parameter for the more
(Ps{(T)) and less (PE(T)) anisotropic particles. From this Figure we see that though
the transition occurs at the same temperature for both types of particle, the shapes
of the order parameter functions for the two species vary slightly. B particles tend
to align in a less orderly manner than A particles. However, the values of (P5(T))

for both particles approach the same value at 7" — 0.
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[ concentration ¢ | Temperature T, (c) |

0.0 0.96 £ 0.05
0.1 0.98 £0.05
0.2 1.00 £ 0.05
0.3 1.02 £ 0.05
0.4 1.06 £ 0.05
0.5 1.08 £ 0.05
0.6 1.10 £ 0.05
0.7 1.12 £ 0.05
0.8 1.14 £ 0.05
0.9 1.16 £ 0.05
1.0 1.18 £ 0.05

Table 5.2: Table of Temperatures T,,(c) obtained from (P(T)) data. Ti(c) were
derived as a point where the tangent of (P,(T)) is the steepest.

The next observable we present is the radial distribution function of the unlike
particles (¢*2(r)). In Figure 5.5 we present typical radial distribution functions
(g*%(r)) for the unlike particles of the binary mixture for the system with & = 0.90
and ¢ = 0.5. The curves represent g4B(r) taken at different temperatures. As
is the case for the results for the correlation function, the value of g48(r) varies
with distance 7. At the highest temperature starting from the maximum radius
the distribution of the unlike particles roughly equals 0.5. Please note that the
maximum radius available to the system is r = 8, owing to the size of the system
investigated (16%). The value of the distribution function g4B(r) remains virtually
unchanged as the distance r decreases, until at a very short range of r < 3 it goes
down slightly. With decrease in temperature, the value of the distribution function
at short range g4B(r < 3) starts to decrease further, while its value at the long
range g4P(r >> 3) remains virtually unchanged. In Section 5.1.3 we will show
that although, for systems with smaller € changes at long range of g42(r) are more
significant, the short-range behaviour of g48(r) still reflects all the changes that
happen at long range. For the rest of this chapter (except Section 5.1.3), therefore,
we will present results only from the short range part of the function and omit graphs

similar to that shown in Figure 5.5.
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Figure 5.5: Radial Distribution Function g*Z(r) for € = 0.90 and ¢ = 0.5. Different
curves represent g2B(r) taken at different temperatures.

The thermal dependence of the radial distribution function at short range g2 (r =
1,T) should be able to indicate both slight changes in the structure of the mixture
as well as the more significant changes which result from demixing. In Figure 5.6

we present g?(r = 1,T) for the set of concentrations c.

From this Figure the following features can be seen. Firstly, for all concentrations,
we see no significant changes happening with the reduction of temperature, except
for a slight decline (Figure 5.7(a)), until a low temperature of the order Ty(c) ~ 0.05
is reached, at which the value of g*#(r = 1,T) decreases markedly (Fig. 5.7(a)).
The temperature Ty(c), at which the large discontinuity in gB(r = 1,T) occurs,
varies only slightly with concentration c. Table 5.3 presents values of Ty(c) for each
concentration. This temperature of discontinuity is highest at a concentration of
approximately 0.5 and equals ~ 0.04 (Table 5.3). The criterion used to set Ty(c)

was taken to be a 10% decrease of the g"Z(r = 1,T) value.
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Figure 5.6: Dependence of the radial distribution function g4#(r = 1) on tempera-
ture, 7. Different curves represent different concentration c. System with £ = 0.90.

Figure 5.7(b) illustrates graphs of ¢*?(r = 1,T) from Figure 5.6 for concentrations

¢ = 0.4,0.6 in high temperature region, but at a greater resolution. The value of

g2B(r = 1,T) drops sharply, but by a relatively small value at T},(c). Then it con-

tinues to fall slowly until the marked fall described earlier. The temperature of the

discontinuity 7}, (c) decreases slightly as the concentration in the system decreases.

In Table 5.3 the values of T}, (c) are presented for the entire set of concentrations.
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Criterion for T}, (c) was also taken to be a 10% decrease in the value of g*2(r = 1,T).
The results are consistent with the data obtained from energy (Table 5.1) and order

parameter (Table 5.2) calculations, though these values are overestimated.

The last feature of the g*2(r = 1,T) graphs is the ratio of the decreases in ¢g"B(r =
1,T) that happen at temperatures T}.(c) and Ty(c). This ratio is roughly the same
for the entire set of concentrations studied with € = 0.9 and approximately equals

0.01.
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Figure 5.7: Magnified graph of the radial distribution function g% (r = 1) presented
in Fig. 5.6. Different curves represent different concentrations c.

Having presented results for various observables calculated for the system with cou-
pling constant € = 0.9 and the set of concentrations ¢, we are now going to use them
to produce a phase diagram. In Figure 5.8 we show an example of the contribution of
various observables, presented above, to the phase diagram. The graphs in the Figure

were juxtaposed and Temperature-Energy, Temperature-(P;(7')), and Temperature-
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| concentration ¢ | Temperature Ty, (c) | Temperature Ty(c) |

0.0 N/A NJ/A

0.1 0.95 & 0.02 0.01 £ 0.02
0.2 0.98 % 0.02 0.02 £ 0.02
0.3 1.00 + 0.02 0.02 £ 0.02
0.4 1.03 £ 0.02 0.04 £ 0.02
05 1.06 = 0.02 0.04 £ 0.02
0.6 1.08 £ 0.02 0.03 £ 0.02
0.7 1.104+0.02 0.02 £ 0.02
0.8 1.13£0.02 0.02 %+ 0.02
0.9 1.16 £ 0.02 0.01 £ 0.02
10 NJA N/A

Table 5.3: Table of Temperatures based on results obtained from g*®(r = 1,T)
data.

g(r) ordinates-abscissae were transposed for the sake of clarity. As shown in Figure
5.8 the temperatures of discontinuity in the gradient of the energy value on graph
(a) and (P(T)) on graph (c) were used to estimate isotropic-nematic boundaries on
the phase diagram in the middle graph (b). The short range g4#(r = 1) function
(d) was mainly used to determine the boundaries of the demixing region, shown in
blue on the diagram in the middle graph (b). As we see in Figure 5.9, this allowed
us to produce a phase diagram. Owing to the finite resolution on the concentration
scale, the finite temperature step and the difficulties mentioned in Section 4.4.5 of
Chapter 4, the phase diagram in Figure 5.9 is presented as a set of finite points in

temperature-concentration space.
Each point on the phase diagram is displayed in a particular colour which relates

to the corresponding phase and structure of the system with ¢ = 0.9. Thus, black
points represent the isotropic phase; red points, the nematic phase; blue points,
the nematic-nematic phase coexistence. For some sets of input parameters we were
unable to determine unambiguously the phase of the system or resolve the values of

the observables measured. These are represented as green points on the diagram.

Let us comment on the isotropic-nematic boundary first (Tyn(c) curve). At both
ends of the concentration axis (¢ = 0.0 and ¢ = 1.0), the system exhibits an I-N
transition at the temperatures of its pure components Tin(c = 0.0) = 0.93 and
Tin(c = 1.0) = 1.15 respectively. At concentrations between ¢ = 0.0 and ¢ = 1.0,

the Tyn(c) curve follows a simple linear dependence. The system undergoes an I-N
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Figure 5.8: Constructing of the phase diagram from (E(T')), (P,(T)) and g*8(r = 1)
data for the system with € = 0.9.

transition at all concentrations. The radial distribution functions indicate the system
to be homogeneous at temperatures above and below the transition throughout the
entire concentration range. In other words, different particles of the system are
well mixed in both phases the isotropic (black area) and the nematic (red area)
(Fig. 5.9). However, at considerably lower temperatures we observe another phase
envelope, coloured blue on the diagram. This corresponds to the demixed system in
which two nematic phases, each rich in one of the two components of the mixture,

coexist. This area of the phase diagram occupies a very small part of it in the region
of T <0.1.

The nematic mixed phase occupies most of the phase space considered. Note that,

owing to the specifics of the model, the isotropic phase extends to infinity on the
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temperature scale rather than going into a gas phase, etc. However, we restricted the

upper limit in the diagram to 7" = 1.2 in the interests of convenience in presenting

and discussing the results. Further discussion of the results presented so far follows

in Section 5.4.

9.1.2 System with € = 0.6

The next system to be presented is the mixture with € = 0.6. This system differs

from the former only by virtue of the coupling constant e, which indicates that

particles of type B are less anisotropic than their equivalents in the system with

€=0.9.
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Following the same procedure as that adopted in the previous section, we consider
first the average energy of the system (E). In Figure 5.10 we present the dependence
of the energy (F) on temperature for various concentrations c¢. The (E(T')) curves
for the system do not differ significantly from those observed in the system with

e = 0.9 apart from one feature that was not previously seen.
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Figure 5.10: Dependence of the average energy (F(T')) on the temperature, for the
system with e = 0.6. Various curves represent (E(T)), at different concentrations c.

Starting from the highest temperature on the graph, we initially observe the same
kind of behaviour as in the previous system. At temperatures Ti,(c) the (E(T))
curves show gradient discontinuities for all concentrations c. T} (c) is unique for each

concentration and occurs roughly at equal temperature intervals for equal differences
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[ concentration ¢ | Temperature T,,(c) | Temperature Ty(c) |

0.0 0.41 £0.01 N/A

0.1 0.47+0.01 0.13+0.01
0.2 0.52+0.01 0.16 £ 0.01
0.3 0.61+£0.01 0.17+0.01
0.4 0.70 £ 0.01 0.17+0.01
0.5 0.76 +£0.01 0.17+0.01
0.6 0.84 £0.01 0.16 £ 0.01
0.7 0.92+0.01 0.16 + 0.01
0.8 1.01 £0.01 0.15 % 0.01
0.9 1.08 £0.01 0.12+0.01
1.0 1.15+0.01 N/A

Table 5.4: Table of Temperatures T}, (c) and Ty(c) based on results from the thermal
dependence of the energy, (E(T)). Tr(c) were derived as a point where the tangent
of (E(T)) is the steepest.

in the concentration. As the temperature continues to go down, the energy (E)
decreases in a manncr similar to that seen in the system with ¢ = 0.9, until it
reaches another discontinuity temperature, Ty(c). The second deviation, however, is
much weaker than the first and the temperature at which it occurs, Ty(c), changes
only slightly with the concentration of the system. In Table 5.4 we present the values
of both temperatures, Ti,(c) and Ty(c) for the set of concentrations. We omit the
graph of the correlation function go(r) for the current system, as it adds little to the

data presented earlier for the system with € = 0.90 (Fig.5.2).

The dependence of the order parameter on temperature ({P»(7T))) for the binary
mixture with coupling constant € = 0.60 is shown in Fig.5.11. From the Figure we see
that the system undergoes the isotropic-nematic transition at a temperature 7;,(c),
which varies with the concentration of the system. The temperature of the transition
decreases as the concentration ¢ decreases (Fig.5.11). The value of T;.(c = 1.0) is, of
course, the same - 1.18 - as in the previous system, and when the concentration ¢ —
0.0, the transition temperature of the mixture approaches the transition temperature
of the pure system where all the particles are of type B (Tfy = e* Ty = 0.36-1.18).
Table 5.5 shows the value of T}, (c) for the full set of concentrations. These values are

in good agreement with the values of T, (c) obtained from the energy measurements.
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Order Parameter, (P,(T))
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Figure 5.11: The second rank orientational order parameter, (P»(7T)). Different set
of curves represent different concentrations c¢. System with & = 0.60.

The dependence of (P»(T')) taken separately for the two components of the mixture

reveals a slight difference in the shape of the two order parameter functions (Py(7))#

and (Py(T))B, as was the case in the system with ¢ = 0.90; and indeed, all the

features of the order parameter for A and B components are similar to those in the

previous system.

The isotropic-nematic transition occurs at the same temperature for both species,

but the shape of (P,(T)) for the two components varies. The order parameter for

particles A is always higher than that for particles B at any given temperature in the
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nematic phase. This difference in order parameters for particles A and B is greater,

however, than that found for particles A and B for the system with £ = 0.90.

Order Parameter, (P(T)
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Figure 5.12: The second rank orientational order parameter shown individually for
components A and B. Dependence on the temperature. Different curves represent
different concentrations c¢. System with € = 0.60.

The next observable is the radial distribution function. In Figures 5.13, 5.14 we
present the dependence of the short range radial distribution function on tempera-

ture QAB(T =1,T) for the set of concentrations.

Starting from T ~ 1.3, the value of g*Z(r = 1) slowly and monotonically decreases

as the temperature falls. This is true for all concentrations. At a temperature
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[ concentration ¢ | Temperature T, (c) |

0.0 0.42 £ 0.05
0.1 0.50 £0.05
0.2 0.59 £ 0.05
0.3 0.69 = 0.05
0.4 0.75 £ 0.05
0.5 0.82+0.05
0.6 0.90 £ 0.05
0.7 0.98 £ 0.05
0.8 1.05 £ 0.05
0.9 1.12+0.05
1.0 1.18 £ 0.05

Table 5.5: Table of Temperatures T;-(c) based on results obtained from ().

Tir(c), the gAB(r = 1,T) curve decreases rapidly by a relatively small value, and
this is followed by another slow decline. As in the previous system (¢ = 0.90), the
value of T} (c) varies with concentration. From the Figure we sce that the function’s
discontinuity behaviour at Tj,(c) is stronger here than it was in the system with
e = 0.90. The slope of the curve after the temperature of discontinuity, T < T}, (c),

appears steeper than it was for ¢ = 0.90.

As the temperature falls still further, the curve continues to decline monotonically
after T} (c), until it reaches another discontinuity in the gradient at a temperature
Ta(c). This time the curve decreases sharply to a significantly lower value. The
temperature Ty(c) is slightly different for each concentration. Ty(c) is highest at
concentrations around 0.4 > ¢ > 0.6. These temperatures follow the same pattern
as in the system with ¢ = 0.90; however, the system with ¢ = 0.60 exhibits more
dramatic behaviour, in that Ty(c) varies more markedly with the concentration. The
values of T3, (c) and Tgy(c) for the system with ¢ = 0.60 for the set of concentrations
are presented in Table 5.6. These values are in good agreement with those presented
in Table 5.5. They are slightly overestimated in the region of low concentrations
and underestimated in the region of high concentrations. Both tables present values
higher than that from Table 5.4. The ratio of the values of the decreases in g48(r =
1,T) which happen at T;(c) and Ty(c) equals 0.11, for the system with &€ = 0.60.
This is an order of magnitude higher than that of £ = 0.90.
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Figure 5.13: The short range radial distribution function dependence on the tem-
perature, g*B(r = 1). Different curves represent different c. System with ¢ = 0.60.

From the data presented in this section, we have constructed a phase diagram for
the system with coupling constant ¢ = 0.6; this is presented in Figure 5.15. As
previously explained, the phase diagram is based on a two-dimensional set of points
of different colours. Each colour represents a different phase or structure of the
system, the exception being green, which represents phase points at which we were

not able unambiguously to determine the phase of the system.
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Figure 5.14: Magnified graph of the radial distribution function g42(r = 1) pre-
sented in Fig. 5.13. Different curves represent different concentrations c.

[ concentration ¢ | Temperature Ty, (c) | Temperature Ty(c) |

0.0 NJ/A N/A

0.1 0.55 % 0.02 0.15 % 0.02
0.2 0.62 £ 0.02 0.19 & 0.02
0.3 0.67 + 0.02 0.24 % 0.02
0.4 0.74 £ 0.02 0.25 % 0.02
0.5 0.79 + 0.02 0.25 % 0.02
0.6 0.88 % 0.02 0.25 & 0.02
0.7 0.95 + 0.02 0.22 % 0.02
0.8 1.05 =+ 0.02 0.19 £ 0.02
0.9 1.10 =+ 0.02 0.14 £ 0.02
1.0 N/A N/A

Table 5.6: Table of temperatures T;,(c) and Ty(c) based on the results obtained from
98(r = 1,T), e = 0.60.
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Figure 5.15: The phase diagram for the system with ¢ = 0.6.

As in the case of the previous system (¢ = 0.9), the diagram comprises three areas.
The top area, shown in black, represents the isotropic phase. In the region of low
concentration this area has extended into the lower temperature region, as compared
to the system with ¢ = 0.9. However, the nematic mixed phase (red) still occupies

most of the area of the diagram (Fig. 5.15).

The boundary between the isotropic and the nematic phases (henceforth Tjy(c)
curve) is very narrow and cannot be resolved using the measured observables. At
both ends of the concentration axis the system orders at the I-N transition temper-

atures of its pure components. As the concentration changes from one extreme to

7
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the other, the Tjy(c) curve changes linearly, to a reasonable approximation.

The region at the bottom of the phase diagram, shown in blue, is the area of nematic-
nematic phase coexistence. It is highest at concentrations around ¢ = 0.5+ 0.1 and
narrows down to vanishing on both sides of the concentration axis. The entire
coexistence envelope appears to be asymmetric. It reaches higher values of T in the

region of concentrations 0.0 < ¢ < 0.5, on the left of the diagram (Fig. 5.15).

The behaviour of the system with € = 0.60 is consistent with that of the system
with € = 0.90. There is a difference, however, in the slope of the Tyy(c) curve and
in the size of the demixing envelope of N-N coexistence. The asymmetry of the
demixing envelope was not seen in the system with € = 0.90, perhaps due to the
much smaller area of N-N phase coexistence. Further discussion of these results will

follow in Section 5.4.

5.1.3 System with € = 0.45

The next system has a coupling constant € = 0.45 and exhibits phenomena not
seen in previous systems. Thus, as this section progresses, we will introduce new
parameters and focus on slightly different aspects of the observables introduced

previously.

The first observable to be considered in this system is the average encrgy and its
variation with the temperature. In Figure 5.16 we present these data, the various

curves in the Figure representing different concentrations c.

Let us start with the highest concentration on the graph, ¢ = 0.9, which is repre-
sented by the bottom curve (Fig. 5.16). At the highest temperature, the energy
(E(T)) has a low negative value, which decreases slowly as the temperature falls,
until at T' = T}, (c) it decreases quite rapidly. The energy value then continues to
decrease with temperature until it exhibits a second discontinuity at a temperature
Ty(c). After this, (E(T)) decreases steadily as T' — 0. This pattern is the same as

that seen in the previous two cases of € = 0.6 and & = 0.6.

When the concentration is decreased to 0.8, however, (E(T")) shows three weak but
distinct discontinuities which we denote T, (c), Ty(c) and T;.(c). Note that Tj (c)
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Figure 5.16: The dependence of the average energy on the temperature, (E(T)).
Different curves represent (E(T)) for different concentrations c.

always appears below Ty(c) in Figure 5.16 (see the phase diagram for this system in
Figure 5.27). In Figure 5.16, the value of T}.(c) appears to be around 0.23 and is
visible clearly only in differentiated (E(T')) (Figure 5.18).

Although two of these three deviations on this curve are weak, such observations
were not present at all in the first two systems. Neither is it present at any other
concentrations for this system, except for a faint indication in the next two concen-
trations, ¢ = 0.7 and ¢ = 0.6. These were revealed by the derivatives of (E(T')), but
are not seen on original (E(T')) curves. The energy dependence for other concentra-
tions (¢ < 0.6) exhibits only two discontinuities in the gradient of (E(T')) - T} (c)

(which, as we shall show, coincides with Ty(c)) and T}, (c).
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Figure 5.17: The dependence of the average energy on the temperature, (E(T)).
Different curves represent (E(7T)) for different concentrations 0 < ¢ < 0.1.

The highest discontinuity temperature 73, (c), decreases with a reduction in concen-
tration c¢. T, (c) is unique for each concentration of the system and takes values
which are different from those of the two previous systems for the same concentra-
tion. The temperature of the last discontinuity 7}.(c) seems not to depend at all
on concentration, although the shape of both deviations T},(c) and 7} (c) becomes

sharper as the concentration of the system decreases.

Reduction of the concentration causes T}, (c) to move closer to 7}, (c). However, these
temperatures do not meet at ¢ = 0.1. Thus, in Figure 5.17 we present results for the
energy dependence (F(T)), but at concentrations ¢ < 0.1. From this Figure one can
see that the sharp decrease of (E(T)) to a very low value still occurs at the same

temperature 7}, (c). The discontinuity which occurred at T, (c) in Figure 5.16 follows
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Figure 5.18: The numerical differential of average energy on the temperature,
(E(T)). Different curves represent (E(T)) for different concentrations 0 < ¢ < 0.1.

the same pattern. The decrease in T}, (c) is virtually linear as the concentration of
the system decreases from ¢ = 0.1 to ¢ = 0.04. At ¢ = 0.03 discontinuities T3, (c)
and T} (c) merge and seem to stay that way as concentration decreases further till
¢ — 0.0. In other words, the difference between T}.(c) and T},(c) disappears and
the single transition temperature represents the boundary between mixed isotropic
and mixed nematic phases, similar to T} (c) for high concentrations (Figure 5.27).

Figure 5.17(a), magnified and placed with no scale, gives more detailed picture of the
behaviour of the (E(T)) curve in the region of temperatures T}, (c) and T;.(c). The
derivatives of (E(T)) curves from the numerical differentiation for concentrations
¢ < 0.1 reveal that T}.(c) continues to decrease after ¢ = 0.03 as concentration

decreases , while 77, (c) remains unchanged (Figure 5.18). At concentrations above
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| concentration ¢ | Temperature T, (c) | Temperature Ty(c) | Temperature T}, (c) ||

0.0 0.23 £0.01 NJ/A N/A

0.01 0.23 £ 0.01 0.13 + 0.01 0.23 £ 0.01
0.02 0.23 £ 0.01 0.16 + 0.01 0.23 & 0.01
0.03 0.23 + 0.04 0.3+0.04 0.23 £ 0.01
0.04 0.30 £ 0.01 0.30 =+ 0.01 0.23 % 0.01
0.05 0.32 £ 0.01 0.32 £ 0.01 0.23 £ 0.01
0.06 0.33 £ 0.01 0.33 £ 0.01 0.23 £ 0.01
0.07 0.35 £ 0.01 0.35 £ 0.01 0.23 £ 0.01
0.08 0.36 & 0.01 0.36 £ 0.01 0.23 £ 0.01
0.09 0.37 £ 0.01 0.37 £ 0.01 0.23 £ 0.01
0.1 0.38 £ 0.01 0.38 £ 0.01 0.23 £ 0.01
0.2 0.49 £ 0.01 0.49 £ 0.01 0.23 + 0.01
0.3 0.54 £ 0.01 0.54 £ 0.01 0.23 £ 0.01
0.4 0.65 % 0.01 0.65 £ 0.01 0.23  0.01
0.5 0.68 £ 0.01 0.55 £ 0.01 0.23 + 0.01
0.6 0.80 £ 0.01 0.49 £ 0.01 0.23 £ 0.01
0.7 0.88 £0.01 0.43 £ 0.01 0.23 % 0.01
0.8 0.96 + 0.01 0.38 £ 0.01 0.23 % 0.01
0.9 1.07 £0.01 0.24 £ 0.01 0.23 £0.01
1.0 1.15 £ 0.01 N/A NJA

Table 5.7: Table of temperatures T}, (c), Tu(c) and T}, (c) obtained from the results of
(E(T)). Ti,(c) were derived as a point where the tangent of (E(T)) is the steepest.

¢ = 0.03, T}, (c) is clearly higher than Tj,(c) (Figure 5.18.(c)). At the concentration
¢ = 0.03, the value of T}, (c) is approximately equal to the value of T},(c) and the
derivative of (E(T,c = 0.03)) does not show two resolvable peaks corresponding
to these two discontinuity temperatures (Figure 5.18.(b)). As the concentration
passes ¢ = 0.03 approaching zero, the discontinuity temperature that we previously
denoted Ti,(c) decreases to a value lower than that of T}, (c) (Figure 5.18.(a)). Note,
that for reasons that will be clear later, we mark this discontinuity as Ty(c) in the
region of concentrations 0 < ¢ < 0.03. At this stage let us just assert that for
concentrations 0.03 < ¢ < 0.6, Ty, (c) & Ty(c) but for lower concentrations Ty(c)

continues to decrease while T}, (c) = T}.(c).

Let us look now at the thermal dependence of the second rank orientational order

parameter (P3(T)), obtained from go(r >> 3) for the system with ¢ = 0.45. As

82



CHAPTER 5. RESULTS AND DISCUSSION. BI-DISPERSED SYSTEM. NCVT

previously noted the value of the function projected on the ordinate, (P), relates
to the long range pair correlation function as a square root of go(r >> 3) (Eq.1.11).

At the highest temperature, the order parameter is close to zero; then, at T}, (c),

it increases rapidly. ~ Then, unlike (Py(T)) of the systems with ¢ = 0.90 and
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Figure 5.19: The dependence of the second rank orientational order parameter on

the temperature, (P,(7)). Different curves represent different concentrations ¢ in
the binary system with e=0.45.

€ = 0.60, its gradient does not decrease monotonically as the temperature decreases,
approaching the value of 0. Instead, < P,(T) > approaches a value of ~ 0.6 as
the temperature decreases until, at 7}.(c), it rapidly increases again, approaching
< Py(T) >— 1. This effect is seen at most concentrations, however it is strongest

at concentrations around 0.5. The value of T}, (c) does not seem to vary significantly
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Figure 5.20: The dependence of the second rank orientational order parameter on
the temperature, (P,(T)), individually for particles A and B. e=0.45.

with concentration and equals 0.2...0.3. Table 5.8 shows the values for 7}, (c) obtained
from the order parameter data for the full concentration range. These values of T}, (c)
in Table 5.8 agree with those obtained from the energy calculations, presented earlier

in this section (Table 5.7).

The shape of (P,(T)) differs significantly from the shape of the order parameter
of the systems with ¢ = 0.90 and € = 0.60. This deviation of (P,(T)) from the
conventional behaviour is strongest when the two components of the system are in

more or less equal proportions.

Let us, therefore, examine individually the order parameters of the components A

((P2)*) and B ({(P,)?) (Fig.5.20). Though the transition temperature is the same in
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[ concentration ¢ | Temperature Ty (c) |

0.0 0.24 +0.05
0.1 0.35+0.05
0.2 0.48 £ 0.05
0.3 0.55 £ 0.05
0.4 0.68 £0.05
0.5 0.721+0.05
0.6 0.83 £ 0.05
0.7 0.92+0.05
0.8 1.01 £0.05
0.9 1.12+0.05
1.0 1.18 £ 0.05

Table 5.8: Table of Temperatures T}, (c) based on results obtained from (F), e=0.45.

each case, the shapes of the (P(T)) curves differ significantly. The increase in the
value of (P,)® with reduction in temperature is not as rapid as that of (I%)#. For the
temperature T = 0.5, the difference in (P2(T')) between the two components reaches
more than 0.3 for concentration ¢ = 0.5. This is the greatest difference observed
so far in the three systems investigated. The order parameter of both components
reaches 1, as the temperature approaches zero. Figure 5.20 shows that the total
value of the order parameter is not simply a superposition of the order parameters

of the two components. We will discuss this further in Section 5.4.

The next observable is the radial distribution function (¢42(r)). In Figure 5.5 we
presented typical behaviour of the radial distribution function (g*#2(r)) for the unlike

particles for the system with € = 0.9.

As was the case for the results for the system with € = 0.9, the value of g42(r) for
€ = 0.45 varies with distance r. However, for this lower ¢ value, changes in g*2(r)
extend to greater distances 7, as the temperature is decreased. Eventually, when
the temperature is low enough, both the short and long range values of the radial

distribution function start to decrease (Fig. 5.21).

In Figure 5.22 we present the dependencies of the function on temperature at short
(r? = 1) and long (r? = 64) ranges for the system with ¢ = 0.45 and ¢ = 0.5.
From the Figure we see a feature which is common to both graphs, namely values of
g*B(r) at both ranges sharply change their gradient at similar temperature Ty(c =
0.5) = 0.67 (See Fig. 5.22 and Table 5.9). The short range value of the radial
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Figure 5.21: Radial Distribution Function g4?(r) for € = 0.45 and ¢ = 0.5. Different
curves represent g“8(r) taken at different temperatures.

distribution function experiences a marked decrease while the long range function
decreases slightly. Overall, the temperature, at which the value of the function at
short range drops by approximately 10% correlates with the temperature at which

the long-range function starts to decrease.

Thus, the changes that occur at long range gZ(r) can also be inferred from those
that happen at sort range. This is also true for all other systems presented in this
chapter. For the rest of this section, therefore, we will present results only from the
short range part of the function and omit graphs similar to those shown in Figures

9.21 and 5.22.
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In Figure 5.23 we present g*?(r = 1,T) for the set of concentrations. At con-
centration ¢ = 0.9, variations in g*#(r = 1,7) in response 