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Abstract 

 TiN films were deposited using High Power Impulse Magnetron Sputtering (HIPIMS) 

enabled four cathode industrial size coating system equipped with HIPIMS power supplies. 

The standard version of this system allows control over the ion bombardment during coating 

growth by varying the strength of the electromagnetic field of the unbalancing coils and bias 

voltage applied to the substrate. The coatings were produced in different coating growth 

conditions achieved in combined HIPIMS - direct current (DC) unbalanced magnetron 

sputtering (HIPIMS/UBM) processes where HIPIMS was used as an additional tool to 

manipulate the ionisation degree in the plasma. Four cathode combinations were explored 

with increasing contribution of HIPIMS namely 4UBM (pure UBM), 1HIPIMS+ 3UBM, 

2HIPIMS+2UBM and 2HIPIMS (pure HIPIMS) to deposit TiN coatings. Optical emission 

spectroscopy (OES) measurements were carried out to examine the plasma generated by the 

various combinations of HIPIMS and UBM cathodes. The micro-structural study was done by 

scanning electron microscopy (SEM). X-ray diffraction (XRD) technique was used to 

calculate the residual stress and texture parameter. It has been revealed that the residual stress 

can be controlled in a wide range from - 0.22 GPa to -11.67 GPa by intelligent selection of the 

degree of HIPIMS utilisation, strength of the electromagnetic field of the unbalancing coils 

and the bias voltage applied to the substrate while maintaining the stoichiometry of the 

coatings. The effect of the degree of HIPIMS utilisation on the microstructure, texture and 

residual stress is discussed. Combining HIPIMS with dc-UBM sputtering is also seen as an 

effective tool for improving the productivity of the deposition process. 

Keywords:  Effect of HIPIMS; TiN films; Optical emission spectroscopy; Microstructure; 

Texture; Residual stress  
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1. Introduction 

 High Power Impulse Magnetron Sputtering (HIPIMS) is a fast developing technology, 

which utilises extremely high power impulses (short pulses) to ionise the sputtered metal atom 

flux. It is characterised with power densities of about 3 kWcm
-2

 and current densities of about 

2 Acm
-2

 applied at low duty cycle of < 0.25% [1]. Each power impulse undergoes a cycle of 

breakdown-ignition, gas sputtering and self-sputtering and produces highly dense plasma of 

the order of 10
13

 cm
-3

. This has the effect of ionising and activating reactive and inert gases in 

the plasma while sputtered metal atoms traversing the plasma are ionised with a high 

probability and charge states of 2
+
 or higher are observed for many target materials.  The 

resulting deposition flux is rich in metal ions and highly activated gas ions which results in 

Me
+
/Me

0 
(metal ion to metal neutral) and G

+
/Me

+
 (gas ion to metal ion) ratios of 1 near the 

substrate. The mean energy of metal and gas ions of approximately 6 eV is factor 3 greater 

than in conventional sputtering in the same conditions [2].  The high ion-to-neutral ratios, 

high degree of metal ionisation and gas activation in the deposition flux are prerequisites for 

the build-up of a dense microstructure and specific preferred orientation of the coatings.  Thus 

HIPIMS coatings have improved wear, corrosion and oxidation resistance. Oxide coatings 

have improved optical and electrical properties [3]. The HIPIMS has also been used for pre-

treatment of the substrate prior to coating deposition to improve adhesion by intensive sputter-

cleaning of impurities and metal ion implantation [1]. Extensive reviews on the sputter-

cleaning process and technology can be found in the literatures [3, 5]. 

 However, one of the drawbacks of HIPIMS is the lower deposition rate when 

compared to the conventional magnetron sputtering. Major contribution to the reduction is the 

back attraction of the positively charged metal ions to the cathode, an effect observed and 

described already with the arc discharges [6].  One way to improve the deposition rate is to 

use lower strength magnetic fields, for example lower than 40mT as suggested in [7], which 

reduces the magnetic confinement of the plasma and allows more positive ions to reach the 
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substrate. Following this approach, deposition rates reaching 90% of the deposition rate of the 

conventional magnetron sputtering were achieved for Nb and other metals [7, 8]. With 

deposition systems equipped with multiple and different plasma sources however, there is a 

possibility to run combined processes where only parts of the sources are operated in HIPIMS 

mode. A schematic cross section of a Hauzer system equipped with one HIPIMS source and 

three conventional unbalanced magnetrons was published already in 2004, soon after the up 

scaling of the HIPIMS technology [9]. In such configuration HIPIMS was made available to 

be used for surface pre-treatment to enhance the coating- substrate adhesion and also to 

deposit the coatings, either as a single source or in combination with the standard unbalanced 

magnetrons with improved microstructure due to the higher ionisation of the sputtered 

material. Indeed, highly dense TiN coatings with excellent mechanical properties deposited by 

HIPIMS can be seen elsewhere in the literature [10-12]. Nanoscale multilayer coatings of 

CrN/NbN with enhanced wear and corrosion resistance [13], CrN/TiN with improved wear 

resistance [14] and CrAlYN/CrN with improved high temperature oxidation resistance [15] 

were produced by the combined HIPIMS and conventional direct current (DC) - unbalanced 

magnetron (UBM) sputtering technology. The performance enhancement of the above said 

coatings was attributed to the fully dense microstructure with reduced multilayer waviness 

and sharp interfaces resulting from the higher ad atom mobility (energy) of the condensing 

species provided by HIPIMS. 

 Furthermore, the penalty due to the lower deposition rate of HIPIMS is expected to be 

significantly reduced with combined HIPIMS/UBM sputtering.  However, the contribution, 

the extent of the HIPIMS utilisation in such combined processes needs to be well understood 

and carefully considered. The answer to the question: "how much HIPIMS is needed in the 

process for the production of high quality coating" is not straightforward. The answer to this 

question has also implications on the physical vapour deposition (PVD) system manufacturers 

as well as HIPIMS power supply manufacturers who shall consider the design and the 

specifications of the next generation of systems enabled to deliver the combined technology.  
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 The aim of this research is to shed more light on the effect of combining HIPIMS with 

UBM sputtering in one process by studying the ionisation degree in the plasma, coating 

microstructure and the deposition rate.   TiN has been chosen as a model coating, which 

presents a simpler case to study the above mentioned effects in the HIPIMS/UBM 

combination. The authors however, believe that the conclusions of this study will be 

transferable to other more sophisticated coatings too. 

2. Experimental Details 

2.1. Deposition of TiN Coatings 

 TiN coatings were deposited in an industrial size PVD coating machine (chamber 

volume - 1 m
3
, HAUZER 1000 - 4 HTC, Hauzer Techno Coating, The Netherlands) enabled 

with HIPIMS technology at Sheffield Hallam University. The original system was equipped 

with four dc-unbalanced magnetrons with target area of 1200 cm
2 

each. In the modified 

version of the HTC 1000 - 4 system, two of the magnetrons were connected to HIPIMS power 

supplies allowing operation selectively either in UBM or in HIPIMS mode (Fig. 1). The 

HMP2/1 generators manufactured by Huettinger Electronic Sp. z.o.o., Poland were used to 

energise the HIPIMS magnetrons. The power supply was capable of supplying power pulses 

with duration in the range 0 - 200 μs at a frequency of 0 - 100 Hz (10 ms) equivalent to a duty 

cycle of 2%. The power supply was capable of delivering peak currents of up to 3000 A and 

at a voltage of 2000 V. In this study, the HIPIMS power supplies were operated in a non- 

synchronised mode. Arcing energy was minimized by arc suppression design that allowed 

switch off of the power supply even at the maximum current.  The unbalancing effect was 

achieved by external magnetic field generated by electromagnetic coils surrounding the 

cathodes and arranged in such a way to achieve close field magnetic configuration. Schematic 

cross section of the vacuum chamber is shown in Fig. 1.  All cathodes were furnished with 

99.99% pure Ti targets manufactured by GfE, Germany.  The coatings were deposited on 

mirror polished (1 μm diamond paste) 30 mm diameter, 6 mm thick coupons from hardened 

M2 high-speed steel (HRC 62),  25 × 25× 0.2 mm, bright annealed 304 stainless steel coupons 
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and 20 × 10 × 0.2 mm, silicon wafer samples. Prior to the deposition, the substrates were 

cleaned in an automated cleaning line comprising a series of alkali solutions and de-ionised 

water baths followed by a vacuum drying furnace. The base pressure for all the coatings was     

0.006 Pa. Four different cathode combinations were exploited as follows:  4 cathodes in 

conventional dc-UBM mode to deposit pure UBM coating, 1HIPIMS+3UBM and 

2HIPIMS+2UBM cathodes to deposit combined HIPIMS/UBM coatings and 2HIPIMS 

cathodes to deposit pure HIPIMS coatings. During the conventional UBM sputtering the 

targets were operated with average power density of about 0.006 kWcm
-2

 whereas high peak 

power density of about 0.180 kWcm
-2 

was applied during HIPIMS, which results in equal 

average power in the range of 7 - 9 kW applied on all the four magnetrons. The substrate pre-

treatment was done by bombarding the substrate with highly ionised mixture of Ti
+
/Ar

+
 

plasma generated from a HIPIMS discharge maintained on the Ti target in an Ar atmosphere. 

Fundamentals and technical details of the metal ion etching procedure using HIPIMS are 

given in the literature [1,2, 5]. The coating deposition was carried out in a reactive Ar+N2 

atmosphere at 400 °C. To maintain a stable bias voltage in both surface pre-treatment and 

coating deposition processes, a specialised HIPIMS compatible bias power supply model 

HBP (Hüttinger Electronic Sp. z o.o.) was used [16]. 

2.2. Characterisation Techniques 

 Various surface analysis techniques were employed to characterize the microstructure, 

texture and residual stress in the coatings. Optical emission spectroscopy (OES) 

measurements have been done to analyse the plasma in order to examine the influence of 

various combinations of HIPIMS and UBM plasma generation.  OES spectra of TiN plasma 

were recorded by HORIBA Jobin Ivon Triax 320 monochromator with quartz optical fibre 

and collimator in time - averaged mode in vacuo. The quartz fibre capable of transmitting in 

the ultraviolet spectral region was kept in the substrate region during the measurements to 

analyse the plasma near the substrate as illustrated in Fig. 1. The orifice of the quartz fibre 

was facing downward to be able to see the mixed plasma and not only certain target areas as 
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targets were on opposing sides.  Table 1 lists the emission lines used in this study. The chosen 

Ti species lines have similar wavelengths, similar upper excitation energies and similar 

oscillator strengths. Further the Ti neutral is a transition to the ground sate. Considering the 

intensity ratio of these lines is ideal for a qualitative statement on the effect of HIPIMS 

utilisation on the ionisation of metal. The intensity ratios of Ti
1+

, Ar
0 

 and N2
0
 to intensity 

ratios of all Ti species (Ti
1+

+ Ti
0
) in the plasma are considered to extract information about 

the 'weighted emission intensity' of Ti
1+

, Ar
0
 and N2

0
. To improve the accuracy of the 

estimates, the oscillator strengths for Ar
0
 and Ti

1+ 
were used in the calculation, assuming that 

the line intensity I ~ fik*n, where fik is the oscillator strength and n is the density of species. 

The following relations were used to estimate the 'weighted emission intensity' of Ti
1+

, Ar
0
 

and N2
0
.  

{𝐓𝐢𝟏+} =

𝐓𝐢𝟏+

𝐟𝐢𝐤
𝐓𝐢𝟏+

(
𝐓𝐢𝟏+

𝐟𝐢𝐤
𝐓𝐢𝟏+

+
𝐓𝐢𝟎

𝐟𝐢𝐤
𝐓𝐢𝟎

)

           (1) 

{𝐀𝐫𝟎} =

𝐀𝐫𝟎

𝐟𝐢𝐤
𝐀𝐫𝟎

(
𝐓𝐢𝟏+

𝐟𝐢𝐤
𝐓𝐢𝟏+

+
𝐓𝐢𝟎

𝐟𝐢𝐤
𝐓𝐢𝟎

)

           (2) 

{𝐍𝟐
𝟎} =

𝐍𝟐
𝟎

(
𝐓𝐢𝟏+

𝐟𝐢𝐤
𝐓𝐢𝟏+

+
𝐓𝐢𝟎

𝐟𝐢𝐤
𝐓𝐢𝟎

)

          (3) 

where Ti
1+

, Ti
0
, Ar

0 
and N2

0 
is the emission line intensity of Ti

1+
 ions, Ti

0
 neutrals,                      

Ar
0
 neutrals and N2

0 
neutrals respectively. fik

Ar0, fik
Ti0and fik

Ti1+is the oscillator strength of Ar
0
, 

Ti
0
 and Ti

1+ 
respectively. Due to the use of oscillator strength, the 'weighted emission 

intensity' is proportional to the density of species in the plasma. However, the coefficient of 

proportionality could not be measured. Therefore the 'weighted emission intensity' is only a 

qualitative measure of the density of species. The excitation energies for Ar and N2 are 

significantly higher than Ti
0
 and Ti

1+
 and as such the ratios are dependent on the electron 

temperature.  Calculating these ratios for N2
1+

 which has similar excitation energy as Ti
0
 and 

Ti
1+ 

yielded similar trends as the ones observed for N2
0 

(not shown).  This was confirmed 
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when changing the deposition process, unbalancing coil current and nitrogen flow.  This 

indicates that the main effect observed was that of the change in density and the influence of 

electron temperature is secondary.  

 X - ray diffraction (XRD) technique was utilized (Philips X'Pert MPD) for the texture, 

T* (Bragg-Brentano, BB) and stress, σ (Glancing angle (GA) geometry) calculations. Texture 

coefficient (T*) was calculated using the following equation [17]: 

T* = [I(hkl)/R(hkl)]/[n-1(∑0nI(hkl)/ R(hkl))]       (4) 

where I(hkl) & R(hkl) are the intensities from the (hkl) reflections in the specimen and a random 

powder respectively and n is the number of reflections considered.  The residual stress was 

determined by X-ray omega diffractometer using sin
2
Ψ method [17]. Stress (σ) was calculated 

from the slope of the least-squares fit of the plot of aΨ versus sin
2
Ψ and using the following 

expression [17]: 

σ = (Slope E)/ [a0 (1+ν)]         (5) 

Stress dependence of the lattice parameter aΨ related by the following equation [17]: 

𝑎𝛹 = 𝜎𝑎0 (
1+𝜈

𝐸
𝑆𝑖𝑛2𝛹 −

2𝜈

𝐸
) + 𝑎0         (6) 

where Ψ= θ-γ (Bragg angle (θ) – Angle of incidence(γ) of the X-ray beam relative to the 

specimen surface), a0 is the unstressed lattice parameter,   E is the elastic modulus determined 

in this study by nanoindentation test and ν is the Poisson's ratio (in this study=0.3).  A nano 

hardness tester (CSM Instruments SA) with a Berkovich indenter was used to evaluate the 

elastic modulus using Oliver and Pharr method. The applied load for all of the elastic modulus 

measurements was 10 mN. A scanning electron microscope (FEI NOVA - NanoSEM 200) 

was used for microstructure imaging and thickness measurements. TiN coated silicon fracture 

was used for this purpose. Surface roughness measurement of the coatings was done using a 

profilometer. The energy dispersive X-ray spectroscopy (EDX) analysis of the films has been 

carried out using a scanning electron microscope (FEI NOVA - NanoSEM 200) equipped 

with an EDX detector.  Stoichiometric TiN film deposited by chemical vapour deposition 
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(CVD) and characterised by Rutherford back scattering (RBS) techniques was used to 

calibrate the EDX module. 

3. Results and Discussion 

3.1 OES Measurements: 

3.1.1. Effect of different HIPMS/UBM source combination: 

 The effect of various HIPIMS/UBM source combinations on {Ti
1+

} and {N2
0
} is 

illustrated in Fig. 2. All the measurements were carried out with coil current (Icoil): 3 A, bias 

voltage (Ub): 0 V and working pressure: 0.3 Pa. 

 The {Ti
1+

}  starts at a low value of 0.13 for the pure UBM process and rises 

continuously as more HIPIMS cathodes are energised; reaching a maximum of 0.75 for the 

pure HIPIMS process. This increase is related to the increased production of Ti
1+

 ions in the 

high peak power HIPIMS process. The pure HIPIMS process generates a factor of ~7.5 higher 

metal ionisation ratio than the pure UBM process. 

 The {N2
0
} is high for the pure UBM process and reduces when HIPIMS is involved.  

Emission from N2
1+

 at 391.4 nm (not shown) was observed to follow the trend for N2
0
. The 

amount of nitrogen in the working atmosphere was constant given that the partial pressure of 

N2 was controlled to be constant and the resulting variation in flow rates was <10% between 

all cases.  Additionally, according to the EDX studies (not shown), the film composition was 

similar (stoichiometric) within the error of the measurement.  Combining these and  the 

plasma observations, we deduce that the lower {N2
0
} in the plasma could be attributed to 

ionisation and subsequent dissociation of the molecular gas due to the HIPIMS process 

generating high density of electrons that are responsible for the above processes [18].  Such 

observations are consistent with studies of discharge composition found in pure HIPIMS 

sputtering of Ti in Ar and N2 atmosphere [2], where the content of dissociated nitrogen ions 

was found to be higher than that of molecular nitrogen.  In summary, the implementation of 

HIPIMS in this process has led to highly activated conditions of deposition, in particular 

dissociation of nitrogen and ionisation of Ti.  In principle these results show that all the 
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combinations where HIPIMS is involved such as 1HIPIMS+3UBM, 2HIPIMS+2UBM and 

2HIPIMS provide favourable conditions for depositing films with stoichiometric composition. 

Therefore the optimum combination of sources should be selected accounting also for the 

effect on coating microstructure and compressive stress.  

3.1.2. Effect of Unbalancing and Closed Field Confinement  

 In order to illustrate the effect of unbalancing coil current on the chemistry of the ion 

flux generated, the 2HIPIMS+2UBM cathode combination has been considered. This 

combination appears to be the best one in this research as it provides a large bias voltage 

range where relatively low stress highly dense coatings can be produced as explained in 

sections 3.3 and 3.5. The degree of magnetic unbalancing of the cathode and the strength of 

closed field confinement in the system were varied using the electromagnetic coil current. In 

this system the coil current increases the degree of magnetic unbalancing of the magnetron 

and increases the closed field confinement whilst reducing the width of the race track. The 

bias voltage (Ub) and working pressure were 0 V and 0.3 Pa respectively during these 

measurements. 

 Fig. 3 shows {Ar
0
}, {N2

0
} and {Ti

1+
} in relation to the applied coil current. The {Ar

0
} 

rises for coil currents up to 3.5 A. This can be attributed to the increase of the effective 

excitation volume for argon (Ar) due to an enhanced electron transport away from the cathode.  

For coil currents of 4 - 6 A, the Ar
0
 ratio reduces significantly. This may be caused by 

increasing ionisation of Ar and rarefaction due to narrowing of the racetrack and the resulting 

increase in power density. The {Ti
1+

} also increases with increasing coil current. The {N2
0
} 

decreases monotonically with coil current. This behaviour may be due to prevalent 

dissociation (see Section 3.1.1) rather than excitation processes for nitrogen, which in this 

case is fuelled by a local enhancement of plasma density near the target on account of reduced 

racetrack width and target power density.  In comparison, Ar has a smaller ionisation cross 

section that requires higher plasma density to shift the balance from excitation to ionisation 
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and the shift in balance and corresponding drop in intensity is only observed for coil currents 

above 4 A.   

3.1.3. Effect of Target Poisoning  

   OES measurements with increasing Nitrogen flow from 0 to 180 sccm (total pressure 

from 0.24 Pa to 0.36 Pa) were done to understand the effect of target poisoning with 

2HIPIMS+2UBM cathode combination.  The bias voltage (Ub) and coil current (Icoil) was kept 

at 0 V and 3 A respectively during these measurements. 

 Fig. 4 shows peak discharge current, Ti
0
, Ti

1+
 intensities and {Ti

1+
} and {N2 

0
}

 
as a 

function of N2 flow. The trend is very similar to the classical poisoning case observed for 

magnetron sputtering (reduction of the amount of metallic species with increasing reactive gas 

flow rate). It was found that the intensity of Ti
0
 and Ti

1+
 decreases rapidly with increasing N2 

flow, which can be attributed to the development of the target poisoning effect. It is well 

understood that during reactive sputtering a thin layer of TiN is formed due to the 

chemisorption or physisorption of neutral N2 molecules on the target and the target 

bombardment by molecular or atomic nitrogen ions. As a consequence, the deposition rate of 

TiN (not shown in Fig. 5) will reduce with increasing the nitrogen flow rate. Ti
0
 and Ti

1+
 

emission intensities are diminished due to lower sputtering yield of TiN and the involvement 

of more nitrogen ions in the sputtering process compared to the non-reactive sputtering case 

where Ar ions are used [19]. The effective gas ionisation rate is increased as observed from 

the increase in the peak discharge current [Fig. 4]. The increase in current may be attributed 

partially to the enhanced probability of ionisation of the process gas through the addition of 

N2 which has a higher collisional cross section than Ar and Ti.  As Magnus et al [20] point out, 

N
1+

 ions may play an important role in being able to extract secondary electrons from a TiN-

covered target surface along with Ar
1+

, N2
1+

 and Ti
2+

.  The rich variety of reaction pathways 

for N2 predispose the production of high fluxes of N
1+

 ions detected near the substrate, [2] 

indicating an extensive build up of N
1+

 ions in the dense plasma region near the target as well.  

Increasing N2 partial pressure would increase the probability of collisions thus producing N
1+
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at higher rate even though the electron temperature is reduced as observed from Ti line ratios 

(not shown).  Thus it appears that in HIPIMS, the creation of an additional ion that is able to 

induce secondary emission outweighs the reduction of the secondary emission yield that 

results from covering a Ti target surface with a TiN compound during poisoning. Above 

120 sccm of N2 flow, the target poisoning is complete and the intensities of Ti
0
 and Ti

1+
 are 

constant.  The {N2
0
} is below the detection limit for nitrogen flows up to 90 sccm as the 

nitrogen is completely absorbed while reacting with titanium.  For flows between 90 - 

120 sccm, the {N2
0
} rises sharply, as excess nitrogen is introduced. The {Ti

1+
} remains stable 

for all nitrogen flows in both poisoned and sub-stoichiometric regimes due to the constant 

peak power. A small reduction near the stoichiometric point can be attributed to fluctuations 

in peak power near the point where metal-rich plasma is replaced by gas-rich plasma. 

3.2. Effect of HIPIMS utilisation on deposition rate 

The TiN coatings deposited on silicon substrate were used for the thickness 

measurements. The coated silicon samples were fractured and investigated under a scanning 

electron microscope.  All the HIPIMS/UBM combined processes were carried out with bias 

voltage (Ub) - 50 V, coil current (Icoil) - 3 A and working pressure - 0.3 Pa.  For pure UBM 

coating, bias voltage (Ub), coil current (Icoil) and working pressure was - 75 V, 6 A and 0.3 Pa 

respectively. The deposition time was 4 hours for all the coatings. Fig. 5 shows the TiN 

coating thickness as a function of the degree of HIPIMS utilisation. For completeness, a 4 

HIPIMS case derived by extrapolating the results from the 2HIPIMS experiment is also added. 

Deposition rate loss due to increased HIPIMS utilisation is found to be 1.37% for              

1HIPIMS +3UBM, 13.7% for 2HIPIMS +2UBM, 60.7 % for 2HIPIMS (due to the reduced 

number of targets) and only 21.3% for 4HIPIMS (extrapolated value). These experiments 

clearly demonstrate that combined HIPIMS+UBM processes bear a high potential for 

improved productivity. Furthermore, if followed, this approach might lead to a reasonable 

reduction of hardware costs as high quality coatings could be produced with smaller number 
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of HIPIMS sources involved in the process provided that they deliver the necessary high 

plasma ionisation.  

3.3.  Microstructure analysis 

 Cross-sectional SEM studies were carried out on TiN coatings deposited on Si 

substrates with various HIPIMS/UBM combinations to reveal the coating microstructure. 

These experiments were done to demonstrate the microstructure 'structural densification' 

achieved by the incorporation of HIPIMS in the process. Therefore coatings deposited with 

different combinations of bias voltage, coil current and working pressure are considered and 

listed in Table 2. The average surface roughness (Ra) values of the coatings are listed in  

Table 3. 

 Fig. 6 a - e shows SEM cross section images of TiN coatings deposited with various 

HIPIMS/UBM cathode combinations with different process parameters. The microstructure 

was columnar for all the coatings but with distinct differences as the HIPIMS contribution in 

the process increased. Coarse microstructure with pronounced open column boundaries and 

rough coating top surface was observed for both the pure UBM [Fig. 6(a)] and the UBM 

dominated 1HIPIMS+3UBM coatings [Fig.6 (b)] which is a clear indication for insufficient 

ion bombardment leading to inter-columnar fracture mechanism. The lower {Ti
1+

} [0.13 and 

0.47] in the plasma as shown by the OES measurements for both the cases supports this claim. 

The Ra for pure UBM and 1HIIPIMS+3UBM coatings was 0.05 µm and 0.043 respectively.   

It is interesting to note that in the case of 1HIPIMS+3UBM, even for a small reduction in the 

bias voltage and coil current from Ub= -75 V to Ub = - 50 V and Icoil = 3 A to Icoil = 0 A 

respectively, the structure of 1HIPIMS+3UBM ,shown in Fig. 6(b) converts to fully open 

highly under dense structure with sharp column tops [Fig. 6(e)] which resembles the structure 

of pure UBM coating deposited at floating potential [21]. One can conclude that when 

HIPIMS is strongly “diluted” in UBM or operated in “weak” ionisation conditions it will 

produce inferior structures and therefore inferior performance. Of course the structure in such 
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cases can be densified by applying higher bias voltages which however, is at the expense of 

increased compressive stress in the coating.  

 In contrast when HIPIMS or HIPIMS/UBM combinations maintaining conditions of 

sufficiently high metal ionisation [{Ti
1+

} for 2HIPIMS+2UBM & pure HIPIMS: 0.55 & 0.75 

respectively] are used, highly dense and very smooth coatings are produced [Fig. 6 (c & d)]. 

The fracture morphology is smooth, glassier, with column width increasing with HIPIMS 

contribution in the deposition process. The Ra for 2HIPIMS+2UBM and pure HIPIMS 

coatings was 0.04 µm and 0.037 respectively. The low Ra values 2HIPIMS+2UBM and pure 

HIPIMS coatings confirm that these coatings are relatively smoother compared to pure UBM 

and 1HIPIMS+3UBM coatings.  The wide columnar structure with very smooth column tops 

as in Fig. 6d was first described for HIPIMS deposited CrN and explained by the high ad 

atom mobility and re-sputtering effect due to the high metal ion fracture and energy in the 

condensing flux [22]. The glassy morphology is believed to form via trans-columnar fracture 

mechanism, which results from the equal strength of the material at the column boundaries 

and within the column. Previous research using atomic resolution TEM has shown that 

HIPIMS can produce TiN coatings with almost bulk material density with atomically tight 

grain boundaries and columns bonded on atomic level thus creating the “equal strength” 

structure [2]. 

 3.4. Texture evolution 

 The texture evolution of different combined HIPIMS/UBM TiN coatings analysed by 

X - ray diffraction (θ-2θ, BB geometry) is shown in Fig. 7. For 1HIPIMS+3UBM, 

2HIPIMS+2UBM and pure HIPIMS combinations, the working pressure was 0.3 Pa and the 

coil current was 3 A. It was found that the 1HIPIMS+3UBM coating exhibited strong [111] 

texture which switched to strong [200] with increasing number of HIPIMS cathodes involved 

in the process. Many studies have shown that the most important parameters defining nitride 

coating texture are molecular or atomic nitrogen, ionized or neutral metal species and the ion-

to neutral flux ratio [2, 23-24]. For HIPIMS-deposited TiN it was demonstrated that increase 
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of the peak discharge current above a specific threshold value produced a texture switch from 

(111) to (200) due to increased amount of atomic nitrogen and Ti
1+

 ions [18].   

  According to Ehisarian et al. [2] (111) oriented grain growth is promoted when mostly 

Ti atoms and N2 molecules are involved in the deposition process which is evident from 

1HIPIMS+3UBM process in this study. Moreover (200) oriented grain growth is promoted 

under deposition conditions in which the incident particles are primarily Ti
1+

 ions and atomic 

nitrogen typical for the pure HIPIMS process. It has been shown that HIPIMS plasmas were 

found to be a highly efficient source of atomic nitrogen and metal ions capable of producing 

fluxes with N
1+

: N2
1+ 

>1 and Ti
1+

: Ti
0
>1 [2]. Thus this study revealed that the texture can be 

manipulated by the amount of HIPIMS utilisation in the process as this changes the plasma 

chemistry and ionisation degree as shown by the OES analyses discussed in Section 3.1.1.   

 It is interesting to note that the switch in texture is observed at relatively low power 

densities of 0.180 kWcm
-2

 compared to laboratory-scale HIPIMS studies [18] with               

0.3 kWcm
-2

.  This could be attributed to the large plasma volume in industrial scale sources 

which is more efficient in dissociating the gas.  The closed field configuration and 

unbalancing of the cathode are also responsible for enhancing the activation of plasma near 

the substrate.  The exact correlation is subject to further studies. The results reported here 

however, are in a good agreement with those published elsewhere in the literature. [2,11]. 

3.5. Residual stress measurement 

 Magnetron sputtered coatings experience compressive stress when deposited in 

conditions of high energy ion bombardment of the surface which creates lattice defects [25, 

26]. This is particularly critical and higher for HIPIMS due to higher energetics in this process 

[2,12]. GA XRD was done to calculate the compressive stress generated by high energy ion 

bombardment.  The behaviour of the residual stress (σ) as a function of the substrate bias 

voltage was studied for the following three configurations: 1HIPIMS+3UBM, 

2HIPIMS+2UBM and 2HIPIMS and the results are summarised in Fig. 8. For all the three 

source combinations the working pressure was 0.3 Pa and the coil current was 3 A for the 
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1HIPIMS+3HIPIMS and 2HIPIMS+2UBM combinations. It was 0 A in the case of 2HIPIMS 

(pure HIPIMS) coatings. 

 The advantage of HIPIMS compared to UBM is that the bombarding flux in HIPIMS 

is strongly dominated by metal ions. The presence of metal ions of the same descent as these 

of the condensing metal creates better conditions for recombination of the ion bombardment 

induced lattice defects, therefore lower stress, provided that the ion energy (bias voltage) stays 

below a material specific threshold limit. In contrast, when bombarding predominantly with 

gas (Ar
1+

) ions as in the UBM case, the lattice defect density mainly increases with ion energy 

due to gas entrapment. 

 Analysis of the slope of the stress (σ) - bias voltage curves in Fig. 8 shows that the 

steepest slope is achieved by the 1HIPIMS+3UBM process where the metal ion content in the 

plasma is the smallest. This is the worst scenario, as in this case mostly neutrals take part in 

the growth process bombarded mainly by gas ions, whereas the recombination effect is not 

that pronounced due to the relatively small number of metal ions. This combination leads to a 

steep increase of stress with bias voltage.  The very low stress, σ = - 0.22 GPa  measured for 

the coating deposited at low bias, (Ub = -50V) is due to the formation of a very open columnar 

structure as shown in Fig. 6(e) where stress relaxation takes place during the coating growth 

via crack and voids formation mechanisms. Further details on the stress generation in PVD 

coatings can be found in Ref. 27.  The open columnar structure however, is not 

recommendable for practical applications. Therefore, for the 1HIPIMS+3UBM combination, 

conditions leading to even lower ion bombardment during coating growth as provided at 0V 

bias voltage were not included in the experiment.  

 Fore pure HIPIMS coatings, the stress increases with bias voltage, however, at a lower 

rate compared to the 1HIPIM+3UBM process due to the presence of a large amount of film 

forming metal ions, as shown by the OES analysis in section 3.1.1. Coatings with lower stress  

(σ = -3.28 GPa) can be deposited with this technique by applying lower bias voltages or even 

deposited at floating potential without deteriorating the coating structure. 
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  The  2HIPIMS+2UBM source combination appears to be the best one in this research 

as this provides a large bias voltage range where relatively low stress (σ = -3.5 GPa ), highly 

dense, Fig. 6(c), coatings can be produced. This is believed to be due to the more optimal 

{Ti
1+

}, 0.55 achieved with the process. Furthermore the 2HIPIMS+2UBM combination is 

advantageous as the large bias voltage window allows for better process and therefore better 

tuning of coating properties.  

4. Conclusions: 

 Combining high power impulse magnetron sputtering with dc - unbalanced magnetron 

sputtering in one deposition process in a multiple source deposition system such as Hauzer 

1000/4 is an effective approach which allows manipulation of the ionisation degree in the 

plasma therefore widens the process window for coating structure, texture, residual stress and 

properties control. The OES measurements revealed that the {Ti
1+

} in the deposition flux was 

found to be increased with increasing number of HIPIMS sources involved in the process as 

follows: pure UBM : 0.13; 1HIPIMS+3UBM : 0.47; 2HIPIMS+2UBM: 0.55 and 2HIPIMS 

(pure HIPIMS): 0.75. This shows combined HIPIMS/UBM processes generate more metal 

ions than neutral metal atoms compared to pure UBM process. The thickness measurements 

by SEM showed that combining HIPIMS with UBM is seen as an effective tool for improving 

the productivity of the deposition process. Deposition rate losses due to utilisation of HIPIMS 

were found to be as follows: 1.37% for 1HIPIMS+3UBM process; 13.7% for 

2HIPIMS+2UBM process and 21.3% for pure HIPIMS process when extrapolated to four 

HIPIMS sources. The residual stress in TiN coatings can be varied in a wide range from -0.22 

GPa to -11.67 GPa and film texture can be altered from strong (111) to random to (200). High 

dense coatings can be produced by intelligent selection of the degree of HIPIMS utilisation, 

the strength of the electromagnetic field produced by the unbalancing coils of the machine as 

well as the bias voltage applied to the substrate. The combination of  2HIPIMS+2UBM 

appears to be the most advantageous in this research as this provides a large bias voltage 

range where relatively low stress (σ = -3.5 GPa) and highly dense (Fig. 6c) coatings can be 
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produced at reasonably high deposition rates. This is believed to be due to the more optimum 

{Ti
1+

}, 0.55 achieved with the process.  
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I. List of emission lines used 

Species Oscillator 

strength 

(fik) 

Wavelength 

(nm) 

Upper excitation 

energy (eV) 

Lower excitation 

energy (eV) 

Ti
1+

 0.0035 367.968 4.05 1.58 

Ti
0
 0.0053 364.6196 3.4 0 

Ar
0
 0.24 763.511 13.2 12.3 

N2
0 

C
3
∏u - B

3
∏g ; (0-2)* 

- 380.49 11.18 7.92 

N2
1+ 

B
2
Σu

+
 - X

2
Σg

+
 ; (0-0) *  

- 391.4 3.31 0.14 

* Spectroscopic notation of the excited and ground state energy bands of N2
0
 and N2

1+
 species 
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II. List of experiments considered to demonstrate microstructure evolution 

Fig. No. 
Source  

Combination 

  Bias voltage 

(Ub) (V) 

Coil Current 

(Icoil) (A) 

Working 

Pressure (Pa) 

6 a UBM - 75 6 0.33  

6 b 1HIPIMS + 3UBM - 75 3 0.30 

6 c 2HIPIMS + 2UBM - 50 3 0.30 

6 d 2HIPIMS - 50 3 0.30
 

6 e 1HIPIMS + 3UBM - 50 0 0.30 
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III. Surface roughness of TiN coatings deposited by combined HIPIMS/UBM sources 

 

Source combination 
Average surface 

roughness (µm) 

Pure UBM (4 UBM) 0.05 

1HIPIMS+3UBM 0.043 

2HIPIMS+2UBM 0.04 

Pure HIPIMS (2HIPIMS) 0.037 
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Figure Captions: 

Fig. 1: Schematic of industrial size sputtering machine equipped with HIPIMS/UBM sources 

and Optical Emission Spectrometer setup. 

 

Fig. 2: {Ti
1+

} and {N2
0
} calculated by using the respective intensity ratios as a function of 

source combination. {N2
0
} is multiplied by 1000 for better visibility. 

 

Fig. 3: Effect of coil current on {Ti
1+

}, {N2
0
} and {Ar

0
}. Normalisation factor for {Ti

1+
}, 

{N2
0
} and {Ar

0
} was 1.83, 1197.65 and 55.92 respectively.  

 

Fig. 4: Effect of N2 flow on peak discharge current, {Ti
1+

}, {N2
0
} and {Ar

0
} and emission 

intensity of Ti
1+

 & Ti
0
 species. {N2

0
} is multiplied by 1000 for better visibility. 

 

Fig. 5: Coating thickness as a function of source combination: Pure UBM, 1HIPIMS+3UBM, 

2HIPIMS+2UBM, 2HIPIMS, 4HIPIMS (Extrapolated result). Deposition time - 4 hours.  

 

Fig. 6: Effect of bias voltage on the microstructure of TiN coatings deposited with different 

source combinations: (a) Pure UBM, Ub= - 75 V (b) 1HIPIMS+3UBM, Ub = - 75 V                     

(c) 2HIPIMS+2UBM, Ub = -50 V   (d) Pure HIPIMS, Ub = -50 V, (e) 1HIPIMS +3UBM,            

Ub = - 50 V. 

 

Fig. 7:  Texture coefficient as a function of source combination. 

 

Fig. 8: Effect of bias voltage on the residual stress of TiN coatings deposited with different 

source combinations. 


