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Abstract: Cancer radiotherapy (RT) induces response of the whole patient’s body that 

could be detected at the blood level. We aimed to identify changes induced in serum 

lipidome during RT and characterize their association with doses and volumes of irradiated 

tissue. Sixty-six patients treated with conformal RT because of head and neck cancer were 

enrolled in the study. Blood samples were collected before, during and about one month 
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after the end of RT. Lipid extracts were analyzed using MALDI-oa-ToF mass spectrometry 

in positive ionization mode. The major changes were observed when pre-treatment and 

within-treatment samples were compared. Levels of several identified phosphatidylcholines, 

including (PC34), (PC36) and (PC38) variants, and lysophosphatidylcholines, including 

(LPC16) and (LPC18) variants, were first significantly decreased and then increased in  

post-treatment samples. Intensities of changes were correlated with doses of radiation 

received by patients. Of note, such correlations were more frequent when low-to-medium 

doses of radiation delivered during conformal RT to large volumes of normal tissues  

were analyzed. Additionally, some radiation-induced changes in serum lipidome were 

associated with toxicity of the treatment. Obtained results indicated the involvement of 

choline-related signaling and potential biological importance of exposure to clinically 

low/medium doses of radiation in patient’s body response to radiation. 

Keywords: dose-volume effect; intensity-modulated radiation therapy; mass spectrometry; 

radiation toxicity; serum lipidome 

 

1. Introduction 

Metabolomics, an emerging field of the “omics” sciences, has a capacity to deliver essential 

information about small biomolecules (<1 kDa) that are end-products of all cellular processes. 

Lipidomics, which deals with dynamic changes of cellular lipids and their derivatives, is one  

of the most complex areas of metabolomics [1]. More than 500 different lipid species was  

reported to be present in human plasma specimens [2]. The most abundant category of lipids are 

glycerophospholipids (phospholipids; PLs). PLs are both key components of biological membranes 

and important players in different cellular mechanisms [3,4]. Derivatives of PLs are important 

signaling molecules involved in regulation of proliferation and apoptosis [5,6]. Of note, metabolism of 

phosphatidylcholines (PCs) and other PLs is significantly disturbed in cancer cells, hence elevated 

serum levels of their precursors (e.g., choline) and derivatives (e.g., lysophosphatidylcholines, LPCs) 

are promising cancer markers [7]. Changes in level of choline-containing lipids were observed in 

malignant tumors during anti-cancer therapy [8]. Metabolism and blood levels of PLs changed also 

after exposure to ionizing radiation [9,10]. Although such effects have only been studied in animal 

models until now, they indicated applicability of serum phospholipid profiles in assessment of  

radiation exposure.  

Radiotherapy (RT), either alone or in combination with chemotherapy, is an effective treatment of 

different types of cancer allowing preservation of structure and function of a target organ. The effects 

of ionizing radiation concerns damage induced not only in cancer cells, but also in adjacent normal 

tissue. Conformal methods of radiotherapy, like intensity-modulated radiation therapy (IMRT), were 

developed to allow precise delivery of high radiation doses to a tumor volume, minimizing the dose 

delivered to surrounding normal tissues [11]. This technique is being used most extensively in 

treatment of tumors located near critical structures, such as head and neck cancers [12]. IMRT is 

accomplished by application of many non-coplanar radiation fields that markedly extends the volume 
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of normal tissues being exposed to low doses of radiation, for which biological relevance is not clear at 

the moment [13]. Radiation-induced damage of normal tissues could lead to acute and/or late injury 

reactions, which in extreme cases might significantly affect patient’s comfort and effectiveness of the 

treatment. For this reason planning and monitoring of radiotherapy would be greatly facilitated if 

molecular markers of individual response to radiation were available in the clinical practice. In 

addition, molecular markers of exposure to ionizing radiation would have a great applicability in the 

epidemiology field and for exposure assessment after radiation accidents [14].  

Local irradiation during cancer radiotherapy induces patient’s whole body response that could  

be detected at the level of blood components. Markers of human exposure to ionizing radiation  

have been searched in blood cells using different genetic and genomics approaches [15–18]. Mass 

spectrometry-based proteomics approaches have been also explored, which allowed identifying of 

radiotherapy-related changes in serum proteome of cancer patients [19,20]. More recently, it has been 

shown that IMRT-induced changes in the low-molecular-weight fraction of serum proteome of head 

and neck cancer patients were affected by clinically irrelevant doses of radiation delivered to large 

volumes of normal tissues [21]. Here we aimed to extend the analysis of radiotherapy-related changes 

and radiation dose-effects on the lipid component of serum. MALDI-oa-ToF profiling was applied for 

the first time to search for radiation-induced changes in human serum lipidome. The positive mode of 

MALDI ionization was selected in order to favor the analysis of choline-based compounds and other 

phospholipids, which already have been proposed as potential markers of the response to radiation and 

anti-cancer treatment [8,10]. 

2. Results 

2.1. Exposure to Radiation during Radiotherapy Induced Changes in the Serum Lipidome Profiles 

In the analyzed mass range 350–900 Da 842 spectral components (i.e., lipid species with their 

isotope variants) common for all mass profiles were detected (an average mass profile is presented on 

Figure 1A). In order to find radiotherapy-related changes individual differential spectra were computed 

paired with respect to consecutive time points (i.e., changes A∆B, B∆C and A∆C), and then the 

statistical significance of differences in component’s abundances was estimated (Figure 1B shows 

resulting differential spectra). Several spectral components changed their abundances significantly 

between compared time points (FDR < 5% was selected as a statistical significance threshold), which 

are listed in Table 1 (complete data regarding all registered components are presented in Supplementary 

Table S1). We observed that major changes occurred between pre-treatment and within-treatment samples 

(the A∆B change), where 27 spectral components (lipid species) changed their abundance with high  

level of statistical significance (FDR < 5%). When within-treatment samples were compared with  

post-treatment samples (the B∆C change), 14 spectral components showed significantly changed 

abundance. However, abundances of only three spectral components remained different at high level of 

statistical significance when pre-treatment and post-treatment samples were compared (the A∆C 

change). Of note, we observed that seven spectral components significantly differentiated samples B 

from both samples A and samples C (registered m/z values = 520.36, 522.39, 603.68, 749.51, 760.63, 

786.64 and 788.65 Da). Moreover, one spectral component (m/z value = 751.47 Da) differentiated 
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samples A both from samples B and samples C. Half of the differentiating components were identified 

with respect to their lipid class (see Table 1), almost all of them being phospholipids containing the 

choline “head”: phosphatidylcholines (PC; 10 compounds), lysophosphatidylcholines (LPC; 4 compounds) 

and sphingomyelines (SM; 2 compounds). 

Table 1. Spectral components that changed abundances significantly between analyzed 

time points. Shown here is the registered m/z value, significant change in abundance, real 

pattern of changes, cluster number (hypothetical pattern of changes) and identification 

(lipid class and length of fatty acyl chains) of analyzed spectral components (i.e., lipid species); 

components of isotopic envelope were excluded from analysis. 

Ion mass[m/z] 
Significant change 

(FDR < 5%) 
Pattern of 
changes 

Cluster  
number 

Lipid class identification 

373.08 A∆B A < B > C #4 not assigned 
496.36 A∆B A > B < C #2 LPC(16:0) + H+ 
520.36 A∆B;B∆C A > B < C #2 LPC(18:2) + H+ 
522.39 A∆B;B∆C A > B < C #2 LPC(18:1) + H+ 
524.38 A∆B A > B < C #2 LPC(18:0) + H+ 
543.39 A∆B A > B = C #2 not assigned 
560.28 A∆B A > B = C #1 [Vitamin D3 adduct] + H+ 
564.64 B∆C A = B > C #4 Cer(36:2) + H+ 
587.33 A∆B A < B > C #4 not assigned 
601.12 A∆B A < B > C #4 not assigned 
603.68 A∆B;B∆C A < B < C #6 not assigned 
644.11 A∆B A < B > C #4 not assigned 
703.58 B∆C A = B < C #6 SM(34:1) + H+ 
721.49 B∆C A > B < C #2 not assigned 
726.53 A∆C A = B < C #6 not assigned 
730.62 A∆B A < B = C #3 PC(32:2) + H+ 
732.47 B∆C A > B < C #2 not assigned 
732.63 A∆B A < B = C #3 PC(32:1) + H+ 
749.51 A∆B;B∆C A > B < C #2 not assigned 
751.47 A∆B;A∆C A > B = C #1 not assigned 
751.61 A∆B A < B = C #4 not assigned 
755.42 A∆B A > B = C #1 not assigned 
755.63 A∆B A < B = C #3 SM(38:3) + H+ 
758.61 B∆C A > B < C #2 PC(34:2) + H+ 
760.63 A∆B;B∆C A > B < C #2 PC(34:1) + H+ 
762.63 B∆C A > B < C #2 PC(34:0) + H+ 
767.47 B∆C A > B < C #2 not assigned 
777.33 A∆C A = B > C #5 not assigned 
784.62 A∆B A > B < C #2 PC(36:3) + H+ 
786.64 A∆B;B∆C A > B < C #2 PC(36:2) + H+ 
786.94 A∆B A > B < C #2 not assigned 
788.65 A∆B;B∆C A > B < C #2 PC(36:1) + H+ 
790.65 A∆B A > B < C #2 PC(36:0) + H+ 
808.62 A∆B A > B < C #2 PC(38:5) + H+ 
825.58 A∆B A > B = C #2 not assigned 
839.50 A∆B A > B = C #4 not assigned 
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Figure 1. Mass profiles of serum lipids were affected during radiotherapy.  

(Panel A): Averaged mass spectrum of serum lipids registered in the 350–900 Da range for  

pre-treatment samples (A); (Panel B): Averaged differential spectrum for pre-treatment and  

within-treatment samples (A∆B); components that changed their abundances significantly 

(FDR < 5%) are marked with red lines. 

 

2.2. Radiotherapy-Related Changes in Lipidome Profiles Showed Different Time-Course Patterns 

To identify different patterns of radiotherapy-related changes an unsupervised cluster analysis  

was performed. We identified six different hypothetical patterns of changes (clusters) characterized in 

Table 2 and depicted in Figure 2 (in case of a few spectral components where differences between time 

points were not statistically significant observed patterns of changes were not strictly coherent with 

cluster characteristics); detailed data are presented in Supplementary Table S2. Identified clusters 

could be further divided into three groups with two “mirrored” clusters in each, where reverse changes 

were observed: #1 [A > B = C] and #3 [A < B = C], #2 [A > B < C] and #4 [A < B > C], #5 [A = B > C] 

and #6 [A = B < C]. Of note, the second group (i.e., clusters #2 and #4) where “earlier” changes (A∆B) 

were compensated by “later” changes (B∆C) was the most numerous (about 70% of all detected 

components). Furthermore, cluster #2 [A > B < C] contained the majority of differentiating components, 

that changed abundances significantly between consecutive time points (19 out of 36 “significant” 

components, see Table 1). This indicated that pattern of changes where “earlier” changes were 

reversed/compensated by “later” changes was the most common feature of lipidome profiles in serum 

from irradiated patients. Of note, the majority of “differentiating” LPCs and PCs belonged to cluster #2, 

and their serum levels decreased significantly during radiotherapy and then increased afterwards; these 

included LPC(18:2), LPC(18:1), PC(34:1), PC(36:2) and PC(36:1) (Figure 3). On the other hand PCs 

containing 32 carbons (32:2 and 32:1) and SM(38:3) significantly increased their levels during 

radiotherapy (cluster #3) (see Table 1). 
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Figure 2. Radiation induced changes followed different patterns. Presented are 

characteristics of six identified clusters of components with similar time-courses of 

changes; marked are average profiles for each cluster (red lines) and components that 

changed abundance significantly (FDR < 5%; solid black lines); other components 

belonging to each cluster are marked with grey lines. 

 

Table 2. Characteristics of identified clusters of spectral components. 

Cluster Pattern of change * Number of components Number of differentiating components ** 

#1 A > B = C 147 4 
#2 A > B < C 129 19 
#3 A < B = C 121 3 
#4 A < B > C 170 6 
#5 A = B > C 160 1 
#6 A = B < C 115 3 

* Pattern of change refers to the dominant characteristics of change in the specified cluster (with some not 

significant deviations from the pattern within the cluster); ** Components which abundances changed 

significantly between consecutive time points (FDR < 5%). 
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Figure 3. The abundance of several choline-containing phospholipids decreased  

markedly during radiotherapy and increased afterward. Presented are examples of 

lysophosphatidylcholines: LPC(18:2) [m/z = 520.36 Da] and LPC(18:1) [m/z = 522.39 Da], 

and phosphatidylcholines: PC(34:1) [m/z = 760.63 Da] and PC(36:1) [m/z = 788.65 Da]. 

Boxplots show: minimum, lower quartile, median, upper quartile and maximum values 

(outliers were removed from the plots for perspicuity). 

 

2.3. Radiotherapy-Related Changes in Serum Lipidome Were Associated with Doses of Radiation and 

Volumes of Irradiated Tissues 

In the next step of the study we searched for association between features of serum lipidome (i.e., 

changes in abundance of particular lipidome components) and doses of ionizing radiation received by 

patients (doses accumulated until a time point corresponding to the collection of sample B in case of 

the A∆B changes and total doses in case of the A∆C and B∆C changes). Correlations were identified 

between specific features of the serum lipidome and either the total (maximum) dose received  

by gross tumor volume (GTV), volume of the patient’s body irradiated at different (smaller) doses or 

dose delivered to different volume of tissue. Numbers of serum lipidome components, for which 

changes in abundances correlated with maximum GTV doses are shown in Table 3 (p < 0.05 was 

selected as a statistical significance threshold). We found the highest number of identified correlations 

was observed in case of A∆C changes (60), yet clear association between maximum GTV doses and 

features of lipidome were detected also for the A∆B and B∆C changes (44 and 37 components, 

respectively). The maximum radiation doses (up to 72 Gy) were delivered only to tumor and its 

adjacent margins (usually 100–200 ccm), while tissue irradiated with lower doses represent much 

higher volumes (e.g., about 4000 ccm irradiated with 10 Gy). Hence, we searched for correlations 

between features of serum lipidome and volumes of tissues (including normal tissues irradiated upon 

IMRT treatment) irradiated with different doses (including “low” or “clinically irrelevant” doses); see 

Figure 4A,B. Figure 4C shows the numbers of lipidome components, which changes in abundance 

correlated with volume of tissue irradiated at different doses (p = 0.05 was selected as statistical 

significance threshold). We observed that association between lipidome features and dose-volume 

effects were the most frequent in case of larger tissue volumes irradiated with clinically low-to-medium 

doses (i.e., less than 20 Gy in case of the A∆B change and less than 40 Gy in case of the B∆C and 
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A∆C changes; which corresponded to dose fractions below 1 Gy). Additionally, when reverse analysis 

was performed and serum lipidome features were correlated with doses delivered to a given volume 

similar results were obtained—majority of correlations were observed for high volumes irradiated with 

low doses (Figure 4D). Detailed data on correlation of serum lipidome features with volumes irradiated 

at a given dose or with doses delivered to a given volume are presented in Supplementary Tables S3–S5. 

Our results clearly indicated that radiotherapy-related changes in serum lipidome profiles depended on 

doses of delivered radiation, and that low-to-medium doses delivered to large volumes of normal tissue 

could affect observed changes. 

Table 3. Serum lipidome features associated with radiation doses and acute radiation toxicity. 

Change GTV-D AMR Examples of components [m/z] * 

A∆B 44 36 473.11; 514.21; 590.61; 872.42 

B∆C 37 41 583.61; 669.64 
A∆C 60 35 614.38; 641.33; 649.43; 655.65; 673.62; 765.64; 803.71; 886.88 

* Components for which abundances correlated with both doses of radiation and radiation toxicity (p < 0.05). 

Figure 4. Dose-volume effects in serum lipidome changes. (Panel A): Averaged Dose-Volume 

Histogram; doses corresponding to deciles of the area under curve of the histogram are 

marked with red lines; (Panel B): Correlations between volume of tissue irradiated with  

13.7 Gy and changes in abundance of the m/z = 378.13 Da component in pre- and  

post-treatment samples (C-A; arbitrary units); Numbers of serum lipidome features correlating 

with tissue volumes irradiated at a given dose of radiation (Panel C) or doses of radiation 

delivered to a given tissue volume (Panel D). Shown here are the A∆B (black bars), B∆C  

(grey bars) and A∆C (empty bars) changes; p = 0.05 was selected as a statistical 

significance threshold (doses in parentheses refer to A∆B changes). 
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2.4. Radiotherapy-Related Changes in Serum Lipidome Were Associated with Radiation Toxicity 

Finally, we searched for potential association of serum lipidome features with toxicity of the 

treatment. The clinically relevant response of normal tissues to toxicity of radiation was assessed using 

a modified Dische system [22] relying on the intensity of the acute mucosal reaction. The maximum 

AMR intensity correlates with both maximum GTV dose and volume of normal tissues irradiated with 

“intermediate” doses (about 0.8–1 Gy per fraction), which was documented in another study based on 

very similar group of head and neck cancer patients [21]. Here we searched for association between the 

early radiation toxicity and radiation-induced changes of serum lipidome features. We found correlation 

between changes in abundance of several lipidome components and the maximum AMR intensity: about 

40 lipidome features correlated with the AMR for each of analyzed time-courses (Table 3). Of note, 

several serum lipidome features associated with the maximum AMR intensity also correlated with 

volumes of tissues irradiated at given doses of radiation (or radiation doses delivered to a given tissue 

volume). These features are listed in Table 3. Hence, we concluded that radiotherapy-related changes 

in the serum lipidome were associated with dose-related toxicity of radiation. 

3. Discussion 

To our knowledge, this is the first paper to analyze the response of human organism to ionizing 

radiation due to local cancer irradiation performed at the level of blood lipidome. The main changes in 

abundances of lipid serum components were observed between pre-treatment samples and samples 

collected during radiotherapy (the A∆B changes). Unsupervised cluster analysis revealed that  

major group of lipids (70% of registered spectral components) consisted of species, for which  

radiation-induced changes observed during radiotherapy were reversed/compensated in the  

post-treatment samples collected 1–2 months after the end of radiotherapy. A minor group of lipids 

(20% of registered spectral components) consisted of species, where radiation-induced changes 

detected during radiotherapy remained not reversed/compensated during the follow-up. As a 

consequence, only a few lipid species showed significant differences when their pre-exposure and 

post-exposure levels were compared (the A∆C changes). This observation indicated that in case of 

majority of serum lipids their return to the initial pre-exposure steady-state level was efficient enough 

during 1–2 months after the end of radiation treatment. Of note, when radiotherapy-related changes in 

serum proteome profiles were analyzed in a very similar group of patients, the major changes were 

observed in post-treatment samples collected 1–2 months after the end of radiotherapy (corresponding 

to the A∆C and B∆C changes). Such serum proteome changes apparently reflected escalation of 

radiation toxicity (acute mucosal reaction) and its subsequent healing during the follow-up [21].  

Here, we show that radiotherapy-related changes in serum lipidome profiles are apparently “faster” 

compared to changes observed in the low-molecular-weight fraction of serum proteome. In fact, most 

radiation-induced changes in serum lipidome could be reversed within 1–2 months after completion of 

radiotherapy, while similar changes in serum proteome could be detected several months after the 

treatment. This indicated that changes in lipidome and proteome profiles observed in cancer patients 

treated with radiotherapy might reflect different radiation-induced mechanisms. 
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Lipid class identification (by MS/MS and/or annotation of registered m/z values at LipidMaps 

database) allowed annotation of the majority (85%) of lipids revealing radiation-induced changes  

as choline-based phospholipids. High extent of lipids referring to this type apparently resulted from 

both chosen conditions of serum extraction, which favored glycerophospholipids, sphingolipids, 

sterols and prenols [2], and positive mode of MALDI ionization, which narrowed the ionization of 

glycerophospholipids to neutral (zwitterionic) representatives, such as phosphatidylocholines and 

phosphatidylethanolamines [23]. The majority of PLs identified in this work, including different  

PCs and LPCs as well as SM(34:1), belong to the most abundant in their classes measured in human 

plasma samples [2]; SM(38:3) and Cer(36:2) are less common species. Phosphatidylocholines are the 

main building blocks of membrane bilayers and in plasma they are mostly located in high density  

lipoproteins (HDL). Decreased levels of PCs in serum of irradiated patients may be explained by their 

rapid turnover in stressed/damaged cells, which resulted in an increased PC’s uptake from the blood. In 

addition to their main function as a membrane constituent, PCs have a role in signaling through the 

generation of LPCs (by phospholipase A2 enzymes), SMs (by SM synthase), phosphatidic acid (PA; by 

phospholipase D enzymes) and/or diacylglycerols (DAG; by phospholipase C enzymes). From this point 

of view, significant down-regulation of major serum PCs observed during radiotherapy might be relevant 

for increasing capability of cell signaling pathways depending on PC-derived compounds. LPCs are 

reported to be the major bioactive lipid component of oxidized low density lipoproteins (LDL) and 

therefore mainly responsible for their pro-inflammatory functions [24]. Down-regulation of LPCs in 

blood was significantly correlated with activated inflammatory status in many cancer types [25]. 

Radiotherapy-related down-regulation of LPCs apparently indicated association between inflammatory 

processes and whole body response to radiation, which was previously documented at the level of serum 

proteome [21]. Another important class of signaling lipids derived from PCs and LPCs upon action of 

phospholipase D enzymes are lysophosphatidic acids (LPAs). The most prominent LPA functions 

include stimulation of cell proliferation, cell survival, and tumor cell invasion [26]. Down regulation of 

both PCs and LPCs may be therefore explained by the increased formation of LPAs. Another potential 

mechanism explaining down-regulation of PCs and LPCs involves the disruptive action of reactive 

oxygen species (ROS) appearing in high levels in irradiated tissues and causing the degradation of 

these lipids [27]. In contrast to PCs and LPCs, which indicated decreased levels during radiotherapy 

and were compensated during the follow-up, both identified sphingomyelines showed significant  

radiation-related up-regulation only: SM(38:3) during earlier stage of the treatment while SM(34:1) 

during later stage of the treatment or subsequent follow-up. New SM molecules were most probably 

generated from degraded PC compounds by SM synthase (this transferase utilizes a choline “head” 

from PC) and suitable ceramide molecules, which was coherent with observed down-regulation of 

Cer(36:2). SMs can be hydrolyzed back to ceramides by SMase action. This balance between 

sphingomyeline production and degradation is a key factor in SM-related apoptotic signaling, and 

generation of ceramides from SMs’ degradation was reported to influence both the rate and form of 

cell death [28]. 

Although the model presented here is rather complicated and could be affected by many different 

processes ongoing in the patient’s organism, one could expect that accumulation and subsequent 

healing of radiation-induced damage, such as acute mucosal reaction, would have the major influence 

on general therapy-related changes assessed at the level of serum lipidome. This expectation is 
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supported by observed association of radiotherapy-related serum lipidome features with doses of 

radiation delivered to normal tissues and intensity of radiation-induced acute mucosal reaction. 

Although correlations identified here between particular lipidome components and different parameters 

reflecting radiation doses and toxicity possess moderate statistical power when analyzed separately, 

reliable conclusions could be drawn based on the general patterns of observed association. Of note, 

collected data indicated that low-to-medium doses delivered to large volumes of normal tissues during 

IMRT (considered as “therapeutically irrelevant”) significantly affected whole body response observed 

at the level of serum lipidome. These observations are consistent with results of our earlier study, 

where similar association between dose-volume effects and features of the low-molecular-weight 

fraction of serum proteome has been observed in similar group of head and neck cancer patients [21]. 

The data indicated collectively, that a whole body response to the local cancer irradiation could be 

detected at the level of both serum proteome and lipidome. However, the majority of radiation-induced 

changes in abundances of serum lipids returned to pre-exposure steady-state levels within a relatively 

short time after the treatment, while changes in serum proteome could be detected even several months 

after irradiation. 

4. Experimental Section 

4.1. Characteristics of the Patients 

Sixty-six patients with head and neck squamous cell carcinoma (HNSCC) were enrolled in this study. 

All of them were Caucasians (64 men) 45–82 years old (median age 63 years); 82% of them were 

current smokers and 86% alcohol consumers. Cancer was located mainly in larynx (45 pts.), but also in 

oropharynx (15 pts.) or hypopharynx (6 pts.). The primary tumor stage was scored as: T1 (21%),  

T2 (44%), T3 (26%) and T4 (9%); 68% of N0. All patients were subjected to IMRT using 6 MeV 

photons with 1.8 Gy daily fraction doses according to the continuous accelerated irradiation scheme 

(CAIR) [29]). Total radiation doses delivered to gross tumor volume (GTV) were in the range of  

61.2–72 Gy (median 66.6 Gy). Neither surgery nor induction/concomitant chemotherapy was applied 

to patients enrolled in this study. Three consecutive blood samples (5 mL) were collected from each 

patient: pre-treatment sample A (within one week before RT; 66 pts.); within-treatment sample B  

(10–22 days after the start of RT, median 15 days; 66 pts.) and post-treatment sample C (23–59 days 

after the end of RT, median 36 days; 56 pts.). The acute mucosal reaction (AMR) was estimated using 

the modified Dische score system [22] every 3–5 days during the radiotherapy. The study was approved 

by the appropriate Ethics Committee and all participants provided informed consent indicating their 

conscious and voluntary participation. 

4.2. Preparation of the Samples 

Blood was collected into a 5 mL Vacutainer Tube (Becton Dickinson, Franklin Lakes, NJ, USA), 

incubated for 30 min RT to allow clotting, and then centrifuged at 1000× g for 10 min to remove the 

clot. The serum was aliquoted and stored at −70 °C until extraction. Total lipids were extracted 

according to modified Folch method [30]. In brief, 25 μL of serum was mixed with 350 μL of 1:1 

methanol/chloroform mixture (v/v) containing antioxidants: 0.01% (w/v) 2,6-di-tert-butyl-4-methylphenol 
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and 0.005% (w/v) retinol. The solution was vortex-mixed for 0.5 min and incubated for 30 min at  

20 °C. Then 80 μL of water was added to the mixture, vortex-mixed for another 0.5 min and 

centrifuged (5 min, 10,000× g). Chloroform phase (the lower one) was kept and stored at −70 °C until 

mass spectrometry analysis (within three weeks). 

4.3. MALDI Mass Spectrometry Analysis 

Samples was analyzed using MALDI quadrupole/orthogonal acceleration ToF (oa-ToF)  

high-definition MS (HDMS) SYNAPT G2-HDMS™ system (Waters, Manchester, UK) equipped with 

the 355 nm Nd:YAG laser. First, 0.5 μL of sample was mixed directly on stainless steel target plate 

with 0.5 μL of 30 mg/mL of α-cyano-4-hydroxycinnamic acid (CHCA) matrix (Bruker Daltonics, 

Billerica, MA, USA) dissolved in 70% (v/v) acetonitrile containing 0.1% (w/v) trifluoroacetic acid; 

each sample was analyzed in triplicate (i.e., placed on three different spots). Mass spectra were 

recorded using the positive ion mode in the 350–900 Da range with resolution of 10,000 FWHM. 

Spectra were calibrated with a standard solution of polyethylene glycol (PEG), and m/z scales were 

adjusted after acquisition using the PEG signal at m/z 701.3935 as a lock mass and centroided prior to 

the generation of accurate mass peak lists. Samples were spotted and analyzed in a random sequence to 

avoid “batch effect”. 

4.4. Processing of the Mass Spectra 

The initial preprocessing of spectra including alignment, detection of outlier profiles (using Dixon’s 

Q test), averaging of three technical replicas, additional alignment of averaged individual spectra  

(i.e., averaged technical replicas), baseline removal and normalization of the total ion current (TIC) 

was performed according to procedures considering to be standard in the mass spectrometry field [31]. 

Preprocessed spectra were transferred to Spectrolyzer software suite (v.1.0, MedicWave AB, 

Halmstad, Sweden; [32]) for peak detection and binning (peak clustering) analysis. The processing 

steps performed in Spectrolyzer software were also consistent with the standard procedures used for 

spectral data processing [33,34]. 

4.5. Testing for Differentiating Spectral Components 

For each of the 842 spectral components (spectral peaks) statistical significance of differences in 

abundance between different time points (i.e., samples A, B and C) was estimated using appropriate 

tools available in R statistical software (see [35]). Individual differential spectra were computed paired 

with respect to consecutive time points (A–B, B–C and A–C), which resulted in 66 samples for 

comparison of A vs. B, and 56 samples for comparison A vs. C and B vs. C. To verify whether 

observed differences in abundances were significant, the Wilcoxon signed rank test was used (with the 

null hypothesis that the median value of intensities in the differential spectrum is equal to zero). To 

account for multiple comparisons the Storeys approach [36] that allows for FDR (false discovery rate) 

control was used. Statistically significant components involved also features that were identified 

manually as isotopes of other compounds; these components were rejected from the final list of 

specific components intended for identification. 
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4.6. Identification of Differentiating Components 

Spectral components showing significant differences between analyzed time points (FDR < 5%) 

were analyzed by MS/MS in order to identify lipid class and length of fatty acyl chains. PCs and SM 

classes were recognized in MS/MS based on characteristic 184.1 Da phosphocholine fragmentation ion, 

while LPCs based on both 184.1 Da phosphocholine and 104.1 choline fragmentation ions Additionally, 

other spectral components were annotated at the LipidMaps database [37] based on their registered  

m/z values; mass tolerance 0.1 Da and no limit for category/class was applied. Compounds that were 

not identified experimentally (due to the low abundance of precursor or productions) were regarded as 

identified only if a single unique lipid record was return from the database search.  

4.7. Analysis of Patterns of Changes 

To investigate the general patterns of changes in abundances of spectral components between 

compared time points averaged “time courses” were computed based on individual time courses. Data 

standardization (centering and scaling separately for each of the spectral component) was performed to 

account for wide differences in abundance ranges observed for distinct components. Cluster analysis 

was performed using Partitioning Around Medoids (PAM) method, which is a classical algorithm of 

unsupervised analysis widely used for similar problems [38]. For a given number of clusters (k) the 

PAM finds k representative objects (so called medoids) that are most different from each other and 

assigns all the remaining objects to the most similar of the representatives. The similarity of the objects 

being an input for the PAM was computed based on correlation between average time courses. In order 

to determine the optimal k number and assess the quality of clustering results, an average Silhouette 

Width (SW) criterion was used [39], which revealed a six-cluster solution as the optimum. 

4.8. Correlation of Component’s Abundance with Radiation Parameters 

Correlations between changes in abundance of spectral components and parameters reflecting 

absorbed doses of radiation, as well as maximal intensities of AMR, were analyzed using the 

Spearman’s rank correlation coefficient. Total radiation dose absorbed by patient’s body was estimated 

from the individual dose-volume histogram generated during the treatment planning. For the analysis 

of dose/volume effect we selected the doses corresponding to deciles of the area under the curve of the 

averaged dose-volume histogram (for details see [21]). 

5. Conclusions 

This study demonstrates for the first time the massive involvement of choline-based lipid serum 

components in the response of humans to ionizing radiation. Significant change in LPCs’ levels 

suggests activation of inflammatory processes, while disturbances in levels of sphingomyelines and 

ceramides indicate involvement of apoptotic pathways. Additionally, correlations of lipidome changes 

with low and moderate radiation doses call attention to the biological relevance of “therapeutically 

irrelevant” doses during IMRT. 
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