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Multiple sclerosis (MS) is a chronic inflammatory neurodegenerative disease, considered to be autoimmune in
origin. Post-translational modification of central nervous system proteins, including glial fibrillary acidic protein
(GFAP) and myelin basic protein (MBP), through citrullination of arginine residues, may lead to exposure of
neoepitopes, triggering autoimmunity. Here we investigated the expression of citrullinated proteins in active
MS lesions, MS normal appearing white matter and control brain white matter. We demonstrate increased
citrullinated GFAP and MBP by immunohistochemistry and western blotting in areas of ongoing demyelination,
suggesting a pivotal role for deimination of GFAP and MBP in MS pathogenesis MS.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Multiple sclerosis (MS) is a chronic immune mediated disease of
the central nervous system (CNS) affecting approximately 0.1% of
Caucasians of north and central European ancestry (Noseworthy et al.,
2000), resulting in focal demyelinated lesions or plaques. In general,
these lesions are classified as either active or inactive. Active MS lesions
are defined by the presence of activated microglia and infiltrating mac-
rophages, which contain remnants of myelin, phagocytosed during the
demyelinating process, in addition to large reactive astrocytes (Jack
et al., 2005). T cells, B cells and plasma cells are also found in active
lesions (Frischer et al., 2009). In contrast, inactive lesions consist of
demyelinated foci which are sharply defined and hypocellular with no
evidence of active demyelination or axonal loss, but instead prominent
fibrillary gliosis (Lucchinetti et al., 2005).

There is increasing evidence that citrullination may play an impor-
tant role in MS pathogenesis (Nicholas et al., 2004; Harauz and Musse,
2007; Musse and Harauz, 2007). Citrullination is a process whereby an
arginine residue is converted to the non-standard amino acid citrulline
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(Beniac et al., 2000), resulting in the loss of a positive charge and an
altered secondary and tertiary structure of the protein (Musse et al.,
2006; Harauz and Musse, 2007). This post translational modification
(PTM) is carried out by a family of five citrullinating enzymes known
as peptidylarginine deiminases (PADs), with PAD2 and PAD4 being
the most common PADs found in the brain (Rogers et al., 1977;
Vossenaar et al., 2003). Excess citrullination has been reported in the
CNS in postmortem MS brain tissue (Nicholas et al., 2004; Mastronardi
et al., 2006). Previously, using myelin basic protein (MBP) isolated
from normal appearing matter (NAWM) from MS patients and
controls, and fractionation of the samples by column chromatography,
Moscarello et al. found that 18% of MBP was citrullinated in control
tissue compared to 45% of MBP in patients with MS (Moscarello et al.,
1994). Further studies by the same group found that in Marburg's
disease, as much as 90% of MBP is citrullinated (Wood et al., 1996).

Since citrullination alters the charge of the protein, citrullinatedMBP
becomes partially unfolded and its interaction with phospholipids is
weakened, resulting in myelin sheaths that are not as tightly packed
as in normal myelin (Wood and Moscarello, 1989; Beniac et al., 2000).
Studies have shown that deiminatedMBP ismore susceptible to proteo-
lytic digestion by myelin associated proteases (Cao et al., 1999; Pritzker
et al., 2000; D'Souza and Moscarello, 2006; Musse et al., 2006). This
greater surface exposure and increased cleavage of citrullinated protein
by proteases would lead to increased release of immunodominant
epitopes, which could then sensitize peripheral blood T cells (Musse
et al., 2006; Musse and Harauz, 2007). Furthermore, citrullination
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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appears to be necessary in order to elicit CD4+ T cell responses, suggest-
ing that ‘altered-self’ epitopes are only presented to T cells when certain
arginine residues have been converted to citrulline (Hill et al., 2003;
James et al., 2010). Recently Acharya et al. (2012) have proposed a role
for citrullination of neuronal proteins, localised in regions of neurode-
generation, in the generation of autoantibodies in Alzheimer's disease.

Using an antibody which recognises all deiminated proteins (F95) it
was reported that citrullination of glial fibrillary acidic protein (GFAP)
was substantially higher in the NAWM compared with equivalent con-
trol brain tissue (Nicholas and Whitaker, 2002; Nicholas et al., 2004,
2005). In addition, presumed chronic inactive lesions were found to
bedevoid of citrullinated proteins in this study, exceptwithin astrocytes
surrounding blood vessels (Nicholas et al., 2004). Using F95 antibody
these authors also demonstrated that citrullinated proteins were
present in both the brain and spinal cord of mice withmyelin oligoden-
drocyte glycoprotein (MOG)-induced experimental autoimmune en-
cephalomyelitis (EAE), and that citrullination was shown to co-localise
within MBP positive regions surrounded by GFAP immunoreactive
astrocytes, that were also positive for deiminated proteins (Nicholas
et al., 2005).

Here, we investigated the immunohistochemical localisation of
citrullinated proteins in post mortem brain tissue from MS patients
and normal control cases and confirmed the citrullinated proteins
present by western blotting as well as expression of PAD2 mRNA in the
CNS by quantitative real-time PCR. PAD2 mRNA expression was also ex-
amined in in vitro studies of primary human astrocytes, a human foetal
microglial cell line and a human brain endothelial cell line. Using
these techniques we demonstrated that increased citrullinated GFAP
was found in areas of both ongoing demyelination and myelin loss in
active and chronic active MS lesions. Interestingly, where there was
complete myelin loss, citrullinated proteins were absent. Lower levels
of citrullinated proteins were observed in the MS NAWM and control
white matter. Western blot analysis of brain tissue from these patients
confirmed that in addition to MBP, GFAP was the major citrullinated
protein in the CNS, and the amount of citrullinationwas increased in ac-
tive disease, suggestive of a role in the pathogenesis of MS.
Table 1
Clinical data of controls and multiple sclerosis cases included in this study.

Case number Age Gender Diagnos

MS1 72 Female SPMS

MS2 73 Female SPMS
MS3 77 Female SPMS

MS4 51 Female SPMS

MS5 55 Male SPMS

MS6 86 Female SPMS
MS7 78 Female SPMS
MS8 71 Female SPMS
MS9 62 Male SPMS
MS10 37 Female SPMS

MS11 77 Female SPMS

MS12 55 Female SPMS
C1 64 Male Normal
C2 69 Female Normal
C3 35 Male Normal
C4 78 Female Normal
C5 60 Female Normal
C6 75 Male Normal

(–) not applicable.
2. Materials and methods

2.1. Human tissue

Nineteen blocks of snap-frozen autopsy tissue from 12 clinically and
neuropathologically confirmed secondary progressivemultiple sclerosis
(SPMS) cases, together with nine blocks from 6 normal control cases,
were obtained from the UK Multiple Sclerosis Society Tissue Bank, Im-
perial College, London (Table 1). The MS cases included 10 females,
mean age 67.7 years (range 37–86) and 2 males, mean age 58.5 years
(range 55–62) and contained lesions typical of active and chronic active
disease. Brain tissuewas received fresh from autopsywith b24 h death-
autopsy times for 11 out of 12 MS cases. For each MS case, between 1
and 3 cerebral tissue blocks, including cortical and perivascular areas
with white matter demyelination, were examined. All of the patients
had a confirmed diagnosis of MS by both histological and clinical
criteria. Control and MS blocks were matched for CNS location.

Serial cryostat sections (10 μm) were processed for haematoxylin
and eosin (H&E), oil red-O (ORO), and anti-HLA-DR immunohistochem-
istry to evaluate the general histology and extent of cellular activation
within each block. Perivascular inflammation was graded using a four-
point scale (negative, +, ++, +++). Lesions with ORO-positive cells
throughout and with perivascular cuffing were classified as active le-
sions. Blocks that contained ORO-negative regions with hypercellular
borders, including ORO positive cells, were classified as chronic active
lesions, whereas blocks derived from macroscopically normal white
matter with the absence of ORO staining or perivascular inflammation
and with resting microglia, identified with anti HLA-DR staining, were
classified as normal appearing white matter (NAWM).

2.2. Immunohistochemistry

Serial cryostat sections of 19MS and 9 control tissue blocks were cut
and mounted onto poly-L-lysine coated glass slides (polysine™ slides,
catalogue number 631-1349, VWR International Ltd., UK), fixed in ice-
cold acetone for 10 min and then allowed to air-dry. Sections were
is Total disease duration (years) Lesion type

41 Active
Chronic active

43 Active
Chronic inactive
Chronic active
Chronic active
Active

21 Chronic active
Active
Chronic active
Chronic inactive

43 NAWM
Chronic active

36 NAWM
42 NAWM
35 Chronic active
39 Chronic active
17 Chronic active

Chronic active
Chronic active

21 NAWM
NAWM

25 Chronic active
– –

– –

– –

– –

– –

– –



Table 3
Secondary antibodies used for immunohistochemistry.

Immunogen Species Conjugate Dilution Source (catalogue number)

Mouse IgM Goat Alexa 488 1:500 Invitrogen (A-21042)
Mouse IgG Goat Alexa 568 1:500 Invitrogen (A-11004)
Rabbit IgG Goat Alexa 568 1:500 Invitrogen (A-11011)
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treated with 5% goat serum with 1% bovine serum albumin (BSA) in
phosphate buffered saline (PBS) for 30 min at room temperature (RT),
to prevent non-specific binding of the primary and secondary antibod-
ies. Tables 2 and 3 provide a summary of the details of the primary
and secondary antibodies and the dilutions used in this study. Following
this, sections were incubated with the primary antibody diluted in 0.3%
goat serumwith PBS overnight at 4 °C, washed in PBS and incubated in
the appropriate secondary antibody at 1:500 in 1% BSAwith PBS for 1 h
at room temperature (RT). Cell nuclei were counterstained with
diamidino-2-phenylindole (DAPI), whichwas included in themountant
(Vector Laboratories, UK). Isotype control primary antibodieswere used
routinely to assess non-specific binding.

To determine the cellular localisation of peptidyl-citrullinemoieties,
the following dual-label immunofluorescence protocol was performed.
Briefly, sections were co-incubated with both a monoclonal and poly-
clonal antibody overnight at 4 °C and then detected by co-incubating
the appropriate secondary antibodies against mouse and rabbit immu-
noglobulins (final dilution 1:500) for 1 h at RT. Secondary antibodies
were conjugated with fluorescent tags so that immunolabelled struc-
tures either appeared green (Alexa 488) or red (Alexa 568). Following
three 5 min washes in PBS, sections were placed in 1% Sudan black B
for 5 min to block autofluorescence, followed by 8–10 washes in PBS
and then mounted as described above. Dual immunofluorescence was
performed with polyclonal antibodies against GFAP for the identifica-
tion of astrocytes and mouse IgM against citrullinated proteins (F95)
(Nicholas and Whitaker, 2002). Single staining was also performed
using mouse monoclonal antibodies against HLA-DR, a marker for
activated macrophages, and myelin oligodendrocyte glycoprotein
(MOG) to assess myelin loss.

Prior to carrying out dual immunostaining, serial sections were
single-labelled with each mouse or rabbit primary antibody followed
by secondary antibodies to anti-rabbit IgG and anti-mouse IgG or IgM
respectively to ensure that no cross-reactivity was observed between
the primary antibody and the inappropriate secondary antibody.
Omission of either primary antibody from the protocol, whilst retaining
the secondary antibody was performed to ensure the absence of non-
specific binding from the secondary antibody.

2.3. Semi-quantification of citrullination immunoreactivity

Sections ofMS and control whitematterwere anonymised by a third
party coding and then regions of interest within sections (lesion,
NAWM or control white matter) were scored by two independent
blinded observers. Single-label immunostaining for F95 on these
sections was graded on a four-point scale: sections displaying low
level punctate F95 were graded +, sections showing slightly more
elongated fibre staining were ++, whilst more intensive staining
was scored+++and sectionswith extensive F95 stainingwere graded
++++ (Fig. 1).

2.4. Confocal scanning laser microscopy

All immunofluorescence images were captured using a Zeiss 510
CSLM inverted confocal, equipped with a krypton/argon laser.
Fluorophores were excited at wavelengths of 488 or 568 nm. Co-
localisation studies of the dual-labelled samples utilised the co-
localisation software available with the Zeiss 510 CSLM. Individual
Table 2
Primary antibodies used for immunohistochemistry.

Primary antibody Antibody type Target

F95 Mouse monoclonal Citrullinated proteins
HLA-DR Mouse monoclonal IgG2b Activated macrophages and microglia
MOG Mouse monoclonal Myelin
GFAP Rabbit polyclonal IgG Astrocytes
pixels were scanned for each channel within set intensity thresholds.
Co-localised pixels were represented as yellow in the composite image.
2.5. RNA and protein extraction

RNA was isolated from homogenised CNS tissue (2 × 30 μm serial
sections) collected from 12 MS and 6 control blocks, as used for immu-
nohistochemistry (Table 1) or cell cultures using TRI-reagent (Sigma,
UK). Briefly, either tissue or cells were homogenised in 1 ml TRI-
reagent, followed by vortex mixing and centrifugation at 12,000 g for
15 min at 4 °C to remove lipids. The supernatant was transferred to
clean microcentrifuge tubes, and RNA and protein were extracted
following the manufacturer's instructions (Sigma, UK). RNA quality
was checked on 1% agarose gels. Protein concentrations were deter-
mined by the bicinchoninic acid assay (Sigma, UK).
2.6. Quantitative real time PCR

Samples (1 μl) of total RNAwere reverse transcribed to cDNA using
Superscript II reverse transcriptase (Invitrogen, UK). Negative controls
were run in parallel without either superscript II or RNA, to ensure
that there was no genomic DNA or RNA contamination. Using the
fluorescent TaqMan 5′ nuclease assay (Applied Biosystems, UK) each
cDNA sample was analysed for the expression of PAD2, PAD4
and housekeeping genes cyclophilin A and hypoxanthine-guanine
phosphoribosyltransferase-1 (HPRT1) (Applied Biosystems, assay
numbers Hs00247108_ml, Hs012387.2_ml, Hs99999904_ml and
Hs99999909_ml, respectively) by qRT-PCR. Each 10 μl reaction
consisted of 2× TaqManUniversal PCRMasterMix (Applied Biosystems,
UK), 1 μl primer and FAM labelled probe and 1 μl of template cDNA.
Each primer and probe set was designed by Applied Biosystems (UK)
and selected on the basis that they crossed exon–exon boundaries to
prohibit any amplification of contaminating genomic DNA. Reactions
were carried out in a 96-well reaction plate (Applied Biosystems, UK)
using the Applied Biosystems 7900HT fast real-time PCR system. The
thermal profile of the reaction was as follows: 50 °C for 2 min, 95 °C
for 2 min, and 40 cycles of denaturation at 95 °C for 15 s and anneal-
ing/extension at 60 °C for 1 min. Emitted fluorescence was measured
in real-time and later used to construct an amplification plot using ABI
Prism 7900HT Sequence Detection System software version 2.2.1.
Relative mRNA levels of the above genes were determined using the
cycle threshold (CT) and the 2−ΔCT method. The expression of PAD2
was normalised against expression of the housekeeping genes
cyclophilin A and HPRT1. The relative mRNA levels of PAD2were deter-
mined using the formula 2−ΔCT where ΔCT = CT (target gene) − CT
(average cyclophilin A and HPRT1). These experiments were carried
out in duplicate, independently.
Source Dilution

Anthony Nicholas, USA 1 in 500
Novocastra, Newcastle upon Tyne, UK. (Catalogue number: NCL-LN3) 1 in 50
Richard Reynolds, London, UK 1 in 100
Abcam, Cambridge, UK. (Catalogue number: ab7260) 1 in 1000
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Fig. 1. Scoring of citrullinated protein (pep cit) staining in control (C2), MS NAWM (MS9) and lesion (MS4) by immunofluorescence and confocal microscopy. Levels of staining were
graded (a) 1+, single astrocytes were stained (arrow) (b) 2+, levels of staining became more diffuse but astrocyte bodies are still visible (arrow and inset at higher magnification),
(c) 3+, staining is more dense and filamentous. Blood vessel lumen (V) and (d) 4+, widespread filamentous staining is seen together with an increase in intensity of staining. Nuclei
are stained blue (DAPI).
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2.7. Western blotting

Extracted protein samples (30 μg) were loaded into wells and sepa-
rated by SDS-polyacrylamide gel electrophoresis on 12% pre cast gels
(Invitrogen, Paisley, UK) at 150 V for 90 min. Proteins were transferred
onto nitrocellulosemembranes (Hybond-C, GE Healthcare Life Sciences,
Amersham, UK) at 100V for 1 h.Membraneswere blocked for 90min in
5% BSA in Tris-buffered saline (TBS) containing 0.02% Tween-20
solution (TBS–Tween). Membranes were then washed three times in
TBS–Tween and incubated in primary antibody (F95 1:1000, anti GFAP
1:1000 or anti β-actin 1:1000) overnight at 4 °C. The following day,
membranes were incubated with secondary antibody (labelled with
Alexa 680 or IR800) for 1 h at RT, then washed twice in TBS–Tween
and once in TBS. Signal intensities were then analysed using the LiCOR
Odyssey infrared image system (Li-COR Biosciences Cambridge, UK
Ltd.) ensuring that each channel was set at the same exposure time be-
tween patient samples.

2.8. SDS-PAGE, in-gel digestion and extraction of peptides from MS
brain tissue

MS tissue protein extract (from MS4) which had shown the most
extensive citrullination by immunohistochemical and western blot
analysis (30 μg) and pureMBP (10 μg) (Sigma, UK), as a positive control,
were fractionated on pre-cast 10% NuPage Novex Bis-Tris gels
(Invitrogen, UK) using SDS-PAGE. Following SDS-PAGE, the gel was
stained using Instant Blue (Expedeon, UK) according to the
manufacturer's protocol. Protein bands of interest were then excised
from the gel using a sterile blade and placed in microcentrifuge tubes.
Following this, gel pieces underwent alkylation and reduction followed
by extraction of peptides. Briefly, each gel piece was rehydrated in 40 μl
10 mM dithiothreitol, vortexed followed by pulse-centrifugation, and
then incubated on a heat block at 56 °C for 45 min. The supernatant
was then removed and 40 μl 55 mM iodoacetamide was added to each
gel piece, vortexed followed by pulse-centrifugation. The sample was
then left in the dark for 30min to allow the reaction to proceed. The su-
pernatant was then discarded and the gel piece was washed in 100 μl
25 mM Tris-HCL (pH 9.3), vortexed for 10 min followed by pulse-
centrifugation. The supernatantwas then removed and 200 μl 100% ace-
tonitrile (ACN)was added to the gel piece for ~10min. The supernatant
was removed and subjected to Speed Vac until gel pieceswere dry. 25 μl
(10 μg/ml) Lys C solution (Promega, UK) was added to each gel piece
and samples were allowed to rehydrate for 1 h on ice. The excess Lys
C solution was then removed and the gel piece was covered with ~40
μl 25 mM Tris–HCl (pH 9.3). The gel pieces were then incubated on a
shaker overnight at 37 °C. Following this, gel pieces were subjected to
pulse-centrifugation, followed by removal of the supernatant into a
clean microcentrifuge tube. 30 μl 50% ACN 0.1% trifluoroacetic acid
(TFA) was added to each gel piece, vortexed for 15 min and then sub-
jected to pulse-centrifugation. The supernatant was removed and
added to the supernatant from the previous step. This was then repeat-
ed. The resulting extract was then subjected to Speed Vac centrifuge to
reduce the sample volume to ~10 μl. To concentrate and purify samples,
Zip Tips® (Millipore, UK) were used prior to spotting samples onto the
target plate andwere used according to themanufacturer's instructions.
Following this 0.5 μl α-cyano-4-hydroxylcinnamic acid and aniline
in ACN: water: TFA (1:1:0.1 by volume) was spotted directly onto the
target plate (10 mg/ml) followed by 0.5 μl sample.
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Fig. 2. Levels of citrullinated protein scored in each tissue block used in this study. Control
white matter (n = 9), MS NAWM (n = 5) and lesions from MS cases (n = 14).
Anonymised blocks were blindly graded by two independent researchers. Any discrepan-
cies between blocks were reviewed again and a consensus agreement reached between
the two raters. Levels of citrullinated proteins were highest in MS lesions compared to
control white matter and MS NAWM, with control white matter and MS NAWM
displaying similar low levels of deiminated proteins.
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2.9. Matrix-assisted laser desorption ionisation ion mobility separation
tandem mass spectrometry (MALDI-IMS-MS/MS)

MALDI IMS–MS/MS was performed using a HDMS SYNAPTTM G2
system (Waters Corporation, UK). The instrument was used in positive
ionisation mode. In order to achieve good quality MS/MS spectra, spec-
tra were acquired by manually moving the laser position and adjusting
c

pep cit/DAPI

a

MOG/DAPI

V

V

Fig. 3.An actively demyelinatingMS lesion (MS2) visualised using single and dual staining imm
by disrupted, intermittent MOG staining (red), indicated by arrow head, (b) Activated HLA-DR
active staining for citrullination with F95 antibody (green), (d) Citrullination (green) was predo
although not all astrocytes were double positive, arrow head indicates single stained GFAP+ as
stained blue (DAPI).
the collision energy to achieve good signal to noise for product ions
across the full m/z range of the spectrum. Collision energies were
adjusted from 70 to 100 eV during acquisition and acquisition times
were generally 5–10 s per spectrum. The resulting peaks obtained
from the MS/MS spectra were uploaded in a text file format to perform
a Mascot (Matrix Science, UK) search which used the UniProt database
in order to generate a sequencematch. Searcheswere performed for Lys
C specificity and two missed cleavages were allowed. Mass deviations
for precursor ions and for fragment ions were set at 10 ppm and 0.75
Da, respectively.

2.10. Cell culture

Primary adult human astrocytes isolated from either CNS NAWM
obtained at autopsy from UK MS Society Tissue Bank (UKMSTB; donor
labelled MS16) or from temporal lobectomy resections for treatment
of epilepsy at King's College Hospital (KCH, London; donor labelled
EP15) (a kind gift fromDr I. Romero, OpenUniversityUK)were cultured
in astrocyte medium composed of 1:1 nutrient mixture of MEM-α
and F-10, supplemented with fungizone (250 units/ml), penicillin
(100 units/ml), streptomycin (50 μg/ml), 10% heat inactivated FCS
(Invitrogen, UK) and 1% human AB serum (Sigma, UK). The microglial
cell line, CHME-3 (a kind gift from Prof M. Tardieu, Universite
Paris Sud, France), was cultured in Dulbecco's modified Eagle's medium
(Sigma, UK), supplemented with 10% foetal calf serum (FCS) (Invitrogen,
UK) and 2 mM Ala-Gln solution (Sigma, UK). The human adult brain
endothelial cell line, hCMEC/D3 (Weksler et al., 2005), was cultured
on collagen type I from rat tail (Millipore, UK) in the commercially
d

pep cit/GFAP/DAPI

b

HLA-DR/DAPI

V

unofluorescencemicroscopy of serial tissue sections. (a) Ongoing demyelination evidenced
+ (red) foamy macrophages, indicated with arrow head, (c) Strong, extensive immunore-
minantly co-localised (yellow) to astrocytes (GFAP; red) within the demyelinating lesion,
trocytes. V indicates the location of a blood vessel seen in serial sections in a–c. Nuclei are
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available complete media EGM™-2 (endothelial growth medium)
supplementedwith hydrocortisone, vascular endothelial growth factor,
gentamycin, ascorbic acid, human endothelial growth factor, long R
insulin-GF, heparin, human FGF-β (Lonza, UK), with penicillin
(50 units/ml), streptomycin (50 μg/ml) and 2% heat inactivated FCS
(Invitrogen, UK). The cells were maintained at 37 °C with 5% CO2/95%
air in a humidified environment.

2.11. Statistical analysis

For qRT-PCR data, statistical significance was displayed as mean ±
SEM. The probability of statistical differences in PAD2mRNA expression
between control white matter, MS NAWM and MS lesional tissue was
determined by Kruskal–Wallis followed by Conover–Inman. The proba-
bility of statistical differences in PAD2mRNAexpression betweenMS16,
EP15, CHME3 and hCMEC/D3 was determined by Kruskal–Wallis
followed by Conover–Inman. Statistical differences were considered
significant at * p b 0.05, **p b 0.01 and ***p b 0.001.

3. Results

3.1. Citrullination is increased in areas of ongoing demyelination in active
and chronic active lesions

Expression of citrullinated proteins within regions of interest on indi-
vidual sectionswas graded from1+to4+(Fig. 1). Intense immunoreac-
tivity for citrullinated proteins was seen in both active and chronic active
lesions of MS tissue blocks, as compared to NAWM in MS and control
MOG/DAPI

a

pep cit/DAPI

c

Fig. 4. An active demyelinatedMS lesion (MS4) visualised using single and dual staining immun
the borders of the lesion indicatedwith arrow heads. (b) Activated HLA-DR+microglia (red), a
is intact. In the central areawith completemyelin loss, indicatedby * therewas anabsenceof citr
red); plaque border is indicated with arrow heads. Nuclei are stained blue (DAPI).
white matter tissue. The highest levels of citrullination (3+ and 4+)
were observed in lesions, whereas both control and NAWM samples
were rated 2+ except for one control case which was graded 1+
(Fig. 2). In control and NAWM astrocytes were identifiable by their mor-
phology as being positively stained for citrullinated peptides (Fig. 1a, b)
whereas MS tissue which was categorised as being 3+ or 4+ had such
extensive staining that it was difficult to discern individual cell bodies
(Fig. 1c, d). Strong peptidyl-citrulline immunoreactivity was observed
in active lesions with ongoing demyelination, evidenced by thinning of
themyelin sheath, shownbydisruptedMOGstaining, andwas associated
with areas of activated HLA-DR + foamy macrophages/microglia
(Fig. 3a–c). Where myelin staining was absent within lesion centres,
there was very little evidence of citrullinated proteins (Fig. 4a–c), al-
though activated HLA-DR + macrophages were present, these did not
have a foamy appearance indicating that myelination was not ongoing.
Using dual label immunofluorescence for peptidyl-citrulline and GFAP,
the intensity of GFAP staining was markedly increased in active MS le-
sions, and was predominantly colocalised with F95 immunoreactivity
(Fig. 3d). In chronic active lesions, citrullination of protein can be seen
at the edge of the advancing demyelination and advancing into the
NAWM (Fig. 4d). NAWM from MS specimens showed weak peptidyl-
citrulline immunoreactivity, with immunoreactivity within GFAP posi-
tive astrocytes, observed at the abluminal region of blood vessels in the
glia limitans (Fig. 5a–d). Control white matter also showed areas with
sparse peptidyl-citrulline immunoreactivity, with the strongest staining
at the glia limitans and primarily associatedwith GFAP immunoreactivity
(Fig. 6a–d). Myelin was intact and normal in these cases, with resting
microglia (Figs. 5b, 6b).
HLA-DR/DAPI

b

pep cit/GFAP/DAPI

d

ofluorescence of serial tissue sections. (a)MOG staining (red) indicates loss of myelinwith
rrow head and (c) strong immunoreactive staining for citrullination in areas wheremyelin
ullinated proteins. (d) Citrullination (green)was co-localised (yellow) to astrocytes (GFAP;
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Fig. 5.Citrullination inMSNAWM(MS7) visualised using single anddual staining immunofluorescence of serial sections. (a) Intactmyelin stained forMOG (red), (b) Resting, weaklyHLA-
DR+ microglia (red) (arrow heads), (c) weak immunoreactive staining for citrullination (F95, green) (arrow heads) which was predominantly (d) co-localised (yellow) to astrocytes
(GFAP; red). Nuclei are stained blue (DAPI).
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3.2. PAD2 mRNA was constitutively expressed in control, NAWM and MS
lesion tissue blocks

PAD2 was expressed at the mRNA level in control white matter, MS
NAWM and MS lesion brain tissue (Fig. 7). There was significantly less
PAD2 mRNA in the MS NAWM compared to both control white matter
and MS lesional brain tissue. PAD4 mRNA was expressed at similar
levels within control, NAWM and lesional brain tissue and the relative
expression was ~100 fold lower than that for PAD2 mRNA (data not
shown).

3.3. Western blot analysis of citrullinated proteins in human brain tissue

Western blot analysis of proteins extracted from control white mat-
ter, MS lesions and NAWM all showed multiple bands of citrullinated
proteins using the F95 antibody (Fig. 8a). In control white matter, MS
NAWM and MS lesions, seven major bands were detected with F95
antibody, including one at the expected 50 kDa molecular mass for
GFAP and one at 18.5 kDa suggestive of citrullinated MBP (Fig. 8a).
Further unidentified bands were seen at 250, 75, 15 and 10 kDa. Two
bands at ~48 and ~50 kDaweremost prominent, whichwere positively
identified as citrullinated GFAP isoforms by dual labelling of the blots
with both antibodies (F95 and anti GFAP) (Fig. 8c).

3.4. MALDI IMS–MS/MS of peptides extracted from an MS lesion

A number ofMBP and GFAP peptideswere positively identified from
in-gel digests of protein bands corresponding to citrullinated proteins
extracted from an MS case and subsequent MALDIIMS–MS/MS
(Table 4). Protein bands visualised at ~15 and ~18.5 kDa on a western
blot were confirmed as MBP, whereas protein bands visualised at ~48
and 50 kDa were confirmed as GFAP. The remaining bands visualised
at 250, 75, 15 and 10 kDa were not identified by MALDIIMS–MS/MS.

3.5. PAD2 gene expression in cells of the CNS

Real-time PCR analysis of all three cell types, primary human astro-
cytes (MS16 and EP15), a human foetal microglial cell line (CHME3)
andhuman brain endothelial cell line (hCMEC/D3), showed constitutive
expression of PAD2 mRNA (Fig. 9).

4. Discussion

This study shows for the first time that high levels of citrullinated
proteins were localised in areas of activatedmacrophages with ongoing
demyelination and myelin thinning. In comparison, much lower levels
of citrullination were consistently found in the NAWM of MS and con-
trol white matter tissue where there was no demyelination. This sug-
gests that the process of citrullination is intimately linked with that of
demyelination, the major hallmark of MS. Another striking finding
was that the increased expression of citrullinated proteins was primar-
ily colocalised with GFAP in both active and chronic active lesions in
brain tissue taken from patients with MS. These findings could repre-
sent an increase in the amount of naturally occurring citrullinated
GFAP overall in MS, or more arginine residues in GFAP may be
citrullinated in the disease state. In previous studies ofMBP, the number
of citrullinemoieties was increased inmore severe disease (Wood et al.,
1996).
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Fig. 6. Citrullination in control white matter (C5) visualised using single and dual staining immunofluorescence of serial tissue sections. (a) Intact myelin stained for MOG (red) through-
out. (b) Low level of resting weakly HLA-DR+ microglia (arrow head). (c) Weak immunoreactive staining for citrullination (F95, green) which was predominantly (d) co-localised
(yellow) to astrocytes (GFAP; red) and was particularly prominent at the glia limitans surrounding blood vessels (V) (arrow heads). Nuclei are stained blue (DAPI).
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Due to increasing evidence indicating that non-lesional NAWM
in MS patients has underlying pathology (Nicholas et al., 2004;
Kutzelnigg et al., 2005; Frischer et al., 2009; van der Valk and Amor,
2009), the NAWM was also examined for the presence of citrullinated
proteins. However, in this studywewere unable to identify a difference
in the levels of citrullination between control white matter and
MS NAWM compared to MS lesional brain tissue. This finding was
unexpected, as previously Nicholas et al. (2004), using three control
and three MS blocks, were able to show increased expression of
citrullinated GFAP in the NAWM of brain tissue taken from patients
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Fig. 7. qRT-PCR analyses showing PAD2 mRNA expression in control white matter
(control, n = 9), MS NAWM (NAWM, n = 5) and lesions from MS cases (MS lesion,
n = 14) (Log scale). qRT-PCR data was calculated using the Comparative Quantitation
ΔCT method. Significant differences between control white matter, MS NAWM and MS
lesion tissue are marked by asterisks (*p b 0.05, **p b 0.01).
with SPMS; however, these tissue specimens were taken primarily
from patients with more inactive disease (Nicholas et al., 2004). In
contrast, our study examined MS brains containing both active and
chronic active plaques as opposed to NAWM, which may account for
this difference. In addition, in the current study, additional markers
were used to assess the pathology of the lesion and surrounding
NAWM, most importantly lymphocyte and monocyte infiltration,
extent of microglia activation and myelin thinning and loss.

Western blotting showed the presence of multiple citrullinated
proteins, with bands at ~48 and ~50 kDa, identified as GFAP isoforms
and a band at 18.5 kDa identified as MBP (Harauz et al., 2004; Boggs,
2006; Ferguson et al., 2009). Additional bands of citrullinated proteins
were observed at 250, 75, 15 and 10 kDa, and although the 75 kDa
band was previously detected in NAWM from MS cases (Nicholas
et al., 2004), further work to identify these proteins through matrix
assisted laser desorption ionisation mass spectrometry and tandem
mass spectrometry is needed.

We were able to show PAD2 mRNA expression in control white
matter, MS NAWM and lesion tissue as well as in cell culture in brain
endothelial cells, microglia and astrocytes. Interestingly, there was
significantly less PAD2 mRNA in the MS NAWM compared to both
control white matter and MS lesional brain tissue. Although these
results are unexpected, the mRNA level of PAD2 does not necessarily
reflect the protein expression or activity of the enzyme. PAD2 mRNA
expression in microglia and astrocytes was predicted as previous
immunocytochemical studies have shown the expression of PAD2 in
glial cells (Akiyama et al., 1990), in particular microglia (Vincent et al.,
1992; Asaga et al., 2002; Asaga and Ishigami, 2007) and astrocytes
(Vincent et al., 1992; Asaga and Senshu, 1993; Asaga and Ishigami,
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Fig. 8. Western blot analysis of proteins extracted from control white matter (C), MS
NAWM (N) and MS lesional (L) brain tissue for (a) peptidyl-citrulline (red), (b) GFAP
(green) and (c) peptidyl-citrulline (red) co-localised (yellow) with GFAP (green). Multi-
ple bands of citrullinated proteins were shown, with two of those bands identified as
citrullinated GFAP isoforms. The third band of lower MW for GFAP is not citrullinated.
The first and last lanes represent standard molecular weight markers, with β-actin anti-
body used as a loading control (green).
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Fig. 9.Basal expression of PAD2mRNA indifferent preparations of primaryhumanastrocytes, a
human foetalmicroglial cell line (CHME3) and ahumanbrain endothelial cell line (hCMEC/D3).
Data presented as themean±SEM. Significant difference betweenMS16 and other cells tested
is indicated, *** pb0.001 (Kruskal-Wallis with Conover-Inman, n=21).
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2000; Asaga et al., 2001; Acharya et al., 2012). This is the first study to
show the expression of PAD2 mRNA in brain endothelial cells. PAD4
mRNA, although previously described in human brain, was detectable by
qPCR in this current study at very low levels, and PAD4mRNAwas present
at similar low levels in control, NAWMand lesional tissue and thus it is like-
ly that the citrullinatedproteins present inMS tissuedescribedhere are as a
result of the activity of PAD2, which has previously been reported as the
predominant isoform found in the CNS (Jin et al., 2013).

Numerous studies have identified citrullination of MBP in MS, but
this is the first study that has shown directly that high levels of
citrullination are associated with areas of ongoing demyelination.
When myelin loss is complete, in the centre of chronic active lesions,
Table 4
List of peptides identified using MALDI-IMS–MS/MS and Mascot.

Protein Accession
number

Mass (Da) Observed m/z
with MALDI/MS

GFAP P1436 49.880 1161.6376
1161.6392
1297.7561
1297.7612
1297.7612
1405.8020
2074.1060
2102.0259

MBP P02686 33.117 1491.8308
1491.8317
1897.9371

FollowingMS/MS a peptide peak list consisting of peptidemass valueswas exported intoMasco
the peptide amino acid sequence, score and Mascot threshold score. A protein score of ≥30 is
Individual ions scores of N16 indicate identity or extensive homology (p b 0.05) (Mascot thres
citrullinated proteins are no longer detectable by immunohistochemistry.
Our findings provide evidence that citrullination of MBP precedes the
actual loss of myelin, indicating that this modified myelin, with
citrullinated MBP, is more susceptible to demyelination due to the
decreased compaction of the lipid bilayers and increased exposure of
proteins, which can trigger an immune response directed at myelin.
Previously, using MBP isolated from NAWM of patients with MS and
controls, and fractionation of the samples by column chromatography,
Moscarello et al. (1994) found that 18% of MBP was citrullinated in
control tissue compared to 45% of MBP in patients with MS. Further
studies by the same group found that in Marburg's disease, as much
as 90% of MBP is citrullinated (Wood et al., 1996) and contained 18 cit-
rulline residues and only 1 arginine residue compared with 6 citrulline
and 13 arginine residues in MBP from control and MS cases (Wood
et al., 1996). A number of studies have shown that deiminated MBP is
unable to compact lipid bilayers, causing membrane destabilisation,
thereby, possibly promoting demyelination (Brady et al., 1981; Wood
and Moscarello, 1989; Boggs et al., 1999; Beniac et al., 2000). In
addition, deiminated MBP is more susceptible to proteolytic digestion
by myelin-associated proteases (Cao et al., 1999; Pritzker et al., 2000;
D'Souza and Moscarello, 2006; Musse et al., 2006). This greater surface
exposure and greater cleavage of the citrullinated protein by enzymes
would lead to increased release of the immunodominant epitope,
which could then prime microglia in the CNS and sensitize peripheral
blood T cells (Musse et al., 2006; Musse and Harauz, 2007).

GFAP is themain intermediate filament protein inmature astrocytes
and is involved in a number of structural and functional processes,
including proliferation, vesicle trafficking, autophagy and synaptic
interactions with neurons as well as contributing to the glia limitans at
Amino acid sequence Protein score Mascot threshold score
at 95% significance

VRFLEQQNK 32 N19
VRFLEQQNK 31 N18
ALAAELNQLRAK 76 N13
ALAAELNQLRAK 72 N13
ALAAELNQLRAK 72 N13
LALDIEIATYRK 44 N12
FADLTDAAARNAELLRQAK 65 N16
DEMARHLQEYQDLLNVK 62 N13
NIVTPRTPPPSQGK 51 N17
NIVTPRTPPPSQGK 38 N16
SHGRTQDENPVVHFFK 76 N15

t where peptide identificationwas performed, resulting in protein identification including
considered a good score if two or more peptides are identified within the same sample.
hold score at 95% significance).
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blood vessels in the CNS (Middeldorp and Hol, 2011). GFAP is also
thought to play an important role in astrocyte motility, with motility
of GFAP−/− astrocytes shown to be greatly reduced compared to
GFAP-expressing astrocytes (Lepekhin et al., 2001). Vesicle trafficking
has also been shown to be reduced in astrocytes frommice with double
knock-outs of GFAP and vimentin (Potokar et al., 2007, 2008). Neuronal
activity is closely linked to the release and uptake of the neurotransmit-
ter glutamate, which requires the interaction between astrocytes and
neurons (Pines et al., 1992; Storck et al., 1992; Rothstein et al., 1994).
GFAP plays a key role in modulating astrocytic glutamate transporter
trafficking and function and in the control of glutamine produc-
tion. GFAP is subjected to multiple post-translational modifications
that have important consequences for its structure and functions
(Middeldorp and Hol, 2011). Whilst the exact function of citrullination
of GFAP in astrocytes is currently unknown, it may have detrimental ef-
fects on a number of physiological processes, such as reducing astrocyte
motility and vesicle trafficking, preventing the phosphorylation of GFAP
during cell proliferation (Inagaki et al., 1994), or affecting the ability of
astrocytes to effectively remove glutamate from the extracellular
environment leading to neuronal glutamate excitotoxicity, that may
contribute to pathological processes in MS (Bak et al., 2006). Astrocyte
injury has been suggested as an important early step in brain inflamma-
tion (Sharma et al., 2010). At present, potential pathological alterations
of astrocytes in MS lesions have not receivedmajor attention; however,
the above studies, as well as previous studies (Nicholas et al., 2004) and
the present results showing high levels of citrullinated GFAP in astro-
cytes in MS lesions, indicates the need for further investigation of alter-
ations of astrocytes in the pathogenesis of this demyelinating disease.

In order for PAD2 to become active, raised intracellular calcium ions
must be present. There are many physiological and pathological condi-
tions that could lead to raised intracellular calcium and subsequent ac-
tivation of PAD2 in both neurons and glia, including hypoxia and
excitotoxicity (Sambandam et al., 2004; Shideman et al., 2006; Smith,
2007). Subsequent activation of PAD enzymes, both intracellularly and
extracellularly, would lead to increased citrullination of proteins as re-
ported here in areas of macrophage activation. In addition, the PAD2
promoter has been found to be hypomethylated in the white matter
of MS cases compared to control subjects (Mastronardi et al., 2007).
Recently this hypomethylation of the PAD2 promoter has also been
found to occur in peripheral blood mononuclear cells (PBMCs) taken
fromMS patients and is associatedwith significant increased peripheral
PBMC PAD2 expression in these individuals as compared to controls
(Calabrese et al., 2012). Taken together it seems that hypomethylation
of the PAD2 promoter could be a principal event in inducing the tran-
scription of PAD2 and subsequent increased activity of the enzyme,
through increases in intracellular calcium ions, leading to citrullination
of proteins in MS. A recent study has also shown that upon contact
with stimulated T cells, the expression of PAD2 is upregulated in
human monocytes (Ferrari-Lacraz et al., 2010), which may also be the
case in lesions when macrophages come into contact with activated
T cells.

Future work will involve investigating factors which increase PAD2
activity in astrocytes in vitro, as this will provide a better understanding
of the mechanisms underlying the increased citrullination of GFAP and
MBP seen in MS brain. Factors such as hypoxia, known to cause in-
creased cytoplasmic calcium mobilisation from mitochondrial stores
and increased glutamate, may alter PAD2 expression in astrocytes
(Duchen, 2004; Sambandam et al., 2004; Middeldorp and Hol, 2011).

In summary, the presented data supports the hypothesis that
deimination is important in the pathogenesis of MS, both in terms of
citrullination of MBP preceding demyelination and citrullination of
GFAP and its possible effect(s) on astrocyte function(s). A working hy-
pothesis at present would be that a presently unknown trigger results
in the activation of PAD2 by increasing intracellular calcium, which re-
sults in the citrullination of MBP and GFAP, in addition to other proteins
in the brain. The result is an autoimmune attack against these altered
proteinswhich leads to other detrimental effects on their function, con-
tributing to MS pathogenesis.
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