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ABSTRACT:

In this contribution, we propose a laser concept based on a double heterostructure consisting

of tensile strained Ge as the active medium and SiGeSn ternaries as cladding layers.

Electronic band-structure calculations were used to determine the Si and Sn concentrations

yielding a type I heterostructure with appropriate band-offsets (50 meV) between strained Ge

and SiGeSn. Reduced pressure chemical vapor deposition system was employed to study the

laser structure growth. Detailed analyses regarding layer composition, crystal quality, surface

morphology and elastic strain are presented. A strong temperature dependence of the Si and

Sn incorporation have been obtained, ranging from 4-19 at.% Si and 4-12 at.% Sn (growth

temperatures between 350°C and 475°C). The high single crystalline quality and low surface

roughness of 0.5-0.75 nm demonstrate that our layers are suitable for heterostructure laser

fabrication.
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1. Introduction

Photonic integrated circuits on Si and nanoelectronics devices, as Tunnel Field Effect

Transistors [1,2], would strongly benefit from direct bandgap group IV semiconductors. Since

eV

only [3], Ge-based materials are the most promising candidates to achieve the desired indirect

to direct bandgap transition. Recently, both theoretical and experimental studies have shown

that Ge can be band-engineered into a quasi-direct gap semiconductor via tensile strain or the

incorporation of Sn [4 6]. It has been predicted that a direct bandgap can be achieved for a

tensile deformation of 2% in Ge without heavy n-type doping [7]. However, the use of

strained Ge (sGe) as active laser medium demands also the development of suitable barrier

layers in order to confine the charge carriers and achieve population inversion. The group IV

SiGeSn alloys are ideal candidates to be employed as cladding layers due to the possibility of

modifying the lattice constant and bandgap, independently [8,9]. Due to the low solid

solubility of Sn in Ge (< 1%) [10] and the strong tendency for surface segregation of Sn, low

growth temperatures have to be used. However, significantly higher temperatures are used for

Si epitaxy than for Ge and especially GeSn growth. Hence, finding the appropriate

temperature window for single crystalline SiGeSn growth is very challenging. The first

SiGeSn growth studies have been reported by Bauer et al. [11] employing SiH3GeH3

precursor for Si and Ge and SnD4 as Sn precursor using an ultra-high vacuum chemical vapor

deposition (UHV-CVD) reactor. Whereas the first layers grown on Si(100) were amorphous,

lattice-matched Ge1-x-ySixSny with x 0.2 and y 0.05 were deposited on Ge(100), recently

[12].

Based on electronic band-structure calculations, we first address the Si and Sn

concentration ranges that would yield SixGe1-x-ySny ternary alloys with appropriate band-

offsets to tensely strained Ge. Then, we present the epitaxial growth of SixGe1-x-ySny layers on
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Si(100) and on Ge virtual substrates (VS). The aim is to demonstrate the feasibility of

growing the laser heterostructures suggested by simulations.

2. Experimental details

For the growth studies we employ a 200 mm AIXTRON Tricent® Reduced Pressure

CVD (RP-CVD) tool with a showerhead technology [13,14]. Si2H6, Ge2H6 (10% in H2),

SnCl4 and N2 as the carrier gas are used for the required low temperature epitaxial growth.

Prior to epitaxial growth, an ex-situ HF-vapor etching of native oxide followed by an in-situ

pre-epi bake at about 850°C were performed. The stoichiometry and thickness of the grown

layers were extracted by means of Rutherford Backscattering Spectrometry (RBS). RBS/C

measurements were performed by means of a Tandetron accelerator with 1.4 MeV He+ ions

using a backscattered angle of 170°. Atomic Force Microscopy (AFM) using a Digital

Instruments Nanoscope IIIa atomic force microscope in tapping mode and X-Ray Reflectivity

(XRR) measurements were used to study the interfaces and surface morphology of the layers.

The crystal quality and strain of the thin films were determined by ion channeling (RBS/C),

X-Ray Diffraction (XRD) scans, Reciprocal Space Mapping (RSM) and Raman spectroscopy.

X-ray measurements were accomplished with a high-resolution Bruker D8 diffractometer,

employing a scintilation counter with slits of 0.05-0.1 mm. The scans were carried out with

angular resolutions of 0.01-0.02°, allowing to ascertain the film thicknesses with a precision

of +/- 1 nm in the XRR measurements. In the RSMs - measured around the 224 reflection -

the lattice constants are determined with an accuracy of +/- 0.005 Å.

3. Results and discussion
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Recently, Camacho et al. [15] demonstrated an electrically pumped Ge laser using a

slightly tensely strained (0.25%) active layer which was heavily P doped (7x1019 cm-3). The

lasing threshold is, however, very high, about 280 kA/cm2 which excludes practical

applications. Here, we propose a double heterostructure suitable for lasing consisting of

SiGeSn cladding layers and highly biaxial tensely strained Ge as active medium, as sketched

in Fig. 1a. Our approach rests upon the achievement of a strain induced quasi-direct bandgap

in Ge without the need of doping. Conform to simulation this is possible if Ge layers are

grown on a larger lattice, for example a fully relaxed Ge0.9Sn0.1. The SiGeSn/sGe double

heterostructure is then grown pseudomorphically on top of a fully relaxed Ge0.9Sn0.1 buffer.

The high tensile biaxial strain induced in the Ge layer shifts the lowest conduction bands in

Ge to E = 547 meV and EL = 582 meV [1], resulting in a direct bandgap (zero energy at

valence band maximum). Based on electronic band structure calculations using the supercell

empirical pseudopotential method [16] along with linear interpolation of deformation

potentials and band-offsets of elemental Si, Ge and Sn, we determined the Si and Sn

concentrations which offer quantum-well structures with band-offsets of about 50 meV and

type I hetero-junctions. Here, the Si content was varied between 0 and 20 at.% whereas Sn

concentrations of up to 10 at.% were used. In Fig. 1b the results of the bandgap calculations

are presented: the blue surface represents the bandgap of SiGeSn cladding layers -

point of the Brillouin zone and the red plane marks the bandgap of 547 meV for strained Ge.

To obtain appropriate band-offsets for population inversion, SiGeSn layers with Si

concentrations above 8 at.% are required and at the same time the Sn content has to be lower

than the Si content.

Previous growth studies of SiGe and GeSn have shown that the precursor combination

used here is suitable for growth temperatures as low as 375°C [13]. Really low growth

temperatures are essential for Sn based alloys in order to avoid surface precipitations. Here we
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present the epitaxial growth of SiGeSn ternaries on Si(100) and Ge buffered Si substrates at

temperatures between 350°C and 475°C. In Fig. 2, the growth rate of SiGeSn and GeSn layers

on both Si(100) and Ge buffered Si(100) is shown as a function of the inverse absolute

temperature, for T = 350-450°C. In this regime, the growth rate strongly depends on the

temperature indicating a kinetically limited growth regime [13]. All layers have been grown at

constant partial pressures (SiGeSn: pSi2H6 = 60 Pa, pGe2H6 = 120 Pa, pSnCl4 = 0.6 Pa and GeSn:

pGe2H6 = 120 Pa, pSnCl4 = 0.6 Pa). The activation energy for GeSn and SiGeSn alloys is

determined by exponential fits of the experimental data (dotted lines in Fig.2). The extracted

values amount to about 600-700 meV for both materials. Whereas the activation energy for

GeSn and SiGeSn do not vary significantly, the growth rate is doubled for GeSn compared to

SiGeSn. In addition, slightly higher growth rates for SiGeSn were observed on Ge than on

Si(100) substrates.

RBS channeling measurements were performed to analyse the crystal quality of the

ternary alloys. Random and aligned spectra of SiGeSn layers grown (a) at 425°C on Si(100)

and (b) at 350°C on a Ge buffered Si(100) substrate are shown in Figs. 3a and b, respectively.

Low minimum yield values, min, (ratio of aligned to random spectra) of about 15% for all

three elements (see the insets) indicate single crystalline quality and high substitutionality of

Si and Sn atoms in the Ge lattice (both layers). The Si and Sn concentrations, extracted using

RUMP simulation software amount to 12 at.% and 4 at.%, respectively for the layer grown at

425°C (Fig. 3a). The lattice constant close to that of Ge, as measured by RSM demonstrates

the lattice compensation effect of Si and Sn atoms. Due to the large lattice mismatch between

this SiGeSn layer and the Si(001) substrate de-channeling is observed at the SiGeSn/Si

interface (~1.08 MeV) typically observed for strain relaxed layers where misfit dislocations

are formed at the interface. The Si and Sn concentrations of 5 at.% and 11 at.%, respectively,

were obtained for the SiGeSn layer grown at 350°C on Ge (Fig. 3b).
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For the band engineering of SiGeSn/sGe heterostructures for optoelectronic devices, it

is essential to adjust the Sn and Si contents precisely in order to achieve the proper band-

alignment. Adding more Sn for constant Si content results in higher lattice constants and

lower bandgaps. For SixGe1-x-ySny cladding layers, Si concentrations x > 8 at.% and x > y

have to be achieved. Similarly to previous GeSn growth studies [13], we have observed strong

temperature dependences for the Si and Sn concentrations in SiGeSn layers, as shown in Fig.

4. The Sn content increases as the growth temperatures decreases (full blue triangles). 1at.%

Sn is measured for layers grown at 475°C; meanwhile, a nine times higher content is obtained

at 375°C. We attribute this effect mainly to the lower cracking efficiency of Si2H6 as indicated

in Fig. 4 where the Si content decreases as the temperature decreases (open blue triangles).

Within the mentioned temperature window the Si concentration ranges between 4 at.% at

375°C and 19 at.% at 475°C for layers grown on Si(100). No significant variations of Si and

Sn concentrations are observed if Ge virtual substrates are used (full and open red triangles).

Interestingly, epitaxial growth is possible on Ge VS even at lower temperatures resulting in a

Sn content of 12 at.% at 350°C. By contrast, growth was impossible on Si(100). For all layers

presented in this section low min values have been extracted indicating single crystalline

growth and high substitutionality. No Sn surface precipitations have been observed. Growth

temperature was indeed low enough to avoid Sn segregation [13]. All layers grown at

400°C (shaded area in Fig. 4a) are convenient to be employed as cladding

layers in the quantum-well laser structure shown in Fig. 1. We will then have band-offsets of

at least 50 meV and a type I band-alignment.

The Sn content in SiGeSn ternary and GeSn binary alloys grown on Si(100) at

constant partial pressures is shown in Fig. 4b as a function of the growth temperature. This

comparison shows that adding Si2H6 results in a significant Sn concentration increase in the

grown layers. The Sn concentration is indeed whatever the growth temperature about two
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times higher in ternary SiGeSn alloys than in GeSn alloys. At the same time, as discussed

above (Fig. 2), the growth rate for GeSn is twice as high as the growth rate for SiGeSn.

A similar effect was observed by increasing the Si2H6 partial pressure at constant

growth temperature. Fig. 5a shows the Si and Sn contents in SiGeSn layers grown at 450°C

with different Si2H6 partial pressures (in the 0 - 90 Pa range), the Ge2H6 and SnCl4 partial

pressures being constant at 120 and 0.6 Pa, respectively. The Fig. 5a insets show the Sn

signals of the RBS random spectra for alloys grown with pSi2H6 = 0 Pa (dashed lines) and

60 Pa (straight lines). The Si concentration increases by a factor of 5 if the Si2H6 partial

pressure is increased by a factor 3 whereas the Sn content increases only by a factor of about

2. However, the min value degrades significantly (about 50%) for pSi2H6 = 90 Pa, indicating a

severe layer quality degradation. Moreover, the higher the Si2H6 mass-flow in the reactor, the

lower the growth rate will be, see Fig. 5b. Two times higher growth rates thus lead in Fig. 5 to

a two times lower Sn concentrations. The same conclusion than in Fig. 4 is thus reached.

Low growth temperatures and high Si2H6 mass-flows thus yield high Sn contents (for

a given SnCl4 partial pressure); however, the growth rate is then low. Achieving high Si

contents obviously requires high Si2H6 mass-flows and is easier at high temperatures. A

complex trade-off in terms of process conditions, especially concerning the growth

temperature, will thus have to be identified for each combination of Si and Sn contents aimed

for.

A critical issue concerning device fabrication is the surface roughness of the grown

layers. Sn precipitation is the main effect affecting the surface roughness in Sn-based

materials. The evaluation of surfaces and interfaces was carried out by XRR and AFM, as

shown in Fig. 6. For SiGeSn layers grown directly on Si(100), clearly defined XRR thickness

fringes are present even at high incidence angles (see Fig. 6a), indicating that layers are

smooth. This is complemented by AFM root mean square (rms) roughness values between
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1.4 nm and 1.6 nm. Excellent surface roughness values were otherwise associated with

SiGeSn layers grown on high quality 2.5 µm thick Ge virtual substrates (which are

themselves smooth: rms values below 1 nm) [17]. For all SiGeSn layers with thicknesses

between 45 and 65 nm grown on those Ge virtual substrates at temperatures between 350°C

and 450°C rms values were indeed in-between 0.5 nm and 0.75 nm, see Fig. 6b. The inset of

Fig 6b shows a typical AFM image of the surface of a layer grown at 450°C with Si and Sn

contents of 18 at.% and 4 at.%, respectively. The profile resulting from an omega-2theta scan

around the (004) XRD order for a Si0.08Ge0.86Sn0.06 layer grown at 400°C on a Ge VS is

presented in Fig. 7a. The well-defined thickness fringes around the well-defined, intense

SiGeSn peak, which it itself at a lower angle than the Ge virtual substrate peak, prove that

growth was pseudomorphic and of high crystalline quality. The layer is under biaxial

compressive strain due to high incorporated Sn content, confirmed also by the corresponding

Raman spectrum (inset) where the sharp Ge-Ge and Si-Ge peaks are red shifted. Final proof

for the high crystalline quality and atoms substitutionality is the min value of 7% in RBS,

which is close to those obtained for state-of-the-art SiGe layers. A Reciprocal Space Map

around the (224) XRD order, Fig. 7b, allows the precise determination of in-plane and out-of-

plane lattice constants of this ternary alloy. Pseudomorphic growth is once again proven by

the identical in-plane lattice constants for the Ge virtual substrate and the SiGeSn layer (5.665

Å). We otherwise see that, while containing large amounts of Si and Sn (8 at. % and 6 at. %,

respectively), this SiGeSn layer is not that lattice-mismatched with the Ge virtual substrate

underneath. The perpendicular lattice parameter of the SiGeSn layer is indeed 5.709 Å, while

the corresponding value for the Ge virtual substrate is 5.654 Å. Such a layer matches the

barrier layer requirements for a laser heterostructure.

4. Conclusions
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In conclusion, we presented electronic band-structure calculations in order to

determine the appropriate Sn and Si concentrations for SiGeSn cladding layers in double

heterostructure laser designs with a tensely strained Ge core. 8at.%

that are higher than the Sn contents, type I heterostructures with band-offsets of 50 meV can

be achieved. Using a combination of Si2H6, Ge2H6 and SnCl4, SiGeSn layers possessing the

appropriate stoichiometry have been grown for 400°C. XRD scans along with

AFM measurements demonstrated the high single crystalline quality and smooth surface

morphology of those layers.
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Figure captions :

Figure 1 : (a) Layer structure of the proposed fully strained double heterostructure laser. The

relaxed Ge0.9Sn0.1 buffer serves as a stressor layer for Ge. (b) Bandgaps of the strained Ge (red

surface) and SixGe1-x-ySny cladding layers (blue surface) at the -point of the Brillouin zone as

a function of the Si and Sn concentration.

Figure 2 : Arrhenius plot of (i) the SiGeSn epitaxial growth rate on Si(100) (blue squares) and

Ge buffered Si (red circles) and (ii) of the GeSn epitaxial growth rate on Si(100) (green

triangles) at constant precursor partial pressures.

Figure 3 : RBS random and aligned spectra for (a) 45 nm Si0.12Ge0.84Sn0.04 grown at 425°C

and (b) 85 nm Si0.04Ge0.85Sn0.11 grown at 350°C on Si(100).

Figure 4 : (a) Si and Sn content as a function of the growth temperature on Si(100) and Ge

buffered Si. The shaded area denotes suitable Si to Sn ratios for SiGeSn cladding layers. (b)

Sn concentration as a function of the growth temperature for SiGeSn and GeSn growth on

Si(100). Si2H6, Ge2H6 and SnCl4 partial pressures were fixed: 60, 120 and 0.6 Pa, respectively.

The SiGeSn layer thicknesses amount between 50 nm and 100 nm.

Figure 5 : (a) Si and Sn content as a function of the Si2H6 partial pressure at 450°C. The insets

show the Sn signals of the RBS random spectra. (b) SiGeSn Growth rate for different Si2H6

partial pressures at 450°C. Ge2H6 and SnCl4 partial pressures were constant: 120 and 0.6 Pa,

respectively.
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Figure 6 : (a) XRR curves for several SiGeSn layers grown on Si(100) at 425°C (blue), 400°C

(green) and 375°C (red). The layer thicknesses extracted from those XRR curves are 54 nm,

78 nm and 45 nm, respectively. (b) Root mean square (RMS) values determined by AFM for

45 - 65 nm thick SiGeSn layers grown at different temperatures on Ge virtual substrates. The

inset shows an AFM image of a 65 nm thick SiGeSn layer grown at 450°C on Ge.

Figure 7 : (a) Omega-2Theta scan around the (004) XRD order and Raman spectrum (inset) of

a 55 nm thick Si0.08Ge0.86Sn0.06 layer grown 400°C on a Ge virtual substrate. The Ge-Ge line

is based on measurements on Ge bulk and the Si-Ge line is for SiGeSn layer as used also by

[11]. (b) Reciprocal Space Map around the (224) XRD order of the same Si0.08Ge0.86Sn0.06

layer grown on a Ge virtual substrate.
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