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Abstract 

The measurement of foot-surface contact position would aid the understanding of player movement and step strategy in sports 
such as tennis. However during competition, it is impracticable to instrument players. A markerless, view-independent, foot-
surface contact identification (FSCi) system was developed and validated. The FSCi system analysed standard colour video 
sequences of walking and running (barefoot and shod) from four unique camera perspectives; output data were compared to 
three-dimensional motion analysis. Results demonstrated that data for 99.6% of foot contacts (all camera perspectives) were 
identified. The calculation of gait variables, i.e. step length etc., was performed automatically for 91.3% of foot contact data; 
8.7% of data required manual intervention for analysis. Resultant direction root-mean square error (RMSE) for foot contact 
position was 52.1 and 52.2 mm for barefoot and shod walking respectively. Resultant direction RMSE for foot contact position 
during running was 91.4 and 103.4 mm for barefoot and shod conditions respectively. The FSCi system measured basic gait 
parameters of walking and running without interfering with the activity being observed. The system represents a flexible 
approach which could be used for in situ gait analysis. The FSCi system could be used for gait analysis in competitive tennis 
however performance of the system when applied to larger filming areas, e.g. tennis courts, must be evaluated. 
 
© 2014 The Authors. Published by Elsevier Ltd. 
Selection and peer-review under responsibility of the Centre for Sports Engineering Research, Sheffield Hallam University. 
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1. INTRODUCTION 

Current knowledge of tennis player-surface interaction is limited (Miller, 2006). Identifying player movements - 
i.e. gait strategy - during competitive tennis is an important step in understanding player-surface interactions. 
However, it is currently impracticable to instrument tennis players during competition. Therefore a non-invasive, 
video-based method for identifying foot contacts during competitive tennis would be advantageous. 

Previous work quantifying tennis player movement and gait strategy during competitive tennis has been 
performed. Dunn et al. (2011) recorded high-definition video footage of competitive tennis rallies at the 2011 
Roland Garros Qualifying Tournament in Paris. Forty tennis rallies, the equivalent of 18000 video frames, were 
manually digitised using simplified movement definitions. Dunn et al. (2011) highlighted gender differences for 
forehand manoeuvre step frequency; however findings were limited due to a low sample size and movement 
definitions. An automatic, video-based method for identifying foot contacts was required. 

Bouchrika and Nixon (2006) presented a method for identifying heel-strikes from video. The authors reported 
identification accuracy of 0.52% of participant height; however analyses were limited to straight line walking and 
temporal information was removed. Jung and Nixon (2013) presented a single camera method for identifying heel-
strikes for straight and random direction walking. Jung and Nixon (2013) reported that their method identified 
95.6% of heel-strikes within ± 100 mm of ground truth data. However, Jung and Nixon's (2013) method was 
dependent on walking gait as head trajectory was used to identify heel-strike video frames. Methods presented by 
Bouchrika and Nixon (2006) and Jung and Nixon (2013) were therefore unlikely to be applicable to tennis due to 
variation in gait mode and player-camera orientation. Furthermore, step parameters, e.g. step length and step time, 
were not quantified. Research identifying foot contacts with a single camera is limited. To the author's knowledge, 
no single camera method has identified foot contacts in walking and running to quantify step parameters without 
using markers. 

The FSCi system was designed to automatically identify foot contacts without markers from single camera 
image sequences. Furthermore, the FSCi system can analyse walking and running image sequences obtained from 
different camera perspectives: images are analysed in 0.87 ± 0.05 s per image. The aim of this study was to validate 
the FSCi system using three-dimensional motion analysis. 

2. METHOD 

Six male participants (age = 27.9 ± 2.9 years; stature = 1.85 ± 0.05 m; mass = 77.6 ± 8.2 kg) were recruited. 
Participants were appropriately briefed to aid the completion of the proposed tasks and written informed consent 
was obtained. Approval for all procedures was obtained from the Research Ethics Committee of the Faculty of 
Health and Wellbeing, Sheffield Hallam University. Participants were asked to walk and run at a self-selected pace 
through a motion capture volume within a carpeted laboratory (Figure 1). Participants were asked to perform three 
repetitions of these tasks in barefoot and shod (own trainers). 

Seven spherical, retro-reflective markers (12.5 mm diameter) were affixed to palpable anatomical landmarks: 
one marker was placed on the sacrum and three markers were placed on the heel, 2nd and 5th meta-tarsal heads of 
the left and right feet. Three-dimensional marker position data were recorded using an eight camera, online motion 
capture system (Motion Analysis Corporation, Santa Rosa, CA, USA). The motion capture system sampled marker 
position data at 200 Hz. Cameras were mounted on tripods and wall mounts to ensure the optimal coverage of the 
motion capture volume measuring 4.0 × 1.5 × 1.5 m in the anterior-posterior, medio-lateral and vertical directions 
respectively, i.e. MAC 1 - 8 (Figure 1). A second-order low-pass Butterworth bidirectional filter was applied to all 
marker trajectory data using cut-off frequencies of 7 and 10 Hz for walking and running data respectively 
(O'Connor et al., 2007; Queen, Gross and Liu, 2006). Stance phases were identified within three-dimensional 
marker trajectory data using the foot-velocity algorithm (O'Connor et al., 2007). For individual stance phases, the 
instant of foot contact was identified using the modal vertical foot position: foot position (horizontal plane) and 
time were recorded as criterion foot contact data (MACXYT). 
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Figure 1. Schematic of the experimental setup: dashed black rectangle represents the motion capture volume 
and defines the common coordinate system. 

 
The motion capture system was triggered to record with an external 5V pulse (push button trigger). The same 

pulse was amplified (12V) to illuminate an LED light box (Figure 1). Four networked cameras (AXIS M1104, 
AxisTM

 Communications, Sweden) streamed RGB colour images (1280 × 720 pixels) to a dedicated data collection 
computer at 25 Hz. Sagittal, frontal and two oblique frontal perspective images of all trials were recorded, i.e. 
NCam 1 - 4 (Figure 1). Following the positioning of network cameras, camera field-of-view and focal length were 
set manually and locked: no further alterations to intrinsic camera parameters were made. The LED light box was 
positioned in each network camera's field-of-view to provide a time reference. 

Four spherical retro-reflective markers (25 mm diameter) were positioned on the floor at the corners of the 
motion capture volume, defining a reference plane and common coordinate system, i.e. C1 - C4 (Figure 1). Marker 
locations were measured using the motion capture system to minimise positioning error and help ensure 
orthogonality: marker position residuals were 0.92 ± 0.42 mm. Single camera calibration was performed for each 
network camera. Intrinsic camera parameters were calculated by filming a 6 × 6 checkerboard of 25 mm squares 
held in different positions and orientations relative to the camera. Checkerboard corners were extracted and 
processed using the Camera Calibration Toolbox for Matlab (Bouguet, 2010). A single image from each network 
camera was used to manually digitise markers C1 - C4 (Figure 1) at a sub-pixel resolution. Marker coordinates 

marker coordinates. The mean 
marker coordinates were used to calculate extrinsic camera parameters for each network camera. Planar position 
reconstruction was performed as described by Dunn et al. (2012) to identify real-world foot contact position. 

Dunn et al. (2011) demonstrated the use of an elevated reconstruction plane to reconstruct out-of-plane image 
coordinates. FSCi position estimates (FSCiXYT) were reconstructed using an elevated reconstruction plane as well 
as the reference plane (Figure 1). The elevated reconstruction plane corresponded to the reference plane but was 
elevated by 29 and 35 mm for barefoot and shod conditions respectively. Reconstruction plane elevation was 
determined following a pilot study that identified the plane elevation that yields the minimum reconstruction error 
for barefoot and shod foot contact position. Foot contact data measured by three-dimensional motion analysis and 
the FSCi system, i.e. MACXYT and FSCiXYT respectively, were reported in the common coordinate system to enable 
comparison (Figure 1). For individual foot contacts, the number of foot contacts (n) and foot contact position (mm) 
were quantified. For a sequence of foot contacts, step length (mm) and step time (s) were quantified. Step length 
and step time were defined as the absolute difference between contralateral foot contact location and time 
respectively. Agreement was assessed using Bland and Altman 95% limits of agreement (LOA). In the case of 
heteroscedastic data distribution, i.e. |r2| 0.1, ratio LOA (dimensionless) was also reported. Furthermore, root-
mean square error (RMSE) was calculated with the following: 
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=  (  )  /          (1) 
 

where XiR is the criterion, Xir is the estimate and N is the number of data points. 

3. Results 

Mean resultant direction velocity (coronal plane) was 1.42 ± 0.11 and 3.03 ± 0.52 m·s-1 for walking and running 
respectively. Four camera perspectives meant that the FSCi system was passed 288 image sequences containing a 
total of 1248 foot contacts. The FSCi system identified data for 1243 of 1248 (99.6%) foot contacts. Furthermore, 
step analysis was performed automatically for 263 image sequences (91.3%); 25 image sequences (8.7%) required 
manual intervention for step analysis. For seven image sequences, 93 data points (0.5%) were manually removed. 
For 20 image sequences, the correct number of foot contacts was manually identified to cluster foot contact data 
(two image sequences required both operations). 

Table 1. RMSE (mm) for all FSCi estimates (n = 1243) in X, Y and resultant (R) directions. 

 Reference plane Elevated plane 

X Y R X Y R 

RMSE (mm) 72.0 67.4 98.6 29.7 67.1 73.4 

 
RMSE for foot contact position (all camera perspectives) was lower when FSCi system data were reconstructed 

using an elevated plane (Table 1). Therefore all FSCiXYT data presented hereafter were reconstructed using an 
elevated reconstruction plane. 

 

Figure 2. Absolute LOA for all foot contact data (n = 1243) in the X and Y directions (A and B respectively). 
Pluses, crosses, circles and squares identify network cameras 1 - 4 respectively. 
 

Figure 2 presents absolute LOA for all foot contact position data: pluses, crosses, circles and squares identify 
network camera perspectives 1 – 4 respectively. X and Y direction differences did not increase in relation to mean 
values, i.e. |r2| < 0.1, therefore data distributions were homoscedastic. For all camera perspectives, 95% LOA were 

10.3 ± 54.7 and 39.7 ± 106.1 mm for X and Y directions respectively (Figure 2). 

Table 2. Resultant direction RMSE (mm) for barefoot and shod foot contacts during walking and running. 

 Walking 
(n) 

Running 
(n) 

Barefoot 52.1 91.4 
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(391) (251) 

Shod 
52.2 103.4 
(363) (238) 

 
Resultant direction RMSE (RMSER) was greater for running foot contacts than walking foot contacts (Table 2). 

RMSER for shod and barefoot walking foot contacts was similar; however foot contact RMSER  was 12 mm greater 
for shod running when compared to barefoot running (Table 2).  

Table 3. LOA (absolute and ratio) for step length and step time during walking and running (barefoot and shod). 

Activity Parameter  Condition Absolute LOA Ratio LOA 

Walking 

Step Length 

(mm) 

Barefoot (n = 319) 3.1 ± 80.4 1.00 (×/÷ 1.12) 

Shod (n = 291) 7.1 ± 93.9 - 

Step Time 

(s) 

Barefoot (n = 319) 0.00 ± 0.13 - 

Shod (n = 291) 0.01 ± 0.22 - 

Running 

Step Length Barefoot (n = 179) 1.3 ± 124.0 - 

(mm) Shod (n = 165) 0.1 ± 154.8 - 

Step Time Barefoot (n = 179) 0.00 ± 0.07 - 

(s) Shod (n = 165) 0.00 ± 0.07 - 

 
Barefoot walking step length differences were heteroscedastic (|r2| = 0.13). Ratio LOA indicated that 95% of 

ratios were between 11% of the mean ratio (Table 3). Heteroscedastic step length data for barefoot walking was the 
result of a single outlier: its removal yields |r2| = 0.04. Absolute LOA for shod walking indicated that step length 

); 95% of estimates were between ± 93.9 mm of the mean (Table 

However 95% of estimates were between ± 124.0 and ± 154.8 mm of the mean for barefoot and shod running 
respectively (Table 3). Step time estimates for both walking and running were similar: absolute LOA indicated a 
systematic difference for shod walking step time of 0.01 s. However 95% of walking step time estimates were 
between ± 0.13 and ± 0.22 s of the mean for barefoot and shod walking respectively (Table 3). For running, 95% of 
step time estimates (barefoot and shod) were between ± 0.07 s of the mean. 

4. DISCUSSION 

Existing single camera algorithms that identify heel-strikes during walking have reported identification rates of 
99.2% (Bouchrika and Nixon, 2006) and 95.6% (Jung and Nixon, 2013). However such methods have only been 
applied to walking and do not quantify step parameters. The FSCi system automatically identified data for 99.6% 
of foot contacts for walking and running. View-independent estimates for foot contact position, e.g. Figure 2, 
highlight that the FSCi system identified a video feature of walking and running rather than a view-dependent 
feature, e.g. marker. Error intervals for X and Y foot contact position were 10.3 ± 54.7 and 39.7 ± 106.1 mm 
respectively. Foot contacts identified by the FSCi system were systematically different to criterion foot contact 
locations, e.g. heel and 2nd meta-tarsal head midpoint. Larger error intervals observed in the Y direction correspond 
to the direction of motion, e.g. Figure 1. Further, foot contact position errors were greater for running trials (Table 
2). Greater position errors during running might reflect variation in foot contact type, i.e. forefoot contacts. The 
FSCi system would be sensitive to changes in foot contact type however criterion data would not. Criterion data do 
not support the analysis of foot contact type; thus future assessments should consider centre-of-pressure as a 
criterion measure. The markerless identification of foot contact position in walking and running represents an 
important contribution to pattern recognition in sport. However current data were measured in an area equal to 6 
m2. Position errors are likely to increase when filming larger areas, e.g. tennis courts. Further research must 
evaluate the performance of the FSCi system when applied to larger filming areas. 
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Step analysis was performed automatically for 91.3% of foot contact data. Manual interventions to cluster foot 
contact data were predominantly performed for frontal perspective data (80%) and reflect challenges of identifying 
foot contacts from frontal perspectives (Jung and Nixon, 2013). Current data indicate that the maximum random 
error component for FSCi system step length estimates was 101.0 and 154.9 mm for walking and running 
respectively. Furthermore, the maximum random error component for walking and running step time estimates was 
0.23 and 0.07 s respectively. When validating the GAITRite® walkway (commercial system), Webster, Wittwer 
and Feller (2005) reported maximum random error components of 25.1 mm and 0.04 s for step length and step 
time. Current data do not support the FSCi system as a physical walkway replacement. However findings should 
be interpreted with regard to the flexibility of the system. The FSCi system measured basic gait parameters of 
walking and running without interfering with the activity being observed. The system could be applied to 
environments where walkway or conventional motion analysis is not appropriate. Furthermore, current data were 
measured using colour images streamed from individual web cameras at 25 Hz. Therefore different image 
resolution, sampling frequency and lens systems might improve system accuracy for different applications. 

5. CONCLUSION 

Using standard colour images the FSCi system measured basic gait parameters of walking and running without 
interfering with the activity being observed. The FSCi system represents a flexible approach which could be used 
for in situ gait analysis. The FSCi system could be used for gait analysis in competitive tennis however 
performance of the system when applied to larger filming areas, e.g. tennis courts, must be evaluated. Finally, the 
FSCi system could be used for different applications, ranging from sport to surveillance. 
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