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Abstract In location-based services (LBSs), the service is provided based on
the users’ locations through location determination and mobility realization.
Most of the current location prediction research is focused on generalized loca-
tion models, where the geographic extent is divided into regular-shaped cells.
These models are not suitable for certain LBSs where the objectives are to
compute and present on-road services. Such techniques are the New Markov-
Based Mobility Prediction (NMMP) and Prediction Location Model (PLM)
that deal with inner cell structure and different levels of prediction, respec-
tively. The NMMP and PLM techniques suffer from complex computation,
accuracy rate regression, and insufficient accuracy. In this paper, a novel cell
splitting algorithm is proposed. Also, a new prediction technique is introduced.
The cell splitting is universal so it can be applied to all types of cells. Mean-
while, this algorithm is implemented to the Micro cell in parallel with the
new prediction technique. The prediction technique, compared with two clas-
sic prediction techniques and the experimental results, show the effectiveness
and robustness of the new splitting algorithm and prediction technique.
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1 Introduction

With the advancement of wireless communication and computer technologies,
mobile communication has been providing more versatile, portable and af-
fordable networks [1] [2] [3] than ever. The number of mobile users on mobile
networks has increased rapidly, as the number of mobile users around the
world is near three billion [4]. The third and subsequent generations of com-
munication do not only bring new technical problems but they also raise a new
class of interesting applications. This is due to the change in communication
from single-medium oriented into multimedia oriented communication such as
image, computing data, Internet services, e-commerce, and video conferences
[5] [6].

The rapid technological advances in wireless networks and cellular com-
munication have led to the emergence of the mobile computing paradigm,
where information is accessible anywhere and at any time. This new paradigm
enables almost unrestricted mobility to the users, which poses a new set of
constraints and new kinds of challenges that need to be considered in the
design of network protocols and information services.

The two key issues that affect network protocols are mobility and wireless
link characteristics. Since mobility became the norm rather than the excep-
tion, a user’s location information is an additional parameter that needs to be
taken into consideration in protocol design. A cost-effective technique should
be deployed to locate a certain user as well as efficient data structures and
algorithms to manage this fast-changing data.

This proliferation in mobile devices and users’ demands gives rise to Location-
Based Services (LBSs). They deliver dependent and suitable information rel-
evant to a client’s location, hence, narrowing redundancy in the information
provided [7]. A key feature of LBSs is that any service requested may need
to be answered with different results, depending on the location of the mo-
bile user. Location prediction provides time to prepare services that may be
needed by the user in anticipation of requesting them. Especially, services in-
volved with complex computation that may need to extract data and to save
time, to ensure that only desired services are available when requested. The
mobile communication environment is considered as a restricted dynamic envi-
ronment [8][9]. The restriction in such an environment is due to the limitations
of the mobile user in terms of processing power, memory, storage, capacity,
screen resolution, and battery performance.

This paper discusses a new prediction technique to improve the prediction
of locations in LBSs for a micro cell: based-on the introduced splitting model.
The proposed prediction technique divides the micro cell into eight equivalent
regions (sectors). In this scheme, an update message is sent to the network
with the current user location whenever a change in the moving direction of



Location Prediction based on a Sector Snapshot for Location-Based Services 3

the user is detected. The main contribution of this paper targets the LBS’s
cost by deploying a Markov Chain model that allows intelligent LBSs to min-
imize the computation cost, consumption of resources and the overall cost of
the location management process. The proposed scheme utilizes geometrical
and topological techniques allowing users to receive desired services in a timely
fashion. In a sense, a developed prediction technique can be utilized to deter-
mine a specific request service such as the nearest restaurant, Asynchronous
Transfer Mode (ATM), hospital, or a park, in which the proposed works to
deliver these services In a timely manner while avoiding the manual filter that
may have occurred on the mobile device. Meanwhile, the splitting model is
discussed, where the mechanism is used to split different cell types and how
the location of the mobile user will be calculated by the model.

The rest of the paper is organized as follows. Section 2 discusses the re-
lated work on location prediction for LBSs and their limitations. In Section
3, an analytical review of the Markov Chain model is presented. A novel Cell
Splitting Algorithm is discussed in Section 4. The Framework and proposed
scheme is introduced in Section 5.The simulation model and result analysis is
presented in Section 6. Section 7 discusses the significant analytical analysis.
Finally, the conclusion and future work is presented in Section 8.

2 Related Work

Locating users as they move from one place to another in a mobile comput-
ing environment is the key to providing continuous services with unrestricted
mobility. Therefore, the data management in this environment is especially
challenging for the need to process information on the move, to cope with
resource limitations, and to deal with heterogeneity. One of the applications
of mobile data management is LBSs, which have been identified as one of the
most promising areas of research and development [10].

Strategies of location management in mobile environments can be classified
into static and dynamic. In the static strategy, the update operation is reduced
according to the network topology. This technique suffers some inefficiency
especially for users that are located around the Routing Area (RA) boundaries
and who cross these boundaries repeatedly. Moreover, RA sizes are fixed for
all users as specified by the cellular infrastructure, without considering their
individual mobility and service request pattern.

Dynamic location updates have been developed to address and enhance the
efficiency of the static strategy [11]. The update operation is initiated accord-
ing to the user’s movement pattern and the frequency of its requesting service.
Location is among the most important contextual information for mobile appli-
cations. Much of the previous work on LBSs treated location as an additional
attribute of the data tables [12,13]. In this way, location based service queries
can be processed like ordinary queries except with additional constraints on
the location attribute. Predictive location dynamically was introduced to pre-
dict a mobile user’s future location based on the current location information,
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the user’s historical mobility pattern, and the auxiliary information. There-
fore, the mobility realization and location determination are two factors in
location prediction to determine the location of a mobile user at a time t.

Francois and Leduc [14] have introduced the accuracy of prediction to eval-
uate models. Numerous prediction models have been introduced to increase
the accuracy of the prediction techniques for users with varying speeds that
have been reported in the literature, but none of them can fulfill the opti-
mal accuracy prediction rate and effective cost requirements. The literature is
divided into three sections, namely, the cell-based technique, the map-based
technique and Prediction Techniques that are based on the Markov Chain
model.

2.1 Cell-Based Technique

In the cell technique [15–20] a service area is partitioned into several cells; the
cell covering the mobile user will page his or her device to establish a radio
link in order to track changes in the location of the mobile users.

The cells broadcast their identities and the mobile user periodically listens
to the broadcast cell identity and compares it with the cell identity stored in
its buffer. If the comparison indicates that the location has been changed then
the mobile user sends a location update message to the network [21].

Prediction techniques, based on a cell technique, can be enhanced by heuris-
tic methods and neural networks [22,23]. Liou and Lu [22] divided the cell into
two areas, edge and non-edge. The edge areas have neighboring cells, while the
remaining areas are considered as non-edge areas. When the mobile user is in
a cell’s edge area, the information is passed to a neural network that predicts
from the neighbor’s cells, the next cell to be visited. Another technique cap-
tures some of the mobile user activity and paths. These paths are progressively
recorded, giving a history record that is used as input to a neural network to
predict the next cell to be visited [23].

The techniques proposed in [24,22,23] suffered from a long training phase
on mobile movements data that where used to build a knowledge base be-
fore making predictions. Therefore, the mobile user may change his or her
activity, such as movement pattern or visiting a location he/she never visited
before, thereby bringing new cases that the techniques have not encountered
in training. Hence, the prediction percentages dramatically decrease.

A new Splitting-based Displacement Prediction Approach for Location-
Based Services (SDPA) [25] has been developed to improve the prediction
rate. On the other hand, SDPA reduced the service area in a static manner
that is not applicable for a cellular communication network.

2.2 Map-Based Technique

In map matching, using the fuzzy logic and the data gathered from the Global
Positioning System (GPS) is considered as one of the techniques that are
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proposed to navigate the wheelchair user in a sidewalk area [26]. GPS data
and the map of the target area are stored in the server side and the analysis
of the data is performed by the fuzzy logic. Therefore, the incorrect direction
will be eliminated, after that, and it will advise the wheelchair to reach a
destination [26].

The map matching techniques area proposed in [26–28] suffered from many
major drawbacks. All of them are tested and evaluated only for wheelchairs on
university campus sidewalk and they work solely outdoors. These techniques
are based on GPS navigators. Therefore, anyone who needs to use them must
have GPS sensors. However, the GPS sensors lead to extra physical costs,
bearing in mind that they may not be applicable for all mobile devices. More-
over, GPS suffers from inaccurate data in narrow roads and high buildings,
and is believed to use higher-end GPS relievers to improve the signal, instead
of low-end.

In urban areas, the navigation of wheelchairs is difficult because the satel-
lite signal could be very poor in that area. This causes a conflict and an odd
drawback for those techniques from the viewpoint of how wheelchair users can
be navigated in urban areas while the GPS is not accurate in that area and
the wheelchair can’t move on highways.

Predictive Location Model (PLM) is a technique obtained from the Map-
Based model without some of its limitations, such as the need to know the
end of travel before starting. A service area is modeled as a graph; the edge
indicates a road segment, and the intersection of edges is represented as a
vertex [29]. During a user’s trip on a road, the network generates a trajectory.
The trajectory defines a sequence of connected road segments or a sequence of
connected vertices between two locations, namely start point and end point.
The user trajectory is stored in a database to assist in the prediction of its
future trajectory when beginning a new journey. The historical trajectory in-
formation stored can be used to infer the number of times the user has traveled
on each road segment and the trajectory choice at each intersection. The data
are then used to predict the travel of the user.

PLM depends on creating a Dynamic Computational Window (DCW). A
DCW is defined as a circular clipping window that centers around the user’s
current location to retrieve information from a database for location prediction
[29]. The size of the DCW dynamically changes relative to the speed of the
user. PLM does not allow a given user to visit each of the trajectories more
than once for the whole trip. That means the user cannot turn around at an
intersection. Extra calculation is needed because the end of travel has not been
previously determined.

2.3 Prediction Techniques Based on Markov Chain

There are many different techniques used to enhance the mobility prediction.
Markov chain is one of the most commonly used in predictions [30–34].
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In [34], the Markov model is used to anticipate the next displacement that
is based on the mobility history. The area that is predicted is too large because
it contains many cells (Location Area LR). The new mobile entrance to the
network may decrease the prediction percentage that is already made by the
model.

The models that are introduced in [31,32] enhance the mobility prediction
by using the second order Markov chain. The enhancements have been applied
on the computation process or prediction percentage.

The model that is proposed in [32] introduces an efficient mobility pre-
diction by using both incoming and outgoing handoff predictions. Other pa-
rameters are used such as road topology, handoff area points inside the cell,
cell shape structure and the average time lasting in each service area segment.
The model offers acceptable results, however, the implementation cost and
response time are significant and the service area that would be predicted is
too large, therefore, the manual filter may appear.

In Sun and Blough, in [31], the user’s knowledge is the important key for
the prediction process; the user’s future knowledge is collected from a mobile
side such as a user’s diary, e-mail, or instant messaging. The model provides
a good prediction percentage when it collects the knowledge, but when no
knowledge is available the prediction dramatically decreases. The obstacle is
how the knowledge can be collected; thus, this model poses a conflict for mobile
user privacy.

The mobility history is considered as the main parameter in the hidden
Markov chain for the models that are proposed in [30,33]. These models will
be applicable when the base stations are not managed by the network entity
whereas all previous movements of the mobile user are saved and manipulated.
Nonetheless, the main drawback is the computation cost that the models need.

Bellahsene, Kloul, and Dominique, in [35,36] have introduced a new mo-
bility prediction architecture that is based on two nodes of the network, global
prediction and local prediction. The global prediction works on the enhance
gateway while the local prediction works on the base station level. The draw-
backs that are addressed in [36] are the delay of the response and the model
that does not have a good prediction percentage due to the movements of the
mobile user that are described by a random way or the model that does not
have enough mobility information about the mobile user.

In [35], the NMMP is introduced where the model appeares as an en-
hancement to the randomness movement more than those in [36]. The NMMP
model is based on two prediction levels, namely, the Global Prediction Algo-
rithm (GPA) and the Local Prediction Algorithm (LPA). The GPA is run by
an Enhanced Gateway (EGW) that considers the root of the cellular network.
The GPA is responsible for handling the regular user’s movements. The LPA
is run by an Enhanced Base Stations (EBSs) in order to predict the mobile
user’s random movements within a cell.

The NMMP handles different types of mobile user mobility movements and
it has many drawbacks. The first drawback is the communication cost that is
higher in order to solve the PING PONG handover problem although the
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problem has been already solved in [37,38]. The communication cost consists
of the EGW cost, EBSs’ cost, Cell cost, and the cost of routers that are used
to connect all of them. Moreover, the communication cost affects the delay of
response and updating history. A group of cells that are elected to be in the
next displacement belongs to a different router of the EGW that leads to the
communication cost being doubled for all processes that are needed.

Secondly, the time management of the NMMP is weak. GPA and LPA are
working on different time slots, which means that there is no overlap between
the times needed to achieve both of them. In a sense, the total time for the
NMMP is the GPA and LPA times. In other words, the total time is the time
performed by both the GPA and LPA.

Many techniques have been developed to speed up these schemes, but these
improvements consume a significant portion of the overall system resources.
Therefore, this paper will endeavor to design a new model that provides a
balance between an accuracy rate and power efficiency, suitable for the mobile
environment.

3 Markov Chain Model for Prediction

Markov Chain models are used for analyzing complex systems and predicting
behavior under uncertain dynamic conditions. Furthermore, they can yield
present and future states independently of the past states [39,40].

In real systems, the state is changed from the current state to the next
state, or remains in the same state. Therefore, the prediction of Markov Chain
models is based on a certain probability distribution [41,42]. The changes from
the current state to the next state are called transitions. Each change has a
probability that is called the transition probability. Moreover, there are other
examples for Markov Chain models that are a simple random walk and weather
prediction [43].

The probabilities are essential in real systems that are given the probabil-
ities of the preceding states that can be expressed by a transition matrix [44,
43].

P =
[
x x̄
y ȳ

]
(P )i,j is the probability that, if a given state is of type i, it will be followed

by a state of type j. When a state of the system is known to be S at time 0,
the prediction path can be represented by a vector where the probability of S
is 100% and the complement is 0%.

S(0) =
[

1 0
]

The next state or path of S can be predicted by

S(1) = S(0) ∗ P =
[

1 0
] [x x̄
y ȳ

]
=
[
z z̄
]

(1)
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Here z indicates the probability of the next state, which the user may cross.
The general rule to predict N paths that will be crossed is

S(N) = S(N − 1) ∗ P (2)

S(N) = S(0) ∗ PN (3)

4 A novel Cell Splitting Algorithm

This section introduces and describes a novel efficient algorithm for splitting
cellular cells and locating the mobile user. Also, the algorithm that is built
to handle a certain cell type will be used different cell types (i.e., Pico, mi-
cro, macro, and rural) that are based on the symmetry features. In a cellular
communication system, the cell is considered as a circle graph.

In this research, the symmetric characteristics of the circle are exploited;
one portion of the graph is known, and the remaining portion of the graph can
be predicted. The proposed algorithm is utilized in the symmetry by splitting
the cell in four quadrants q = Qi |i∈[1,4]. The quadrant division depends on
the angle path. The angle path(P) is calculated by P =

∑360
θ=0Qi . where Qi

is determined as shown in equation 4:

Qi =


i = 1, when θ in [0, 90];
i = 2, when θ in (180, 90);
i = 3, when θ in [180, 270];
i = 4, when θ in (360, 270);

(4)

To split a cell area into n equivalent sectors, apply the following rule. Let
(x,y) be a point in the xy-plane that is selected randomly from a circular region
with radius r and centered at the origin, if the circular region is divided to
2n sector, where n=3,4,5,....., named S1, S2, S3, ....., S2n . Also assume that the
centered angle of each sector is

α =
360◦

2n
(5)

let λ be the number of sectors in each quadrant. Each quadrant is divided
into uniform sectors as follows:

λ =
2n

4
= 2n−2 (6)

Then, this rule is arranged so the sectors in the plane are at a way that
ensures the easy relation in determining the location of the mobile user that
has a point (x,y).

Figure 1 shows the cell splitting algorithm where the number of sectors
in each quadrant is equivalent to each other’s quadrant in the same cell. The
numbering sectors is drawn in the way to assist yielding a general algorithm
for an unspecific number of sectors regardless of any cell types. The numbering
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Fig. 1 Cell Splitting Algorithm Scheme

direction is depicted where the arrows direction indicates how the numbering
will be in each quadrant. Precise numbering in the first and third quadrants is
going clockwise while the numbering in second and fourth quadrants is going
counter-clockwise.

To determine the sector within which a mobile user is located, apply the
following steps:

Step1: Identify the quadrant in which a mobile user is located:
To determine the quadrant within which a mobile user is located, the point

(x,y) of that mobile user is compared with every interval as in the following
equation 7

j =


1 when x > 0, y ≥ 0 or x ≥ 0, y > 0;
2 when x < 0, y > 0;
3 when x < 0, y ≤ 0 or x ≤ 0, y < 0;
4 when x > 0, y < 0;

(7)

Where j∈ [1, 4] to denote the location of the mobile user that has a point (x,y)
with respect to the intended quadrant.

Step 2: Identify the sector in which a quadrant is located. First, compute
the R as follows: R =

∣∣ y
x

∣∣,0 ≤ R ≤ ∞ then the values of R will be compared
within the intervals according to equation 8 to determine where each sector
belongs.
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S =



Sλj−(λ−1) if 0 ≤ R < tanα;
Sλj−(λ−2) if tanα ≤ R < tan 2α;
Sλj−(λ−3) if tan 2α ≤ R < tan 3α;
. .
. .
. .
Sλj−1 if tan(λ− 2)α ≤ R < tan(λ− 1)α;
Sλj−0 if tan(λ− 1)α ≤ R ≤ ∞;

(8)

Where S represents the sector id.
Example: let n=3 and (x,y)= (3,4).

Computing the centered angle of each sector can be expressed as:
α = 360◦

8 = 45◦

Using equation 6 to compute the number of sectors in each quadrant λ =
8
4 = 2, this implies that there are 2 sectors in each quadrant and the cell is
divided into 8 sectors.
Using step 1 to identify the quadrant in which a mobile is located, get j=1
(Q1). This implies that the mobile user is located in the first quadrant.
Using step 2 to identify the sector in which a quadrant is located R = 4

3 = 1.33,
since tanα = tan 45◦ = 1 , and tan 2α = tan 90◦ = ∞, then 1 < R < ∞ (i.e.
tanα < R < tan 2α), and this implies that (3, 4) ∈ Sλj−(λ−2) = S2∗1−(2−2) =
S2.

5 Location Prediction Based on Sector Snapshot

This section presents a prediction framework and a novel technique called Lo-
cation Prediction based on Sector Snapshot (LPSS). This technique is based
on a third generation mobile network, such as the Universal Mobile Telecom-
munications System (UMTS).

5.1 Prediction Framework for LPSS

The UMTS is one of the new ’third generation’ (3G) mobile cellular commu-
nication systems being developed within the framework defined by the Inter-
national Telecommunication Union (ITU) and known as International Mobile
Telecommunications-2000 (IMT-2000). The UMTS aims to provide a broad-
band, packet-based service for transmitting video, text, digitized voice, and
multimedia at data rates of up to 2 megabits per second while remaining cost
effective.

In order to demonstrate the architecture of a UMTS network, the elements
of a network are introduced as the architecture of UMTS. Figure 2 illustrates
the UMTS’s architecture. The UMTS is divided into three major parts: the
air interface, the UMTS Terrestrial Radio Access Network (UTRAN), and the
UMTS core network. The base stations and the Radio Network Controllers
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Fig. 2 UMTS Architecture

(RNCs) are collectively known as the UTRAN. From the UTRAN to the core
network, the RNC will decide where the traffic will be transmitted. Packet
traffic is sent to a Serving General Packet Radio Service(GPRS) Support Node
(SGSN) and then to the Gateway GPRS Support Node (GGSN). The functions
of the GGSN are very similar to the normal Internet Protocol (IP) gateway,
which transfers the received packets to the appropriate Internet address. On
the other hand, if there is a voice call from a subscriber, the RNC will transmit
the traffic to the Mobile Switching Center (MSC). If the subscriber is already
authenticated, the MSC switches the phone call to another MSC (if the call
is to another mobile subscriber), otherwise the call will be switched to the
Gateway MSC (GMSC) (if the call is to the public fixed phone network) [45–
47].

After introducing High-Speed Downlink Packet Access (HSDPA) technol-
ogy to the UMTS network, the transmission rates expected from such wireless
communications are up to 10 Mbps [48]. For the implementation of our pro-
posed work (LPSS), no GPS receivers are required since the control is done
by the base station.

In third generation mobile networks, regions are divided into cells. The ra-
dius of a cell in a populated area is 250 meters [49], whereas the non-populated
areas are covered by larger size cells. This fact leads to delivering a massive
amount of information. As a result, this information may degrade the accu-
racy of services provided to the user. In such a case, there is a need for manual
filtering. Manual filtering often lets the mobile users use their devices while
moving through and interacting with dynamic environments. This is intended
to increase the relevance of the information retrieved by users of mobile in-
formation systems and remove results that are deemed irrelevant to a user’s
location. This process conflicts with the restrictions of a mobile user, such as
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the power consumption, storage space, screen resolution and battery perfor-
mance, and low computing power and resources.

Furthermore, the manual filtering would take extra time to improve the
precision of the retrieved information. This time is usually long and sometimes
leads to delivery of incorrect information due to the movement of the user to
a new location that has different information from the previous location. This
appears especially when a large number of results are returned to the mobile
user.

These filters have been implemented in LBS. These problems cannot fulfill
the requirements of LBS in terms of accuracy of the prediction rate and cost
effectiveness. However, these problems can be avoided and the requirements of
LBS can be enhanced by three processes. First, the time by which the service
is requested by the user and the time within which the user gets the service are
relatively short to fit with the period of staying in that location for a specific
period, whereas the proportionality between the two periods reasonably allows
the user to benefit from the information associated with its current location
before moving on to a new location, especially if the user is in constant motion.
Secondly, the volume of results returned to users of mobile information systems
is small.

Finally, enhancing the accuracy prediction leads to retrieval of information
that is relevant to a user’s potential future location.

A new idea for LBSs’ prediction is proposed, which is called LPSS. The
LPSS employs operations in a circle. The symmetry between the cell and
the circle is exploited. By considering the symmetry characteristics in each
quadrant, the circle section in the second quadrant of the x y plane can be
generated by noting that the two circle sections are symmetric with respect to
the y-axis. Furthermore, the circle section in the third and fourth quadrants
can be obtained from the sections in the first and the second quadrants by
considering the symmetry of the x-axis.

Based on the proposed cell splitting algorithm, which is discussed earlier
in section 4, each quadrant is divided into uniform sectors (λ). We know that
the number of sectors in a cell (2n), where n can be 3,4,5,.....,. In this paper
the number of sectors has been chosen to be 8; whereas n=3, which has been
empirically tested for splitting the cell into the small region to be covered.
Table 1 illustrates this technique. It is notable from the table that the area
from Micro type using 8 sectors (98214.28571) is smaller than the extreme
area in Pico type (125714.2857).

The LPSS addreses these problems by dividing each cell into eight equiv-
alent sectors (small region). This technique reduces the number of relevant
services within the small coverage area of each cell.

It is depicted in table 1, that the 8 splitting sectors are chosen to be the
intermediate between 4 and 16 sectors splitting. Based on 4 sectors, the service
area is still large that between 4 and 16. This leads to send a huge amount
of information/data to the mobile user, and this fact violates the LBSs’ con-
straints. Meanwhile, even if using 16 sectors will result in a small service area,
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Table 1 Optimal area of Sector for LPSS

Cell Types Radius(m) Area(m2)
No Splitting 2 sectors 4 sectors 8 sectors 16 sectors

Pico 100 31428.57143 - - - -
200 125714.2857 - - - -

Micro 200 125714.2857 62857.14286 31428.57143 15714.28571 7857.142857
500 785714.2857 392857.1429 196428.5714 98214.28571 49107.14286

in this situation a crucial drawback is addressed in that the number of decisions
to be made will be increased, and this affects the prediction rate.

The geometry used in the proposed cell splitting algorithm helps to reduce
the volume of results returned to the users of mobile information systems. It
thereby avoids the need for manual filtering and improving the precision of
the information retrieved, increasing the accuracy prediction and meeting the
characteristics of the mobile device such as the power consumption, storage
space, and low computing power and resources.

5.2 Description LPSS Technique

In order to demonstrate the LPSS technique, a set of parameters is defined.
Table 2 summarises the parameters needed to perform the LPSS technique.

Table 2 LPSS Parameters

Parameters Description

j ID of the cell
i The Sector ID where the mobile user is located, the current location Lk at current time Tk.
k The sequence time for mobile user movements, the next location Lk+1 will be predicted at Tk+1, which is the later time.

To split a cell area into eight equivalent sectors, the proposed splitting
algorithm in section 4 is used where n=3, α=45◦ and λ=2 by using equation
5 and 6, respectively. The eight sectors in cell Cj will be illustrated as in
equation 9

Cj =
8∑
i=1

Seccj ,i (9)

Where i =1,2,...,8 is the ID of the sector.
To determine the sector within which a mobile user is located, longitude

(x) and latitude (y) of the mobile user are processed by step 1 and step 2
which are described in section 4. As a result, the sector where the mobile user
is located will be determined.
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The dynamic movement of a mobile user through a period of time to Tk+1

will result in changing the current location in a new neighboring sector. After a
set time interval, the mobile user will have moved through a number of sectors.
These sectors are stored in a database to assist in predicting a new sector to
be entered.

When a new mobile user self-registers, he or she does not yet have a record
in the database. The historical movement of the mobile user is derived from
all mobile users, or more precisely from neighboring users. Historical data that
are stored in the server can be expressed as in equation 10:

H(Seccj ,i, tk) =


Nm,i/Nm Nm+1,i/Nm Nm+2,i/Nm ........ Nm+n,i/Nm

Nm,i+1/Nm+1 Nm+1,i+1/Nm+1 Nm+2,i+1/Nm+1 ........ Nm+n,i+1/Nm+1

. . . ........ ........

. . . ........ ........
N1,n/Nn N2,n/Nn N3,n/Nn ........ Nn,n/Nn


(10)

where Nm is the number of the traversal over sector m, and Nm,i is the
number of times the user has entered sector i when the user had been on sector
m. When the user locates at Seccj ,i at Tk then the available sectors at Tk+1

are Seccj ,i+1, Seccj ,i−1 and the facing sector in the neighboring cell Seccp,q,
where p is the neighboring cell ID and q is the facing sector ID. Based on figure
3, when the user is located at Secc1,1, then N1=1,N2,1=N8,1=NSecc2,5,1=1/3.

Fig. 3 Movement of Mobile User between Sectors in Two Cells
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The historical matrix is periodically updated to achieve consistency. It is
also updated when Nj is incremented by one and N(j, i) is incremented by one.
To reach the probabilistic information for the predicted next state, a transition
matrix is needed as in equation 11:

TP (Seccj ,i, tk) =


P (Seccj ,1, Seccj ,1) P (Seccj ,2, Seccj ,1) ........ P (Seccj ,n, Seccj ,1)
P (Seccj ,1, Seccj ,2) P (Seccj ,2, Seccj ,2) ........ P (Seccj ,n, Seccj ,2)
P (Seccj ,1, Seccj ,3) P (Seccj ,2, Seccj ,3) ........ P (Seccj ,n, Seccj ,3)

. . ........ ........

. . ........ ........
P (Seccj ,1, Seccj ,n) P (Seccj ,2, Seccj ,n) ........ P (Seccj ,n, Seccj ,n)


(11)

The current state of a mobile user after registration in a network can be
represented as in equation 12:

Currentstate =
[

1 0 0 0
]

(12)

So the next state will be predicted after multiplying equation 12 by equa-
tion 11. The resultant vector is expressed in equation 13:

Pr =
[
Pr0 Pr1 Pr2 Pr3

]
(13)

Where Pr is the probability that the mobile user will travel to surrounding
sectors, and Pr0 + Pr1 + Pr2 + Pr3 =1.

Logically, the values of Pr will give the indication of the next sector to be
visited in the next state since the highest Pr will give the highest probability of
the sector. Generally, to generate more predictable sectors for further states,
equation 13 will be multiplied by transition matrix 11. In other words, the
operation that resulted in equation 13 will be repeated.

Discussions are now presented on the phases used in simulating the LPSS
technique and the steps that follow. Figure 4 shows the pseudo-code of LPSS.
InitilaizeEnvironmentParameters( ) initializes the parameters, which is an im-
portant phase in the simulation. However, all parameters were initialized before
the simulation began.

To ensure that the accuracy of the results is not affected by previous turns,
the procedure of splitting cells is a predefined step. In this process, a virtual
splitting of each cell in a network is performed in order to produce eight sectors.
The splitting process is done once, without the need to recalculate because it
is not affected by natural changes such as closed roads, maintenance, and
congestion. Consequently, the splitting is excluded from the computation cost
as it has been processed before running the technique. The splitting process
is done by SplitSector(cells), giving equations 4, 5, and 6. When the execution
is started, the information about the sectors is stored in the database by
CellSector(cellid, sectorid).

When a mobile user registers on a network, the current x,y are provided to
LPSS through the base station where the mobile user is located. The specific
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Fig. 4 Pseudo-code of Sector Snapshot for Location-Based Services

sector in which the mobile user is located will be calculated by passing the x,y
to find the sector FindSector(double x,double y) using step 1 and step 2, which
are described in section 4. The output for this step is the sector identification
where the mobile user is located.

The mobile user in LPSS can be in one of two states, FIRST REGISTRA-
TION of HOME USER. In the FIRST REGISTRATION state, the historical
movement matrix builds from the neighbors. This information is stored in a
database. In the HOME USER state, although there is a historical movement
matrix, there remains a need to update it to ensure the matrix is consistent and
up-to-date. The two states are implemented by MatrixCalculation( ), giving
equations 10, 11, and 12.

Transition and probability matrices are built based on the historical move-
ment matrix. Therefore, the historical movement matrix must be up-to-date
for the mobile user movements. The probabilities of each sector around the
mobile user are derived based on the transition matrix. In the meantime, the
current state vector for the mobile user is initialized and then multiplied by
the transition matrix. The result is the probability that the user will be mov-
ing to each sector around the user, i.e., the potential sectors. This process is
done by Prediction ( ), giving equation 13.

All of the above steps are repeated until some cases occur, such as out
of coverage, or the simulation time has expired. In each case, the parameter
environment will be updated by UpdateEnvironmentParameter ( ).
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6 Discussion of Simulation and Results Analysis

6.1 Parameter Setup and Environment

Any mobile network simulation needs to be done over a very large coverage
area. That is why the parameter setting is set using the parameter assumption,
as described in pervious research and standardized over 3GPP specifications
[50,51], as shown in table 3.

The simulations are done over Pentium IV computers with 2 GB RAM and
a CPU speed of 3 GHz. The operating system used was Windows XP, where
the LAN speed was 100 Mbps.

Fig. 5 LPSS Environment

A simulator was created using Java programming language for the LPSS,
in which the algorithm based on Markov Chain models is implemented and
tested. The number of cells in the simulated experiments varies between one,
two, three, five, fifty and one hundred cells with a fixed radius of 250m each.
The movement with different speeds ( slow pedestrian speed, fast pedestrian,
slow vehicle, and fast vehicle with measures of(5.6 km/h, 11.2km/h, 44.8km/h
and 89.6km/h ),respectively) was recorded to train the program to learn how
the mobile user moves during different trips. Different samples of data were
used to test the performance of the LPSS. In addition, the pause time for each
movement was 20 seconds. The transmission rate was about 8 Mbps.Those pa-
rameters were the keys that the simulator applied for 1800 seconds (see figure
5, a visual representation for the simulation). The movement was recorded to
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train the program to learn how the mobile user moved during different trips.
Different samples of data were used to test the performance of the LPSS.

Each experiment consisted of 10 different iterations to improve accuracy.
Each experiment took five hours, as shown in table 3.

Table 3 Simulation Parameters

Parameter Value

Number of cells 100
Cell radius 250 m
Transmission Rate 8 Mbps
Simulation time 18000 s
Iterations 10
Pause time 20 s
Velocity of UE
Slow Pedestrian 5.6 k/h
Fast Pedestrian 11.2 k/h
Slow Vehicle 44.8 k/h
Fast Vehicle 89.6 k/h

6.2 Simulation Model

The proposed model was simulated to calculate the prediction ratio and the
cost per unit of time for mobile users with different mobility for each request
ratio. The implementation was constructed as follows:

1. Network Modeling: The same cell identification coding system was used
as that in [52]. Each cell had a unique identifier, determined by its x and y
coordinates. Numbering started from the center cell and expanded radially
across the entire network.

2. Request Service Modeling: Services arrived for mobile users according
to a Poisson distribution with mean m=1 per unit of time.

3. Mobility Modeling: The Random-Way point mobility model and sim-
ulation model implemented the users’ cell residence time with a Poisson
distribution with mean r.

6.3 Experiments and Result Analysis

Corresponding with the prediction performance analysis, some phases of ex-
periments were designed to evaluate the proposed technique, which included:
Phase-1: experiments that evaluated the prediction accuracy, which is the ratio
between the number of correct predictions and the total number of predictions
[14]. Phase-2: experiments that evaluated the memory usage reduction. Phase-
3: experiments that evaluated the execution time. Phase-4: experiments that
evaluated the prediction rate over time.
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Fig. 6 Prediction Performance for Sector Snapshot for Location-Based Services

In phase 1, the performance of the LPSS was compared with both NMMP
and PLM techniquees in terms of prediction accuracy rate. Figure 6 shows that
LPSS improved the prediction rate compared with both NMMP and PLM.
This improvement was due to the nature of the mobility pattern in which the
mobile user traveled into a series of predicted cells and the changing number
of cells visited within a trip. This conclusion is generally valid, though the
improvement may differ with a different set of assumptions.

Moreover, figure 6 shows that the percentage of correct predictions in the
LPSS was more than 95.61%, as the mobile user moved through one cell,
compared with 76.98% and 65.13% in both the NMMP and PLM techniques,
respectively. An increase in the number of cells leads to a decrease in the
correct prediction rate in both techniques. The explanation for the achieved
results could be stated as follows: when the mobile user moves over more than
one cell, the end trip can be reached from different routes and through different
cells due to the size of the cells, so such a prediction will be low. On the other
hand, in one cell, the movement of the mobile user in the LPSS is kept within
the bounds of the sectors within the same cell. Therefore, the mobile user tries
to leave the sector to the neighboring sectors and is still within a relatively
small area. Thus, the prediction percentage logically increases. In the NMMP
technique, the number of selection choices is larger than LPSS, which decreases
the accuracy of the next displacement for the mobile user. On the other hand,
while using the PLM technique, the movement of the mobile user within one
cell will involve many intersections in different routes.

It is acknowledged that the main factor for location based services is the
knowledge of the next location of a given user movement. This fact is satisfied
more by LPSS than by both NMMP and PLM, respectively. Table 4 summa-
rizes this satisfaction by taking the overall average correct prediction rate for
LPSS, NMMP, and PLM.

Each cell has a circular radius shape of approximately 250 m. Therefore,
the area of each cell approximately equals 0.2 km2 and the area of five cells
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Table 4 Prediction Rate for LPSS, NMMP, and PLM

Number of Cells LPSS NMMP PLM

1 95.61% 76.98% 65.13%
2 90.54% 76.27% 45.90%
3 86.85% 75.80% 34.05%
5 85.87% 73.13% 28.84%
50 65.38% 10.34% 60.89%
100 62.58% 56.45% 1.50%

Prediction rate Average 81.1365% 30.96% 69.92%

equals 1 km2. LPSS shows a high correct prediction rate in areas whose size is
approximately five cells. In practice, this area is sufficient for users’ activities
in urban areas as it is a typical size for a city center, university campus, or
small town.

In phase 2, the importance of the memory usage reduction was utilized.
To test the effectiveness of the memory usage reduction, different numbers
of cells and the coverage area were studied. The average of memory usage in
each technique was used to test the memory reduction. The LPSS technique
required 14.65 KB for space storage while both NMMP and PLM required
27.77 KB and 121.91, respectively.

Fig. 7 Memory usage for LPSS, NMMP and PLM

Figure 7 illustrates the differences in total memory usage among the LPSS,
NMMP, and the PLM techniques. In comparison with the different techniques,
the proposed LPSS technique performed better in reducing the memory usage.
This conclusion is generally valid, though the improvement may differ with a
different set of assumptions. This improvement is due to the division of the cell
into a set of sections, where each section acts as a serving region that retrieves
the information related to that section only.
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Furthermore, the mobility pattern can be used in which the mobile user
travels into a series of predicted cells and changes ocurs in the number of cells
that were visited within a trip. Please note that whenever the number of cells
increased, the memory usage increased. This is due to the fact that whenever
more cells were used, more computation and memory was used. This fact will
be discussed in phase 3. In conclusion, the mobility pattern factor considers
of the other different factors that they may reduce the memory usage.

In phase 3, the execution time was studied in all three different techniques:
the LPSS, NMMP, and the PLM. Figure 8 shows the results of the three
techniques in terms of execution time using the same method that was used
in both phases 1 and 2, with a variation in the number of cells from 1 to 10.

Fig. 8 The excution time for LPSS, NMMP and PLM

In comparison with the execution for the three techniques, the execution
time for the proposed LPSS technique performed better. Figure 8 summarizes
the results of the LPSS execution time compared to the results of the NMMP
and PLM execution time.

The LPSS technique outperforms both NMMP and PLM in every number
of cells, but this is especially apparent when the number of cells increases. For
example, when the number of cells is 1, the LPSS technique requires about
4.22 ms, while the NMMP and the PLM techniques require 20.89 ms and 52.97
ms, respectively. When the number of cells increases to 10, LPSS requires only
0.322 seconds, while both NMMP and PLM require about 0.602 and 1.39
seconds, respectively.

The mechanism of the LPSS technique depends on the virtual splitting of
the cell into sectors. This virtual splitting does not affect the built in database
and structures, whenever there is any change in the physical serviced sector.
On the other hand, the PLM acts as a ”roundabout”. The real change in
intersections, between roads and physical features, leads to costs for updating
the database and structures, which are related to the user predictions. Also,
the NMMP technique works on the whole cell area as a unit without splitting



22 Mohammad Sh. Daoud et al.

it, which leads to usage of manual filtering. This is done because a huge amount
of data/information will be delivered to the mobile user.

Furthermore, PLM has a large number of possibilities when a user wants
to decide the next road, so the user faces a larger number of possibilities
than in the LPSS technique. The nature prediction of the NMMP technique
depends on the two levels of prediction described earlier, which lead to more
possibilities compared to the LPSS technique.

Finally, the overall number of possibilities in both the NMMP and the
PLM techniques is larger than the possibilities in the LPSS, which decreases
the correct prediction percentage and increases the execution time.

To complete phase 4, over a period of time the prediction behavior is
carried out for improving the prediction mechanism. It also considered as one
of the important factors to improve the prediction mechanism. The outcome
of this behavior will make a good measure for the robustness of the mecha-
nism from the mobile user’s side. This is addition to the ability to deal with
challenges such as visiting a new location that has never been visited before
and utilizing mobile user neighbors’ behavior. Figure 9 shows a description for
the prediction rate variations according to 180 days.

Fig. 9 Prediction Rate According to Time for LPSS, NMMP and PLM

At this point, two factors are needed to be considered. These are the ro-
bustness and the variation of the prediction rate when the algorithm reaches
the steady state. Moreover, there is a very tight relation between those two
factors in that, whenever the variation of the prediction rate increases the
robustness will decrease, making it as inverse relationship.

Furthermore, a very light regression is noticed in the LPSS mechanism
where it is very clear that a lot of regressions take place in both NMMP and
PLM after reaching the steady state.

Additionally, both NMMP and PLM are working with different procedures
that depend on combination of two levels of prediction and road segments,
respectively. This leads to prediction states that never have been handled
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before in addition to what is noticed in Figure 9 of a very clear regression after
reaching the steady state by both mechanisms. The proposed LPSS mechanism
is working on one level, the NMMP is working on two levels, while the PLM
depends on making an extensive number of divisions, as shown in table 5.
Table 5 summarizes the nature of LPSS, NMMP, and PLM.

Table 5 Techniques nature for LPSS, NMMP, and PLM

LPSS NMMP PLM

Number of Levels 1 2 1
Number of Divisions Lowest Medium Largest

In this analysis, the performance was evaluated by adopting an evaluation
methodology to gauge the impact of the enhancement technique on the ac-
curacy prediction, memory usage, complexity cost, and prediction rate over
time. The methodology that was used to test and validate the comparisons
among the LPSS, NMMP, and the PLM, as well as between analytical and
simulation results, is as discusses in section 7.

7 Analytical Analysis

This section investigates and analyses the NMMP and PLM prediction tech-
niques for UMTS mobile networks and the proposed LPSS prediction tech-
nique. The investigation is done by two comparisons as follows:

First, compare LPSS with PLM. Suppose the probability of making
a decision at each intersection is P(A) for the PLM technique and P(B) for
the LPSS technique. If A1, A2, A3, A4, .., An are the required decision points to
reach from point x to point y using PLM, then P(A1), P (A2), P (A3), P (A4), .., P (An)
are the probabilities associated with these decisions, respectively.

If B1, B2, B3, B4, .., Bm are the required decision points to reach from x to y
using LPSS, then P(B1), P (B2), P (B3), P (B4), .., P (Bm) are the probabilities
associated with these decisions, respectively, where m < n and P(A)∼= P(B)
the worst case of LPSS.

Since P(A1), P (A2), P (A3), P (A4), .., P (An) are independent, i.e., P(A1∩A2)=P(A1)P(A2)
and P(B1), P(B2), P(B3), P(B4),.., P(Bm) are independent, i.e., P(B1∩B2)=P(B1)P(B2)
then:

P (y|A) = (P (A))n (14)

P (y|B) = (P (B))m (15)

Where 0<P(A)∼=P(B)<1 and since m<n then (P (B))m> (P (A))n , i.e. P(A)
converges to zero faster than P(B).
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Secondly, compare LPSS with NMMP. In NMMP there are two levels
of prediction, where level 1 has 6 decisions:C1, C2,...., C6 and level 2 has two
decisions in the best case: D1 and D2.

The probability of decisions in level 1 are P(C1), P(C2),...., P(C6), which
are independent with P(C1)=P(C2)=....=P(C6). The probabilities of deci-
sions in Level 2 are P(D1) and P(D2), which are independent with P(D1)=P(D2).

Let P(C1)+P(C2)+....+P(C6)=P(C) and P(D1)+P(D2)=P(D). Then P(C)
+P(D) =1 and P(C) =1-P(D).

Since level 2 is only reached in the case of failure on level 1, P(C) is the prob-
ability of success and P(D) is probability of failure. Hence, P(success)=P(C)=1-
P(D)=1-P(failure). This is a Bernoulli distribution with two possible outcomes
[53], where {x:1=success, 0=Failure}, so the probability of P(C) to success
=f(x)=P(C)x(1− P (C))(1−x) and x:{0,1}.

Here, there are 6 independent for C and 2 independent decisions for D,
with a total of 8 decisions. Therefore, P(C)=6/8 and P(D)=2/8. Under the
NMMP process, it is a hierarchical prediction process, with level 1 followed
by level 2. Therefore, if x=1 in the Bernoulli distribution, P(Ci)=1/6,1≤ i≤6,
and if x=0 then P(Dj)=1/2, j=1 or 2.

Then, the successful prediction at Level 1 is

P (Ci|x = 1) = 6/8× 1/6 = 1/8 (16)

and the failed prediction at level 1 will lead to level 2 with

P (Di|x = 0) = 2/8× 1/2 = 1/8 (17)

While in the proposed LPSS, the correct prediction can take only 1 of 3
cases. Therefore, the correct prediction probability is 1/3. Based on equations
16 and 17, the correct prediction for NMMP is 1/8, so 1/3>1/8, i.e., NMMP
converges to zero faster than LPSS.

Since the number of possibilities used in the NMMP technique and PLM
are larger than the LPSS technique, the execution time and memory usage
are larger in NMMP and PLM, i.e., if the time required for processing each
decision point is t, then the total time required to process n decision points in
NMMP and PLM are t × 8 and n × t, respectively. Similarly the time required
for processing m decision points using LPSS is m × t, since m<n and m<8 ,
then m×t < n× t and m ×t < 8× t.

8 Conclusion and Future Work

A novel Splitting cell algorithm and an efficient Location Prediction Sector
Snapshot (LPSS) are suggested. The new splitting algorithm is applicable for
all cell types, and the efficiency in determining the location of the mobile user’s
movement is also achieved.

The new prediction technique, LPSS, is more efficient than the NMMP and
the PLM. The suggested technique also provides other characteristics. For ex-
ample, LPSS minimizes the computation cost, consumption of resources, and



Location Prediction based on a Sector Snapshot for Location-Based Services 25

the overall cost of the location management process. Also, the LPSS reduces
the service area and the number of predicted routes during the mobile user
trip, by dividing the cell into eight equivalent sectors. Consequently, the LPSS
technique improves the location prediction probability over NMMP and PLM.
In addition, the average complexity requirements for execution time and us-
age space are smaller than for the NMMP and PLM techniques. The simula-
tion results have demonstrated that the average prediction accuracy rate, the
memory usage, the execution time, and the robustness and regression degree
of prediction rate over time are improved when compared with the NMMP
and PLM techniques.

Finally, PLM does not allow a given user to visit each of the trajectories
more than once for the whole trip. That means PLM is not a practical tech-
nique. LPSS does not suffer from this problem. Meanwhile, NMMP is based
on a hierarchical prediction process, and this leads to an increase in message
passing on the network, delay time and overhead on resource which these were
avoided in the LPSS.

Many refinements can be made to improve the prediction rate and acceler-
ate the proposed technique. For instance, the LPSS currently works at a Micro
cell level by dividing a cell into eight regions (sectors), but this technique can
be altered to work on a higher level than cells, e.g., at the level of Routing Ar-
eas (RAs) or works belonging to another RA prediction technique. At the RA
level, the RA contains a group of cells, and a location prediction will specify
the next RA that a mobile user will visit. Meanwhile, the LPSS evaluates all
movement probabilities for the next RA before the mobile user enters it, as
shown in the result discussion. LPSS will give a better prediction rate because
it will work on a set of cells under the same RA. LPSS illustrated a better
prediction rate when the number of cells was less than five cells; thus, LPSS
is worthy to work on a less number of cells as much as possible.

Moreover, the Macro and Rural cells still need more investigation to de-
termine how many sectors are suitable for both of them, and the proposed
splitting algorithm is applicable for dynamic splitting. Therefore, the short
cut for dynamic splitting also needs more investigation.

Several challenges remain. For example, is there any other technique that
offers the same accuracy rate as we propose but with better performance? is
the design of a prediction technique for Location-Based Services (LBSs) that
utilizes information about user location through location-aware mobile devices
to provide services, such as the nearest features of interest, perhaps based on
other multiple assumptions but with better performance?
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