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THEIR APPLICATIONS TO DYNAMICALLY POSITIONED VESSELS

Patrick T K Fung

ABSTRACT

This thesis consists of two parts. The development of a

sel f-adaptive stochastic control system for dynamically
positioned vessels is described in Part One. Part Two 1is
the investigation and the development of self-tuning control
techniques.

In Part One, the dynamic ship positioning control problems
and basic components are described. The modelling techniques
of low frequency ship motions and wave motions are given.
The various Kalman filtering methods are appraised. An
optimal state feedback control with integral action for the
ship positioning system is proposed, followed by the
simplification of the complex control structure to allow
easy implementation. A self-tuning Kalman filter is proposed
for systems which have low frequency outputs corrupted by
high frequency disturbances. This filter is used in the ship
positioning system. Simulation results of scalar, multivari-
able and non-linear cases are given.

Part Two begins with the development of an adaptive tracking
tectnique for slowly varying processes with coloured noise
disturbances. Estimated results for various wave signals are
given. The self-tuning control techniques are overviewed,
followed by the development of an explicit multivariable
weighted minimum variance controller. Simulation results
including the estimation of system time delay are given.
Finally, an implicit weighted minimum variance controller
for single input-single output system is developed.
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OPTIMAL CONTROL, SELF-TUNING TECHNIQUES AND

THEIR APPLICATIONS TO DYNAMICALLY POSITIONED VESSELS

Patrick T K Fung

ABSTRACT

This thesis consists of two parts. The development of a

sel f-adaptive stochastic control system for dynamically
positioned vessels is described in Part One. Part Two is
the investigation and the development of self-tuning control
techniques.

In Part One, the dynamic ship positioning control problems
and basic components are described. The modelling techniques
of low frequency ship motions and wave motions are given.
The various Kalman filtering methods are appraised. An
optimal state feedback control with integral action for the
ship positioning system is proposed, followed by the
simplification of the complex control structure to allow
easy implementation. A self-tuning Kalman filter is proposed
for systems which have low frequency outputs corrupted by
high frequency disturbances. This filter is used in the ship
positioning system. Simulation results of scalar, multivari-
able and non-linear cases are given.

Part Two begins with the development of an adaptive tracking
technique for slowly varying processes with coloured noise
disturbances. Estimated results for various wave signals are
given. The self-tuning control techniques are overviewed,
followed by the development of an explicit multivariable
weighted minimum variance controller. Simulation results
including the estimation of system time delay are given.
Finally, an implicit weighted minimum variance controller
for single input-single output system is developed.
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INTRODUCTION

Objectives

The contents of this thesis are separated into two main
parts. Part I involves the solution of the dynamic ship
positioning control problem using optimal and self-tuning
techniques. This is the main theme of the thesis. Part II
1s concerned with the development of adaptive and self-

tuning control theory.

Introduction to Part I

The abundant deposits in the ocean seabed have become the
targets for energy and mineral searches. The development is
progressing towards deeper seas. Thence the demand for
technical support by way of dynamically positioned vessels
is increasing and the performance specifications are becom-
ing tightened. Basically, the position control of a vessel
must only allow for a maximum certain radial position
error. The control system must avoid high frequency fluctu-
ations in the thruster demands. Moreover, the controller
must be capable of eliminating any offset due to constant

disturbances.
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In the conventional dynamic system using Proportional- Inte-
gral-Derivative (PID) controllers and notch filters, the
wave filter imposes a phase lag on the position error
signals. This phase lag restricts the allowable bandwidth
that can be used for the controller, whilst still
maintaining the stability margins required for satisfactory
controller performance; hence an inevitable conflict arises
between bandwidth and filter attenuation. The more effec-
tive the wave filter becomes in reducing the thruster oscil-
lations due to the waves, the more restriction is placed on
the controller bandwidth and hence on the position holding
accuracy. These considerations have led to the development
of a second generation of dynamic positioning systems,
designed using optimal stochastic control theory and

employing the Kalman filter.

The non-linearity and the uncertainty of ship parameters and
weather conditions are the main obstacles in achieving a
good performance for the control system. The recent devel-
opment of the self-tuning control theory has encouraged the
author to investigate the use of self-tuning techniques in
dynamic ship positioning systems. Self-tuning of dynamical-
ly positioned vessels can be classified as the third

generation in this development.

-XX1-



0/5/mc1704/9

Introduction to Part II

When the author was solving the dynamic ship positioning
control problem, he was encouraged by Professor M.J. Grimble
to work on self-tuning control as well. This attempt led to
the development of a self-adaptive tracker for slow varying

processes with coloured noises and weighted minimum variance

self-tuning controllers.

Self-tuning control, because of its practical utility, has
received much attention since it was first developed in the
early seventies. The self-tuning algorithms vary according
to the controller design criteria used. Usually, several
self-tuning algorithms may be generated using the same con-
trol criterion. The weighted minimum self-tuner is one
example based on the weighted minimum variance control cri-
terion and wzs developed particularly for the non-minimum

phase system.

The self-adaptive tracker was primarily developed to esti-
mate slowly varying signals with coloured noises. The
approach was to gather as much information as possible based
on the observed signal, and then estimate the remnant using

recursive parameter identification techniques.

-XxXii-
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Outline of the Thesis

Chapter One is an introduction to dynamic ship positioning
control problems and a description of the basic components
for the control system. The dynamic models for controller
and filter design are developed in Chapter Two. The funda-
mental dynamic positioning control problem consists of con-
troller design and filtering. The Kalman filtering tech-
nigques are described in Chapter Three. 1In Chapter Four, an
optimal and three sub-optimal schemes of stochastic control
with integral action are developed. Chapter Five consists
of the self-tuning Kalman filtering theory. The applica-
tions and results of self-tuning Kalman filter to DP
(Dynamic Positioning) control system are discussed in
Chapter Six. This includes single input/single output,

multivariable and non-linear cases.

Chapter Seven is the development of an adaptive tracker for
slowly varying processes corrupted by coloured noises,
followed by simulation results. The self-tuning control
techniques are surveyed in Chapter Eight, followed by the
development of an explicit multivariable weighted minimum
variance self-tuning controller and an implicit version for
single input/single output systems. Finally, an overall
conclusions and suggestions for future work are described 1in

Chapter Nine.

-xiii-
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CHAPTER ONE

DYNAMIC SHIP POSITIONING SYSTEMS

1.1 INTRODUCTION

The philosophy of dynamic ship positioning control is to
maintain the position and heading of a ship or a floating
platform above a pre-selected fixed position over the seabed
by using the vessel's thrusters. It can be extended to
include the tracking problem of a vessel at fixed speed.
It's superiority over conventional positioning control
technique is that the dynamic positioning (DP) system does
not need anchor or mooring. It is particularly suitable for
operation in deep seas such as the North Sea. The operation
is efficient since there is no delay due to setting up and
dismantling the anchors. It causes no damage to existing
constructions on the seabed such as o0il pipe lines. This
type of vessel is used for several applications in the
survey and development of off-shore mineral and oil
resources and in oceanography. The number of countries
involved in off-shore exploration is increasing rapidly.

The manufacturers competing against GEC in the United

Kingdom are mainly from Norway, United States and Japan.



0/5/mcl1704/12

1.2 THE POSITION CONTROL PROBLEMS

A DP system should be able to keep a vessel within specified
position limits, with minimum energy consumption and with
minimum wear and tear on the thrusters. The DP system
should also cope with the time delay in the measurement

system and the errors in the propulsion devices.

The control loops (Figure 1-1) for dynamically positioned
vessels include filters to remove the high frequency wave
induced motion signals. This is necessary because the
thruster devices are not intended and are not rated to
suppress wave induced motions greater than 0.3 radians per
second. High frequency motions are generally tolerable in
ship position control. The position control system must
only respond to the low frequency forces on the vessel. The
filtering problem is one of estimating the low frequency
motions so that control can be applied. Notice that even
though the position measurement includes a noise component,
this does not cause the filtering problem. If the total
position of the vessel were known exactly, there would still
be a need to estimate the low frequency motions. A typical

GEC duplex DP control system is shown in Figure 1-2.
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1.3 BASIC COMPONENTS

The basic components in a DP system are illustrated 1in
Figure 1-3. Several typés of position measurement systems
can be used including taut wire [l], short range radio
reference, and sonar systems. These measurements can be
pooled and this gives rise to a combination of measurement
problems. The heading measurement is given by a gyro-
compass. Communication satellites are increasingly being
used to provide a position fix and this enables vessels to
be moved to a reference position in just a few minutes. The

control force is generated from thrusters.

1.3.1 Sonar Measurement System (Figure 1-4)

In the sonar measurement system, an interrogator on board
the vessel transmits a sound pulse towards a transponder
which 1is placed on the seabed or mounted on an object. Upon
receipt of a correctly pulsed/coded signal, the transponder
transmits a reply. A split beam transducer then performs a
highly accurate phase measurement of the received signal and
the computer converts the phase angle to the geometric angle
of the transponder. At the same time, the accurate range to
the transponder is measured, which enables this system to

determine the water depth.
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There are many types of acoustic position measurement
systems but the GEC/Marconi system was a single beacon on
the seabed with a multi-head transponder on a pod beneath
the vessel. The signals can be upset by gas bubbles from
divers or from the ocean bottom. However, vessels often use
more than one position reference system including taut wire,

rig mounted radio beacons and satellite fixes.

1.3.2 Taut Wire Measurement System (Figure 1-5)

The taut wire system is a well established and reliable
method of determining the horizontal position of a vessel
relative to a fixed point on the seabed. The required sea-
bed reference point is marked by a sinker weight lowered on
a steel wire rope from the vessel. To sense the location of
the vessel relative to the sinker weight, the rope is main-
tained under constant tension and the angle of rope from the
vertical is measured in two orthogonal axes. The horizontal
displacement of the vessel from the seabed reference point

is the tangent of these angles multiplied by the water

depth.

1.3.3 Radio Measurement System (Figure 1-6)

The position of off-shore vessels can also be measured by

radio, satellite navigation, and inertial navigation
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systems. These systems are used extensively for navigation
and survey purposes. However, their position accuracy is
not suitable for dynamic positioning. These measurement
systems are suitable for applications such as mining and
pipelaying. Nevertheless, the short range radio position
reference system has a potential for future development.
Its operating range is 50 Km with accuracy from 2 m to 20 m

at a frequency of 3000 MHz. Basically, it has three modes:

(a) circular,
(b) range/bearing,

(c) hyperbolic.

GEC adopts the Artemis range/bearing system (Figure 1-6).

The artemis measuring system has the following advantages:

(a) The fixed station equipment is portable and can be set
up in approximately half an hour.

(b) One fixed station is sufficient for position fixing of
a vessel within line of sight.

(c) The angular accuracy is independent on azimuth.

(d) A very low radiated power.

(e) A data channel is available for numerical data and

voice communication.

-10-
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1.3.4 Thrusters

The thruster devices for positioning the vessel can take
several forms (Figure 1-7) but the ship model used in the
following analysis is based upon Wimpey Sealab which has
retractable ac motor driven thrusters with variable pitch
propellers. The vessel has two rotatable bow and two
rotatable stern thrusters, capable of 360 degrees rotation
and each rated at 12.5 tonnes. The detailed model of the

thruster will be discussed in the next chapter.

1.3.5 Wind Speed/Direction Measurement System

The wind force is normally regarded as an environmental
disturbance. However, this force can be used in the feed
forward loop, which has been shown to improve the control
responses significantly. Wind speed and direction are
measured by different sensors. However, a package unit
consisting of the two sensors is available, which simplifies
the installation and ensures these two parameters are

measured at the same location.
The most commonly used wind speed sensor employs a propeller

to drive a small dc voltage generator. The voltage gener-

ated is approximately directly proportional to the speed of

-11-
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the wind. The output voltage can be calibrated as the

measurement of the wind speed.

The wind direction sensor consists of a vane which rotates
to track the direction of flow of the wind. Attached to the
vane is an angle measuring device which exerts minimum drag
on the vane. Commonly used wind sensors are linear
potentiometer and synchro transmitters. The latter has the
advantages over the former of avoiding discontinuity and

wearing of the components.

-13-
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CHAPTER TWO

DYNAMIC MODELLING OF VESSEL MOTIONS

2.1 THE MOTIONS OF VESSELS

The environmental forces acting on a vessel induce motions
in six degrees of freedom (shown in Figure 2-1). 1In a
dynamic positioning system, only vessel motions in the
horizontal plane (surge, sway and yaw) are controlled. All
the motions will be referred to the body axes of the vessel
(shown in Figure 2-2). The assumption will be made that the
low and high frequency vessel motions (Figure 2-3) can be
determined separately and that the total motion is the sum
of each of them. This is the usual assumption made by a
marine engineer because the analysis is simplified and the
low frequency motions can be predicted with more accuracy

than the high freguency motions.

The low frequency motions are mainly due to thruster,
current, wind and second order wave forces. These are
normally less than 0.25 radians per second. The last three
forces can cause the vessel to drift from its station,

therefore, they must be counteracted by using the vessel's

thrusters.
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The first order high frequency wave induced motions are
normally oscillating between 0.3 to 1.6 radians per second.
These motions are not controlled because the existing
thrusters cannot counteract them effectively. Any attempt
will cause unnecessary wear and use extra energy.

In practice, most applications can allow such errors in the

controlled variables, particularly in calm sea conditions.

2.2 THE NON-LINEAR LOW FREQUENCY SHIP MODEL

The forces which produce the low frequency (LF) motions are

listed as follows:

(a) Forces generated by the thrusters and propellers.

(b) Wind forces. The horizontal wind speed can be resolved
into a component in the average wind direction and a
component perpendicular to this direction with zero
mean. Both components can be modelled by a random
variable with a Gaussian probability distribution.

(c) Wave induced drift forces. These second order wave
forces are relatively steady and are assumed to be
unaffected by the current forces which are almost
constant.

(d) Hydrodynamic forces, caused by the vessel's motion

relative to the water. These forces are due to add-
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mass, wave generation, viscous drag and hydrostatic

buoyancy.

The non-linear differential equation relating surge, sway

and yaw velocities are represented by the following form

(2,37].

(M"Y\',)\./ + (M—Xu)ru = YA + YH(UIVIr) (201)
(IZZZ - Nf)f = NA + NH(Ulvlr)
where
u: surge velocity
\ sway velocity
r: yaw velocity
XA: applied surge direction force due to
the thruster and the environment
Ypc: applied sway direction force due to
the thruster and the environment
Na: applied turning moment on the vessel

XH,YH,Nyg: the hydrodynamic forces and moment

due to relative motion between the vessel and

water

Xu,Yy,Np: add masses and add inertia which depend on the
nature of the body motion and the resulting flow

pattern.
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M: mass of vessel

I,5: radius of gyration

The coefficients of this non-linear model are to be
determined by a combination of theoretical analysis and
model tank tests {4]. The thruster force f is a function of
the control signal in the linearized model. The thruster

dynamics will be discussed later in this section.

2.3 THE LINEARIZED LOW FREQUENCY SHIP MODEL

The linear LF ship model is determined by linearizing the
non-linear model about an operating point of assumed current
flow. This model and the linearized thruster model will be
used in system design. The linear model has very little
interaction between surge motion and sway/yaw motions,
thence, surge motion control will be treated as a separate

entity.

The state space equation for the surge motion is:

. - - -
r.su _ F su rxsu I su pSu

X3 [Tt%11 o 1 P

. Su

x;“ 1 0 X5 +] 0 (2.2)
- - . - - - =
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+ ﬁsu wSU + pSU Su
0 0
The sway and yaw state space equations are:
e 7 B ] B 7 B ]
X1 ai1 0 a33 @ X1 Y F1
XD 1 00 0 X2 0 0 T1
X3 =] a31 0 a33 0 x3 [+]0 B
X 0o 01 o0
4] | JoLxl L 0
- - - -
profw] [po][n
+10 0 {|wo| +]0 o0 N2
0 A2 Y.
_0 0 i _0 OJ

where

surge velocity

surge position

sway velocity

sway position

yaw angular velocity

yaw angle

achieved thrust in surge direction
achieved thrust in sway direction
achieved torque in yaw direction
random force applied to surge direction
random force applied to sway direction

random torque applied to yaw direction
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The disturbances such as wave drift and current forces are
considered to produce an unknown mean value on the random

forces. The parameters in the System matrices resulted from

linearization.

2.4 THRUSTER ALLOCATION LOGIC

The function of the thruster allocation logic is to operate

on the demands for thrust in the three axes from the state

feedback control to:

(a) Set the thrusters so that the demands are met as
closely as possible.
(b) Produce an achieved thrust command signal in each of

the three axes for the input into the estimator.

The inputs to the thruster logic are:

(a) Fpax: maximum achieved thrust of the thrusters.

(b) 11,12: the distances of the thrusters from the vessel's

center of gravity.

(c) Xyu.Yyu,Ny: the demanded forces and moment from the state

feedback controller.
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The outputs are:

(a) F1,F: the achieved thrust command signals of the
thrusters.

(b) 1, ¢2: the angle setting of the thrusters.

(c) Xp,Yp,Np: the achieved forces and moment in

surge, sway and yaw direction.

The configuration is illustrated in Figure 2-4.

The thruster allocation logic is a static optimization
problem, where minimum fuel consumption is the target. It
will be treated as a separate entity and will not be
included in the Kalman filter model. The Kalman filter and
the state feedback controller will be concerned only with
the thrust in surge and sway axes and moment about the yaw
axis. The detailed thruster algorithm is very complicated

and it will not be discussed in this report.

2.5 THE NON-LINEAR THRUSTER MODEL [4]

The thruster devices for dynamic positioning of a vessel can
take several forms, but the ship model used in the following
is based upon Wimpey Sealab which has retractable ac motor
driven thrusters with variable pitch propellers

(Figure 2-5). The vessel has two rotatable bow and two
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rotatable stern thrusters which can rotate 360 degrees and
are each rated at 12.5 tonnes. The non-linear model is
shown in Figure 2-6. The detailed thruster model is very
complicated [10]. However, this simplified model is

adequate for the purpose of control analysis.

The input servo 1s of bang-bang type. It has an electrical
input circuit which compares a reference voltage against an
electrical feedback from potentiometers measuring the moment
of the ram. The error signal is applied to comparators
which switch the forward or reverse solenoid valves when the
error exceeds a predetermined deadband. This deadband is

set to stop the servo from hunting.

The spring box between the input servo and output servo
restricts the force exerted on the mechanical linkage
between the two servos. This is approximated by a

saturation non-linearity.

The non-linearity between the spring box and the input to
the main servo is not great for the angular movement 1s
small, thence, it is assumed to be linear.

The model of the main servo consists of a three position

switch with a small dead zone at zero. The output from the
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switch is passed through an integrator and then a saturation
non-linearity. The scale factor inserted in the feedback
loop is the inverse of this saturation element. In
practice, the output servo is faster than the input servo,
so the steady state loop gain should be greater than that in
the input servo. The ram should move to 100 percent in less
than 5 seconds. The actual non-linearities in the forward
path and feedback path are not known but can be seen from
the experimental curves, that, they can be either

compensated or neglected if small.

The most severe non-linearity is at the thrust and pitch

relationship:
Thrust = (pitch)™ m = 1.76 (2.4)

It is usual to compensate for this non-linearity using an

input compensator of the form:

1
m
So = (Sj) (2.5)

The parameters at the input and the output of the thruster

model are scaling factors which normalize the model with

reference to the ship model.
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2.6 THE LINEAR THRUSTER MODELS

2.6.1 First Order Approximation

The linear model is a fundamental requirement for linear
Kalman filter and state feedback controller design. The
order of the linear model is quite critical to the

computing load and accuracy of the model. A first order lag
approximation was proposed by Grimble et. al. [5,6,7]. For

the ith thruster, it takes the following form:

t t

{(t) = -bixi(t) + bjuj(t) (2.6)

where 1/p.is the time constant of the thruster and uj is the
i

control signal from the controller. xg(t) is the achieved

thrust.

The parameter bj 1s the input amplitude and is frequency
dependent. The usual modelling technique is first to
estimate the current and wind forces as well as the
operating frequency range. The time constant is then

estimated by frequency response or step response techniques.

2.6.2 Second Order Lag Approximation

Fung et. al. [8] proposed a second order linear model to the

non-linear thruster. It is well known that a high order
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linear model is usually a better approximation to the
non-linear model. On the other hand, it will increase the
computing load. Then, the choice of the order should depend
on these two factors: complexity and accuracy. In the
dynamic ship positioning system, a second order linear
thruster model would only place a small increase on the
computing load when using a fixed Kalman filtering scheme
yet it has been shown that it gives better estimation [9] of
the states and improve the robustness of the control

system. The state equation of the second order linear model

has the following form:
k%(t) F—bl -bo rxlt(t) rb2 u(t)

(t)! =] 1 0o || x5ty |+]0 (2.7)

t , .
Where x%(t) is the thrust rate, x2(t) is the achieved
thrust, u(t) is the demand control signal, b} and bj are
the linearized parameters. The method to estimate these

parameters is the same as that described in Section 2.6.1.
2.7 THE DYNAMIC MODEL OF WIMPEY SEALAB

Wimpey Sealab is a dynamically positioned vessel for a
variety of operational duties in off-shore exploration

operated by Wimpey Laboratories Ltd. It was converted from

a Cargo Ship to a drilling ship in 1974. The vessel has an
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overall length of 99.11 metres, a beam of 15.24 metres and a
displacement of 5674 tonnes. The position is automatically
controlled by a computer which controls the operation of
four 1,000 HP (746 Kw) retractable thrusters, each fitted
with variable pitch propellers [10] and capable of 360°
rotation. The vessel is equipped with acoustic and taut
wire position reference systems. Wimpey Sealab also has a
satellite navigation system which enables the vessel to
position itself accurately at predetermined locations and
has an integrated Doppler Sonar System for traversing
predetermined paths to very high orders of accuracy. The
specifications of the vessel for control system analysis are

listed in Appendix B.

GEC Electrical Projects Ltd. is responsible for the control

system design.

Dynamic positioning for Wimpey Sealab is required in water
depths between 30 and 300 metres. The ship must be held
within a circle of 7 metres radius (or 3% of water depth,
whichever is the greater) in a steady wind of up to

12.87 m/sec. with waves of significant height, 3.54 metres
and significant length 91.44 metres and with a steady sea
current up to 1.54 m/sec. Under the above conditions, but

with the wind gusting up to 20.50 m/sec, the ship position
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must be held within a circle of 11 metres radius. Ship

heading is allowed to vary.

2.7.1 The Low Frequency Model

The normalized non-linear differential equation reference of

the vessel are [11]:

1.044 U = Xp + 0.092 v2 - 0.138 uU + 1.84 rv
1.840 v = Yp - 2.580 vU - 1.840 v3/U + 0.068 r|r|-rU
0.1021 r = Np - 0.764 uv + 0.258 vU - 0.162 r|r|(2.8)

The variables are defined in equation 2.1. U is the vector

sum of u and v.

The linear LF model, under zero current flow, is:

1.044 0 = Xa - 0.0159 u
1.840 v = Yp - 0.1004 v + 0.002981 r (2.9)
0.10221r = Np - 0.007101 r + 0.005859v

The linearized model shows very little interaction between
surge (u) and sway (v)/yaw (r), thence, the research into
the control system for Wimpey Sealab in this project is

concentrated in sway and yaw multivariable control. Surge

control is treated as a single input and single output
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case. It can be solved easily once the control system for

the multivariable case is established.

The linearized state equation of the ship model, together

with the thrusters, is of the following form:

-’51(” = Apxy(t) + Byu,(t) + Dyw, (t) + El_rz_,(t)
Xl(t) = Cyx,(t) (2.10)

Where u,(t)¢€ R2 is the control input to the thrusters, wy (t)
€RZ2 is a white noise sequence representing the random forces
applied to the vessel and'jh6I22 is the wind force
disturbances. Other disturbance forces, such as wave drift
and current forces cannot be measured but can be considered
to produce an unknown mean value on the signal @h(t)’ the
vector Xl(t)e R2 represents the position outputs: sway and

yaw.

In Section 2.6, the linear thruster model can be either
first order or second order, thence state vector it(t) and
the system matrices are different in each case. Model A and
Model B given below represent two different models for
control system design. Let the system matrices be

partitioned into the following forms:
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A =10 A122,Bl=8121,D=0
[ 11 11
E:! = | E, ¢
| 0 ’ Cl =0 (2.11)
2(111“.')
- 21
gcl(t) x o (t)

xtll(t)eR4 ’ 521(t) is dependent on the model used. Matrices

é}l, A}z, Q}l, E}l Q}l and vector 5}1(t) are the same for

both models. Matrices Afz and 321 are dependent on the
thruster model selected. All linearized equations have been

time scaled with 3.104 as a time normalization factor.

ﬁil(t) = Fxl sway velocity
X2 | sway position
x3 | yaw angular velocity (2.12)

x4 | yaw angle
I

_
Atll - 0. 0546 0 0.0016 0
1.0 0 0 0
0.0573 0  -0.0695 0
0 0 1.0 0 -
Allz - [o.5435 0 i Dlll= 0.5435 0 |
0 0 0 0
0 ~1.6340 0 9.785
0 0 0 0
L . | -
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11 [ = 11
E, = 0.384 0 c, = 0
0 0
0 6.92
0 0 (2.13)

There are two linear ship models to be used in the
simulation analysis. The difference between these models

is in the thruster subsystems only.

Model A
X5 thruster one
Xg thruster two (2.14)
22 -1.55 0 .
A[ _ B21= 1.55 0 (2.15)

0 ~1.55 ! 0 1.55

In this model, the time constants of the thrusters are all

2 seconds (0.644 per unit).

Model B
sz_ thrust rate of thruster one '
X6 thrust of thruster one
X7 thrust rate of thruster two (2.16)
X8 thrust of thruster two
L
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The time constants obtained by fitting the best second order
linear model to the non-linear thrusters using frequency

tests and Bode diagrams are:

TABLE 2-1
PEAK SINE WAVE INPUT TIME CONSTANTS (PER UNIT)
T To
0.0002 0.3981 0.3055
0.0005 0.7244 0.4266
0.001 1.059 0.6918
0.0022 1.585 0.861

Note that one unit is equivalent to input amplitude of
0.0022. The time constants used in the linear model were
taken as T} = 1.059 and T, = 0.6918 seconds which
corresponds with a mid-range input signal. The system

matrices for the thrusters are:
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= —
Afz= ~2.3895 -1.3646 0 0
1.0 0 0 0
0 0 ~2.3895 -1.3646
0 0 1.0 0
Bfl= 1.3646 0 ]
0 0
0 1.3646 (2.17)
0 0
— —

In the full LF model, two zero columns should be added to

the RHS of matrix A}z to complete a square matrix A‘.

2.7.2 The Noise Covariances Specifications

The process noise in the dynamic positioning problem can be
partitioned into two parts: high frequency model and low
frequency model. Let QOpn and Qg be their covariance matrices
respectively. Ophp is assumed to be unity. The of covariance
matrix is dependent on the mean wind force level. 1In Wimpey

Sealab tests, the following values have been taken:
Qy1 = sway per unit force covariance

= (0.00228)2 = 5,2 x 1076 ~ 4 x 10-°

yaw per unit torque covariance

Qg2

= (0.00031)2 = 9.6 x 10-8 ~ 9 x 10-8
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Thence the process noise covariance matrix for the total

system is:

0 (2.18)

The position measurement error is assumed to be

0.333 metre. In the normalized unit, it is 0.0033.
Therefore, the noise variance for sway motion is R113»10‘5.
The yaw standard deviation is assumed to be 0.2 degrees, so
that Rpp ~1.22 x 10-5, Thence, the measurement noise

covariance matrix 1is:
rlo-S

R, = (2.19)
0 1.22 x 10-5-J

2.8 HIGH FREQUENCY MODEL

The high frequency motions of the vessel are in sympathy
with the wave frequencies, and are assumed to be linearly
related to the wave forces. The spectrum of the high
frequency vessel motion is obtained from a standard sea
spectrum and the vessel dynamics. It is assumed that in the

worst case, the high frequency motions are determined by the
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sea spectrum alone which means the wave motions are not

attenuated by the vessel dynamics.

Several sea wave spectra [12] have been proposed. A

commonly used one is the Pierson-Moskowitz model [13] which

i1s expressed by:

_n/,.4
Splw) = 2 e B/w (2.20)

where o is the angular frequency in radians per second.

A = 4,894, B =3.1094/(h%)2. The term hy is defined as
the significant wave height in metres. By finding the
stationary point for Sp(w), the resonant frequency of the

spectrum is found to be: ~

l1/4
w. = (4B/5) / (2.21)

The wave spectra of several sea conditions (identified by

Beaufort Numbers) are shown in Figure 2-7.

There are three types of models used in state estimation

using Kalman filter.

2.8.1 Rational Proper Transfer Function Model

Kostecki [14] suggested the sea spectrum can be approximated

by a rational proper transfer function presented by:
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So(w) = | G(jw)|2 sj(w) (2.22)

Where Sj(w) is the wind spectrum density which is assumed to
be stationary and has unit value. Sg(w) is the approximated
spectrum and G(jw) is the transfer function. A single
section of the transfer function may be expressed as:

2bilis
s2 + 2Zjwpis + whj

Gi(s) (2.23)

Two sections of Gj(s) are chosen [15]. The parameters of

the transfer function are estimated using the criterion:

)
AS(w) = min { 5 [Sn(w)—So(u)]zdw}l/z (2.24)
[+]

Where Sp(w) is defined in the frequency interval (0,45) and
n is typically 250. Two typical examples are shown in
Figure 2-8 and Figure 2-9., The high frequency model, for

one degree of freedom, therefore has the form:

2
G(s) = Ks (2.25)

s4 + a3s3 + azs2 + aljs + ap
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In state space form:

Xh(t)
Yhit)

Where:

Fhxnh(t)
Hpxp(t)

+ Gp%h(t)

xp(t) e R12, w(t) € R3

The sub-matrices for surge,

following form:

[ su

-44-
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0o 1 0 o0 (o ]
s _ s _
Fh = 0 0 1 0 Gh = 0
0 0 0 1 0
S S S S
-f> ~f7 -f5 -f gs
o 1 2 BJ i 4J
s _ s
Hh = [0 0 h3 0]

2.8.2 Auto-Regressive Moving Average (ARMA) Model

This model was first used in the DP Kalman filter estimation
by Fung and Grimble [16]. It is assumed that the high
frequenéy disturbance can be epresented by the following

multivariable ARMA model:

Ap(z™l) yh(t) = ch(z71) Eh(t) (2.29)

which is assumed to be asymptotically stable and yh(t) € R3
and En(t) € R3. Here, £, (t) represents an independent zero
mean random vector which is uncorrelated with the low
frequency disturbances and the measurement noise. The
covariance matrix of E,(t) is denoted by Zgh. The
polynomial matrices Ah(z‘l) and Ch(z'l) are assumed to be

square and of the form:
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Ap(z=1l) = 13 + Ayz=l+, | 4a ,z-na (2.30)
Ch(z71)

0

c1z=1 + Cc2z72+, ,+cpoz7NC (2.31)

where z~-1 is the backward shift operator. The matrix
Ah(z‘l) is assumed to be regular (that is Anz 1s non-
singular). The zeros of det (Ap(x)) and det (Ch(x)) are
assumed to be strictly outside the unit circle. The order
of the polynomial matrices are known but the coefficients
{Ai} and {Cj}, i=l, ... nz, j=1, ...n., are treated as
constant or slow varying unknowns since in practice, the
wave spectrum varies slowly with weather conditions. It is
also assumed that the disturbances in each observed channel
are uncorrelated so that the matrices {Ai} and {Cj} have

diagonal form.

2.8.3 Harmonic Oscillation Model

The harmonic oscillation model for high frequency motions of
a vessel for dynamic control system was discussed in
[17,18]. The surge, sway and yaw motions are modelled by
three separate harmonic oscillators. Each oscillator has a
variable frequency, a white noise input representing

the modelling error and unpredictable wave noise. The state

space representation of HF motions becomes:
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¥n(t) = Fn Tn(t) + Gpop(t)

-

m(t) = By Xn(t) (2.32)
where:
Xpn1 (t) HF surge position
Xho(t) HF surge velocity
Wy HF surge frequency
Xh3(t) HF sway position
Xh(t) = | pa(t) HF sway velocity
w2 HF sway frequency
Xp5(t) HF yaw angle
Xhe(t) HF yaw angular velocity
3 HF yaw frequency
L .
E 0 ] K ]
hl 0 Gnh1 0 0
Fy, = 0 Fn2 o) —G_h = 0 (—}hz 0
0 0 Fh3 0 0 Gh3
_— — S ._J
rﬁhl 0 0
Eh = 0 ﬁhz 0
0 0 h3
- —
— - [ )
0 1 0 0 0]
= | -2 = _ I
Fhi— --(»0l 0 0 Ghi- 1 O,Hhi—[lOO]
0 0 o) 0 1
b — e _J
i = 1' 2' 3 (2.34)
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Xp(t) € RY is the state variable ih(t)é,R3 is the high
frequency motions, Dh(t) € R6 is the process white noise

sequence.

2.8.4 Simulation of High Freguency Motions

Method 1

The first order wave induced HF motions can be simulated
using the following expression [19] (in one direction with

unit in metre):

M
yh(t) = 2 yosin(wjt+8;) (2.35)
i=1
where 8 are random numbers lying in (0, 2mM), yo and Wi are
selected to approximate the Pierson-Moskowitz wave
spectrum. M is the number of equal parts (in terms of

energy) into which the wave spectrum is divided. A typical

value of M is 20.

For a fully developed sea [16]:
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1/4
w, . 0.6990525  , oM

i —) rad [sec (2.36)
,151/3 2i-1

1/2

metres (2.37)

where hl/3 ls defined as the significant wave height. Other
terms such as wind speed and Beaufort number are also used

to characterize the sea conditions.
Method 2

This method uses the rational proper transfer function of HF
motions described in Section 2.8.1 to simulate sea waves.
For each weather condition, the parameters of the model are
estimated using least squares technique. The state space
representation of the model is used to generate the HF
motions. Since the model is assumed to be linear, a
discrete model is more appropriate for updating the states.
A set of values for some typical weather conditions are

given in Appendix A.
2.9 THE LINEAR STATE SPACE EQUATIONS FOR SHIP MOTIONS

The state equations for the low and high frequency models of

the ship can be combined into the form:

-49-



0/5/mcl1704 /45

x,(t)| = rA

=1 g 0 xg(e)) + | B u,(t) +

_):(_h(t) 0 Fnh _)_(_h(t) 0

- -
Bl B (t) + D 0 w,(t)

0 0 Gh | wp(t) (2.38)

The position of the vessel is given by the sum of the low

and high frequency motions:

ylt) = Yy(t) + yh(t) (2.39)

The position measurement Z(t) sway and yaw is therefore:

z1(t) = [C Hpl | x, (L) ]+ v(t)

z2(t) Xph(t) (2.40)

= yy(t) + yh(t) + v(t)

where v(t) = [v] v3]T is a white noise signal representing
measurement system noise. The above equations can be

written more concisely as:

x(t)

Ax(t) + Bu(t) + EZ(t) + Dw(t) (2.41)

z(t) Cx(t) + v(t) (2.42)
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where u(t) includes the control signals, 1(t) includes the
measurable disturbances inputs, w(t) represents the white

process noise input and v(t) represents the white

measurement noise signal. These equations are in the
standard form associated with the Kalman filtering and

optimal stochastic control problem.
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CHAPTER THREE

KALMAN FILTERING PROBLEM OF

DYNAMIC SHIP POSITIONING SYSTEMS

3.1 THE ESTIMATION STRUCTURE

The stochastic model of the vessel is defined by the state
equation in Section 2.9, and now the estimation problem can
be considered. Recall that for control purposes, it is not
simply the total position y(t) of the vessel that is to be
estimated, but rather the low frequency component Xl(t)'
That is, the position control problem must only respond to
the low frequency position error signal. The estimator is
therefore required to provide an estimate il(t). If a state
feedback controller is to be implemented, the states in the
low frequency model must be estimated. If a stochastic
model of a system is formed the Kalman filtering solution 1is
quite standard nowadays [20, 21]. The Kalman filter
includes a model of the total system and can therefore
provide the high and low frequency motion estimates. The DP
Kalman filter structure is shown in Figure 3-1 and is

defined by the equation:
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X(t) = AX(t) + K(t)[z(t) - CR(t)) (3.1)
+ Bu(t) + Eq(t)
yit) = Ck(t) (3.2)

The Kalman gain matrix K(t) can be partitioned into low and

high frequency matrices as follows:

Ky (t)
K(t) = (3.3)
Kh(t)

This matrix can be calculated for given noise covariance
matrices by using standard results (Appendix C). The
measurement noise covariance can be defined relatively
accurately from the knowledge of the position measurement
system and using manufacturers data. The process noise

covariance matrix is less well defined (Section 2.7).

In practice, the process noise of the LF model and the
measurement noise can be assumed stationary. The LF linear
model with respect to a current force can be assumed
constant. However, the HF model is based upon sea spectra
which vary with sea conditions. The variations may be very
slow but nevertheless, the Kalman gain Kp(t) and the
parameters in the model vary with the weather conditions.
To implement an optimal Kalman filter, the Kalman gains and

the parameters in the models need updating, that means the

-54-



0/5/mcl1704/49

Riccati equation must be solved in real time. 1In order to

reduce the computer load the following techniques can be

used.

ADRPTIVE
3.2 EXTENDED, KALMAN FILTER USING HARMONIC WAVE MODELS

When the harmonic oscillation models described in

Section 2.8.3 are used for high frequency motions of a

vessel, the dominant frequency wj is treated as the only

unknown parameter in the system matrices [17,18]. It was

observed in simulation results that:

(a) After a short initial period, the LF filter gains for
estimation of positions and velocities vary within 2 to
3%.

(b) The filter gains for estimation of the HF motion
frequencies w;, oscillate with the same frequency as

the HF motions and with zero mean value.

The following simplifications were made in the estimation

algorithms:

(a) The filter gains for updating of LF positions and LF
velocities are assumed to be constant.

(b) The filter gains for updating the HF motion frequencies
are assumed to be a linear combination of the high

frequency position and velocity estimates.
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Simulation results shows that the Kalman gain of the high

frequency subsystem can be expressed as (17]:

kP ey = k. 2y o (3.4)
1 1l 1

H . .
where Ki 1s the Kalman gain for the HF frequency w;, ki is

. H .
the modulation factor and Qi 1s the position estimate of HF

motion.

Alternatively, the high frequency wj can be estimated in the

following technique.

Consider the state estimator in the ith channel.

Xp(t) = £,00) + Ky &5 (¢) (3.5)
Rn1(t) = Rho(t) + Kp1&j(t) (3.6)
Rn2(t) = -G 2W+ Ky (¢) (3.7)

where f (.) is a vector function which generates the
A .
predicted states. §&; is the prediction error and &; is the

sea wave dominant frequency.

A . » L . . .
If wj; varies away from its initial value, the covariance of

the innovation process will increase.
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A
The algorithm to track the w; isg:

Oy -k 2 (g2 (b))
i ~ (3.8)
2 dw; 1
- 280 gt
L

A . . . . . . . 2
W; 1s adjusted in the negative gradient direction of £7.

The constant k 1s chosen to be small so that the influence
of the measurement and process noises are kept small.

It can be shown that:

i—%})—(il = -[efzhl(t)/a&)i +a§u<t)/aéi] (3.9)
1
and
Ixf1(t) , xn (3.10)
dwj oWj

Differentiating equations (3.6) and (3.7) gives:
r = s - Kpir (3.11)

Al A
5§ = -Wir - 20;Rp1(t) - Kpor (3.12)

where r= a;‘hl/ac:)i and s=a§<h2/aa)i. Differentiating equation

(3.11) and substituting 1into equation (3.12):

. 2 AA
¥ o+ Kpit + (D (t)+Kpp)r = =20ixp1(t) (3.13)
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Assume that the HF estimate is given by:

Xp1(t) = fsin@jt (3.14)
Kp2(t) =p D cos @it (3.15)

The steady state solution to equation (3.13) is given by:

-0€. (t)

- N7
r =

A

- 2(:)l A A
B Y 5[Kh1Xh2 () -Kp2Xh1(t)] (3.16)

This substituted into egquation (3.8) yields the algorithm

A

for tracking wj.

To select the value of k, introduce the first order

approximation

Ei(t) = Eio(t) +aa—-£—ié)(—’F—)‘Awi (3.17)
1l

in equation (3.8), where Eiolt) is the innovation signal

A A
when @; = ®@j and where 4dj =wy - @Wi.

If wy is assumed to be constant, the following result 1is

obtained:

. . 2 .
aw; = -k (X&) Ty -  98ilt) £, (3.18)
0 wij 0 Wi
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This yields an approximate time constant for the estimation

of w; given by:

(3.19)

If the variance of agi(t)/aéﬁ 1s small compared to the
variance of &;(t), the variance of aﬁ is approximately given

by [18].
1

Cov(®;) = 3 kCov (&) (3.20)

3.3 CONSTANT GAIN LINEAR KALMAN FILTER

In the fourth order transfer function model approach [5],
the models discussed in Section 2.8.1 are selected for the
HF motions. The on-line computation of Kalman gains and the
estimation of parameters in the HF wave model is very comp-
licated and cumbersome. A simplified algorithm is to choose
a particular sea state say Beaufort 8, for filter design.
The filter gain matrix is computed off-line based upon the
linear LF model and the selected HF model. It 1s then used
constantly for any sea state. Experimental results showed
that in most cases, the constant gain filter is noticeably
slower in reaching the steady state than the corresponding
time varying filter. However, it may bé acceptable in some

operational conditions in which the accuracy is not so

critical.
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3.4 EXTENDED KALMAN FILTER USING

FOURTH ORDER WAVE MODELS

It was found in the simulation results [5, 6] that the
extended LF Kalman estimator improved very little in the
estimation of the states. However, if the sea

condition varies from time to time, the extended HF
estimator can reach the optimal state and can improve
convergence significantly. The extended structure of the HF
matrix in the state equation proposed by Grimble et. al. [6,
7], in one-channel form, is as follows:

p— —l e ey — — o -

. i

Xh1l 0 1 0 0 Xh1 0 0 W1
. |

Xh2 0 0 1 o , O Xh?2 0 0 | |®h2
Xp3f={ 0 0 0 1 | Xp3 |+ 0 0

xh4| |-fo -f1 -f2 -f3 | xpal |1 O

________________ L_— —med e

] l

to ; fo 0 1

£, 0 0 f1 0 1

. |

£2 | ) 0 1

. |

f3 | f3 0 1
- <~ L | - L -4 L -

(3.21)

The Kalman filter estimates the states as well as the HF
model parameters. Because of the high dimensional

structure, it may not be easy to implement.
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CHAPTER FOUR

THE STOCHASTIC OPTIMAL CONTROL PROBLEM IN DYNAMIC

POSITIONING SYSTEM

4.1 TINTRODUCTION

Recall that the control system must respond to the low
frequency vessel motions but not high frequency motions. In
the classical design of dynamic positioning control systems,
a notch filter is cascaded with a PID controller. The notch
filter is therefore an integral part of the control loop.

In designing the notch filter, it is important that the

phase shift introduced by the filter is small at the control

loop unity gain crossover frequency, otherwise it may
destabilize the control loop. The filter design always
includes this compromise between good filtering (suppression
of thruster modulation) and good regulating actions. The
basic criteria for such a design given by Sorheim and

Galtung [22] are:

(a) The wave filter center frequency should be chosen eqgual
to the maximum amplitude frequency response of the
vessel for the chosen wave conditions.

(b) The phase shift introduced by the filter at one decade

below the center fregquency should be less than

10 degrees.
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(c) The notch depth should be the maximum attainable

consistent‘with hardware limitations.

The control frequencies normally lie in the range of 0 to
0.3 radians per second and the wave frequencies lie in the

range 0.3 to 1.6 radians per second.

The PID controller approach has several disadvantages. Due
to the couplings between the controlled motions, the
integral action of the controller must be slow enough to
reduce the excessive overshoots in the other controlled
variables. The second disadvantage is due to the phase lag
introduced in the control loops by the notch filters. These
disadvantages led research engineers [6, 7, 8, 17, 18] to
investigate the use of Kalman filtering and optimal control

techniques in dynamic positioning systems.

Section 4.2 describes the optimal controller design
criterion. In the dynamic ship positioning system, there
are slowly varying disturbances such as current and wind.

It is essential that the offsets due to such disturbances
are eliminated. The technique to include integral action in
the optimal controller is described in Section 4.3.

Simplified schemes are given in Section 4.4.
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4.2 OPTIMAL CONTROLLER DESIGN

The dynamic positioning control system and the state
estimator is shown in Figure 4-1. The controller uses state
feedback from the low frequency Kalman estimator. If the
estimator works efficiently, the control system will respond

only to the low freguency position error signal. Thence,

the thruster modulation will be reduced. The wind force can
be measured separately. It is a usual practice to feed this

disturbance forward to minimize any undesirable effect.

The controller gain matrices can be determined using optimal
control techniques. However, a suitable design must also
satisfy classical design criteria. The performance
criterion to be minimized may be defined as:

J(u) = E{jlim %T ~yT [§EOC§L+9TRCg]dt} (4.1)

T-+00 -T

where 5L(t) is the low frequency state vector, u(t) is the
control signal, Qc and Rc are weighting matrices and are
positive definite and semi-positive definite respectively.
E is the expectation operator. The optimal control gain
matrix Ke(t) may be calculated using well known Riccati

equation techniques. The selection of the weighting

matrices needs experience and judgement from the designer.
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It may be useful to use the guidelines proposed by
researchers such as Chang [23], Tyler and Tutem [24], Chen
and Shen [25], Melheim [26] and Grimble [27].

4.3 OPTIMAL CONTROLLER WITH INTEGRAL ACTION

4.3.1 System Description

The dynamic ship positioning control problem is more
complicated than that considered in the simple white noise
LOG stochastic optimal control problem (28] (Section 4.2).
The DP system has both slowly varying and high frequency
disturbance inputs and the measurements are contaminated by
both white and coloured noise. It 1is desirable to use
integral control to offset slowly varying unmodelled
disturbances, so the system can regulate about the given
references. The system to be controlled is shown in

Figure 4-2. The plant is assumed to be completely
controllable and observerable and is represented by the time

invariant state equations:

gl(t) = Ay x, (t) + Bju(t) + Dy (t) (4.2)
Y, (t) = G x)t) (4.3)
where ll(t)eRh, u(t) € RY, o, (t)eRI and y, (L)ERT. The

observed plant output z(t) is corrupted by an additive noise
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signal v(t) containing both coloured Yhit) and white
v(t) noise components. The coloured output noise 1is
generated by the following dynamical system which assumed to

be asymptotically stable:

Xh(t)
yh(t)

Ahxh(t) + Dhwph(t) (4.4)
Chxh(t) (4.5)

]

v(t) is the actual measurement noise where yp(t) is the high

frequency motion.

The output noise and the observation vectors are given by:

<
rf
]

v yh(t) + v(t) (4.6)
z(t) =y, (£) + vi(t) (4.7)

the input disturbances consist of current disturbances and

wind gust disturbances. These can be separated into two

groups, wj and wy where:
Dpwt) = Diwj(t) + Dpwr(t) (4.8)

and

(t) (4.9)
(4.10)

5k
oo
il H

Xu(t) + v,
Xc(t)

The white noise input y,(t) may allow for modelling errors,

and the coloured noise xw(t) represents the relatively fast
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plant disturbances (e.g. wind gust). Disturbances which are
slowly varying can be represented by the signal gc(t)
(current). The system modelling the disturbances is assumed
to be asymptotically stable. The system representing the

fast input disturbances is modelled by the state equations:

X, () = Ayx,(t) + D,y&)(t) (4.11)
Yolt) = Cux,(t) (4.12)

and similarly, the low frequency disturbances are modelled

by the system.

Xo(t) = Acxc(t) + De%e(t) (4.13)

The white noise signals @Wp(t), Wu(t) and &.(t) driving the
disturbance models are assumed to have known constant
variance matrices Qy, Q, and Q¢ respectively. Similarly,
the signals v,(t) and v(t) are assumed to have covariance

matrices Q,, and Ry respectively. The noise sources are

assumed to be mutually independent and the noises are

assumed to be Gaussian and stationary.

The above eguations may be written in the augmented matrix

form:
St) = & X(r) + Bl(o) + Bdce) (4.14)
z(t) = CR(t) + v(t) (4.15)
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where the augmented state vector is defined as:

X(t) = ol xp(t) xc(t) x (t) X (0)}  F(t)er®
O(t) = Colf wh(t) wclt) w,(t) veolt)}

and the system matrices become:

A, O 0 0
(o d
A=10 A, O 0 B =10 (4.16)
0 Aw 0
0
N D2 chw A&] LBl_
~n n
D=Dp®D.®D, ®D;, C= [Ch 00C) (4.17)

In the dynamic ship positioning problem, it is important
that a constant disturbance should not produce a constant
position offset in a calm sea. Thus, as in the usual
industrial control situation, integral control must be used
to ensure that constant disturbances do not produce steady
state errors. The way in which integral action 1is

introduced is discussed in the following section.

4.3.2 Optimal Regulating Problem

Assuming that the set point vector Xxo(t) to be constant the
optimal controller must bring the system states to the cor-
responding non-zero set points, which means the expected

value of the steady state error between the states and their
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set points, must be zero. To achieve this condition, an
integral operator L will be introduced into the performance

criterion, where the operator L is defined as:

- T o
(LX) (e) 2 f, Ar¥X(t)at (4.18)

Where A1 1is a constant rxp matrix with elements equal to
zero or unity. The unity element corresponds to the state
which should have zero steady state value under constant
disturbance. Since only plant states are to be controlled,

the matrix Aq has the block form:

A = [0 0 0 BAjyl (4.19)

Matrix A4 has the elements corresponding to sway position
and yaw angle equal to unity. The other elements are zero.

The performance criterion may now be defined as:

lad

J(to,T) = E{fio[ < X()-Ko(t) ,01 ¥(t)-Xo(t) > Ep

+ <L{X(6)-Eo(0)} ,02Lf x(£)-x0(8)P> Ep
+ <ult), ng(t)>Er]dt} (4.20)

Where gb(t)=[0 0 O §g(t)]T, 0130, 0230 and R1>0. The
reason behind the introduction of the integral operator
terms is that, when T becomes large, the cost will tend to

N ~ .
infinity, unless the mean error Al{i(t)’io(t)} 1s zero.
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This performance specification therefore ensures that the

controller includes integral action.

The above problem 1is not the usual form for the linear
gquadratic stochastic control problem. To transform the
problem into the required form so that the standard results

may be used, define:

r’g(t) i
X1(t) = . (4.21)
X (t) ]
%a(t) = | O (4.22)
(L¥,) (t)
Notice that:
. %(t)
X1(t) =| (4.23)
o AI’-_;(:(t)
and
. %o (t)
Xo2(t) = N (4.24)

The reference signal xp(t) is assumed constant. An

additional assumption will now be made, namely that xo(t) 1is
. ~

a solution of the plant state space equation. Thus, Xo(t)

is assumed to be a solution of the augmented state space

equation.

’;/_)_(.O(t) = Algo(t) =0 (4.25)
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The subspace spanned by the reference signal is therefore
assumed to be in the Kernel of matrix A. To understand the
implications of this assumption, the second and fourth state
variable represent the position of the vessel in sway and
yaw. These position signals are obtained by integrating the
ship velocities. Thus, if there are no disturbances, the

plant state vector, in steady state, will have the form:

xg(e) = [0 x5 0 xy 0,..0]7T (4.26)

The reference signal Xx,(t) will have a similar form and
Xo(t) will span the corresponding two dimensional subspace
of the p-dimensional state space. That is, the only
reference signals which are allowed are those whose non-zero
entries correspond to a particular set of plant states.
These states correspond to integrators, and are at the
output of the state space model of the system. These are
also the states to be controlled to the set point and may be

recognized by the zero columns of the system Ap-matrix.

The state equations now become:
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F‘N = ~
. A 0| B D
X1(t) = x1(t) + u(t) + D(t)
A 0 0 0|
: (X o
Xo(t) = X7 (t)

(4.27)

(4.28)

The performance criterion and state equations may now be

rewritten in the form:

X = AX(t) + BO(t) + D&(t)
z(t) = Cx(t) + v(t)
T —-— — —
I(to T) = B{f <R(£),3,%(0)> ¢ + Lu(t),Rul
(0]
Where
-
gi(tr
x(t) 2| |
X2(t)
_ (%, 0] X 0 X 0
A 2 | Ay = , Ap =
0 A2 AI 0 AI 0
5] . 3] _ [m| L [®
E A2 ’ Ble ’ D:.-A_ » D1 &
- 0 ~lo 0 = 1o
= A ‘61 :51 ~ 01 0
Q1 = » Q1 =
-51 6& 0 02
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The effect of the equivalence on the matrix caused by the

s
assumption Aj=Aj; will be discussed in the following section.

The above problem may now be solved by considering the
individual subsystems. This has the advantage that the
structure of the optimal system can be identified, and the
role of individual blocks can be analyzed. The order of the

Riccati equations which must be solved can also be reduced.

4.3.3 Control Problem

It is well known [29] that the solution to the linear
stochastic control problem may be obtained by considering
the equivalent deterministic optimal control problem and the
Kalman filtering problem. This result follows from the
separation principle [30] of stochastic optimal control

theory.

Consider the partitioned system described by equations

(4.29) to (4.31). The control matrix Riccati differential

equation for the system becomes:

= - iy - = l_T-
Pi(t) = -PjA - A P; + P1BR” B P] - Oy (4.37)
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lo-d
A

I o
toH
|

\

|

4L ey
12 Q1 -01
- -~ . (4.38)
Py1 P22 -01 Q1

.

gol]

P

The individual equations become:
— -— ~ ~T —
P11(t) = -P11(t)A1 - Al P1)1(t)
—-— ~ A~ -_— n/
+ Py (0)BIR-IBT Pyy(t) - Q) (4.39)
— ~ ~T
P12(t) = -P12(t)A2 - Al Pya(t)
—_ s - ~
+ P11(t>g1R‘1BlTP12(t) + Q1 (4.40)

—_ ~ ~T-—
Poo(t) = -P22(t)A2 — A2P22(t)

+ I-’21'\1'51R'lfﬂ'qfi’-l2(t) - 01 (4.41)

When El(T)=O, the optimal control feedback gain matrix is

given by:

Xi(t) = r-187H (4.42)

[R'lgFﬁll(t),R_1§F§12(t)] (4.43)
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I h ) . s lad
n this particular case, Aj=Aj;. It follows that the above

Riccati equations become identical, giving the solutions:
P11(t) = Ppy(t) = -Py,(t) (4.44)
and thus the gain matrix becomes:
K1(t) = [K11(t) =Kjp(t)] (4.45)

where

— M. T~
Ki1(t)2 RrR-IB17P1j(t) (4.46)

Thus, for the system where the assumption made in the last
section holds, using the equation (4.45), the control signal
is obtained by multiplying the gain matrix K11(t) by the

signal X3(t)-Xp(t), which gives:

u*(t) = -Ell(t){gl(t) - g2<t>} (4.47)
C ~ ~ Cc ~MooA
= Kll(t>{50(t>—_>g(t)} ¥ K12(t){L(5O-5)}(t) (4.48)
where
— C C
Kip(t) = [Ky3(t) Kyp(t)] (4.49)

The optimal control signal u*(t) is clearly the sum of a
state tracking error term and an integral of the state

tracking error term. The integral term only involves a

subset of the state variables which are determined by Ar.
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The matrix Riccati equation (4.39) can be expanded to obtain

an expression of the gain matrices Kil(t) and Kiz(t)-

_— i~V T==
K13(t) = R7IB]"Pyj(t) (4.50)
(o C
= [Kyp(t) Ki2(t)]
=R 18P () R-IBTE),(e))

where P11(t) and ﬁlz(t) are the solutions of the following

matrix Riccati equations with Pj;(T)=0.

P11(t) = -P11A - $12AI - XTﬁll - Af Po1
~ ~_ NTN
+ P11BR™IB'Py; - O3 (4.51)
g ~Ta ~ ~ A~ ~T ~
Pio(t) = -A"Pyp - A Ppp + P11B R'lBTP12 (4.52)
Boyo(t) = B BROIBTE), - 05 (4.53)

An alternative partition of the state vector will be used
below. It will further simplify the equations. The system

matrices Xl and E& in equation (4.33) and (4.34) have the

form:
rgh 0 0 0 0
0 Ac 0
XL =]0 o0 Ay ol ,B; = (4.54)
0 Dy DICy & O B,
0o 0 0 A 0 0,
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and
0] =0 ®@0& 0 &0 @0y, (Q 20, 0220) (4.55)

where Q is the optimal control weighting matrix correspond-
ing to the plant states. Note that the state associated
with the output noise subsystem and the disturbance sub-
system A, and Ay, have zero weighting in the cost function.
These states are uncontrollable and thus, it is reasonable
to set their weighting matrices Oy, Q. and Qy to zero. Note
that if non-zero values have been assigned to these

matrices, they would not affect the gain calculation.

It may now be shown that there is no feedback from the
output noise states xp(t), for these states do not affect
the plant states. Let the state vector gl(t) be partitioned

as follows:

xp(t)
X] = (4.56)
B x3(t)
The above matrices may then be written in the form:
Ap O 0 ~ 00
A = , B1 = , 01 = (4.57)
0 Aj B3 0 03
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Matrix Riccati equation (4.39) is expanded and the

individual equations become:

d T

P11(t) = -P11Ap - ApPy] + Py,B3R~1BIP,; (4.58)
. _ T 1T

Pyp(t) = -PypA3 - ApP1 + P1)B3RT B3Pj)) (4.59)
. _ T 17T

P2(T) = -P32A3 = A3Pj5 + P3pB3R™iB3Po) -~ 03 (4.60)

where P22(T)=0. The third equation above is independent of
the first two equations and the latter have the following

solutions:

P11(t) = 0, Plp(t) = P51(t) = 0 (4.61)
V telty,T]
The optimal control feedback gain matrix is given by:
Kij(t) = RTIB1P11(t)
= -1g3 (4.62
= [0, RTB3Pw(t)] .62)

where Pw(t)éPzz(t). Note that the matrix Pj3j(t) does not
affect the gain calculation and also that Pio(t) and Py (t)

will be non-zero if 51 has a non-zero off diagonal block.

In such a case, the first entry in the gain matrix

R-1B3TP,) (t) becomes non-zero.
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As would be expected, there is state feedback from the dis-

turbance states Xc(t) and x,(t), which affect the plant

states 5‘(t). This may be shown by partitioning the state

vector x3(t) into the form:

Xe(t)
x3(t) = | xy(t) (4.63)
x4(t)
The submatrices A3 and B3 occurring in eguation (4.57)
may now be partitioned as follows:
— | — - -
A. O | O 0 0
Ay =|{0 a, '0 o0 B3 = |0 (4.64)
______ _1_ —_— — — — —
D2 chw| A O Bl
o o 'a; o 0
L l e L -
and
[~ | =]
0 0, 0 0
03 =0 0,0 O (4.65)
L
0 0 0 Q
L ' 2]
These matrices may therefore be written in the form:
A 0 0 0 0
Ay = | " By = 03 = (4.66)
Ay Ay By 0 Q4

The matrix Riccati equation (4.60) is expanded and the

individual equations become as follows (note that

P,(t)=P22(t)):
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P11(t) = =P11(t)Acy - Pho(t)A, - AL Pl1(t) (4.67)

~ATPL 1 (t) + Phi( rR-1pTp’
af21 21 (t)B4RTIB,P5) (t)

P1(t) = -Ph1Acy ~ PhoA, - A3PL](t) (4.68)
+ sz(t)B4R‘1B£P§1(t)

g — ’ T l

Po2(t) = -P22(t)Ag - AgPHo(t) (4.69)

» -1 T &

+ P22(t)B4R™*B4Po2(t) - Qg

where Py(T)=P2(T)=0. The optimal control feedback gain

matrix 1is given by:

Ke(t) 2 rR-1BIp (t) (4.70)
= [R-IBEP@(t) R"lePa(t)] (4.71)
where P&(t)=Pél(t) and Pa(t)=P§2(t). Notice that the

solution to equation (4.67) need not be calculated since
this does not enter into the calculation of the optimal

feedback gain Ky (t).

Let the solutions to eguations (4.68) and (4.69) be:

——

, Pyl(t) PYz(t) , ,
Py(t) = , Pyl(t) = P21(t) (4.72)

P5(t) sz(tﬂ

—
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and

a a
P11(t) P1a(t) .
Po(t) = » Pa(t) = P22(t)

a a
P1i(t) Poa(t)
(4.73)

respectively.

The system matrices involved in the equations have the form:

A 0 B Q 0
L L 1

Ag = » By = , Q4 = (4.74)
AT O 0 0 0

Thus, the total feedback gain matrix is obtained in the

simplified form:

K11(t) = [0, Ky(t)] (4.75)

T W w a a
R’lgjo, Ppi(t), Pyo(t), Pyi(t), Pyo(t)] (4.76)

a a w W ‘
where {Pll(t),Plz(t)} and.{Pll(t),Plz(t)} are the solutions

of the linear differential equations:

: 1.7
Py(t) = -PyAg - Agpa + PoB4R™1B4P, - Q4 (4.77)

and

: T 1T
Py(t) = -PyA~y - Ag4Pw - PgA5 + PaB4R™1BgP, (4.78)

respectively. The optimal control signal can be calculated

using equation (4.47)
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u*(t)

4E11(t)—{§l(t) - §2<t)} (4.79)

Kij1(t)

L(Xg - X)(t)

The matrix Ell(t) has been partitioned in a simple form as
shown in equation (4.75). There is no feedback from the
output noise states. Proportional feedback is present both
in the input disturbance model states and the plant states.
In addition, there is an integral feedback term from a
subset of the plant states which must have zero steady state
error. Finally, it should be noted that the weighting
matrix Q; was assumed to be block diagonal. If this is not

the case, the above feedback gains have to be modified.

Infinite Time Solution to Control Problem

The most important practical solution to the control problem
is often the limiting case in which the final T tends to
infinity. It will now be shown that the matrix Riccati
equations considered previously should yield a unigue
solution for the optimal feedback gain matrix in steady
state. Let the state vector g§t) be partitioned in such a
way that the second vector contains the plant and integral

states only, that is:
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~ T
R1(6) = (fxn() x3(t), xm(e)},

T ~
THONG RN (4.80)

The system matrices in (4.64) may also be partitioned in the

same manner:

~

~ A11 0 ~ 0 ~ 00

Al =1 o ' By = / Q1 = (4.81)
A1 A4 Byg 0 04

The matrix Riccati equation (4.39) may be expanded to obtain

the following equations in the steady state:

~ ~ T T
0 = -P11A]] - P12Ap] - A11Pp1 - A Py
-1 T
+ P12B4RTIB4P2) (4.82)
~ ~/ T
O = -P21A11 - P22A21 - AgPp3 (4.83)

+ PyyBgR™1BgP))
T -1a7T
Qg = -P22A4 - AjP33 + P22B4R™IByP2> (4.84)
The feedback gain matrix is given by egqguation (4.46) as:

Ell(t) = R—IBE{le Pyo] (4.85)

Note that only the steady state matrices Py and Pj, enter

the gain calculation, thence equation (4.82) may be
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neglected. Also notice that given P55, equation (4.83) is

linear in P33.

The condition under which equation (4.84) has a unique
solution will now be discussed [29, 31]. Assume Q4 is of

rank rj), where rj; £ n+r, Q4 may be expressed as:

T
Qg = H'H (4.86)
where H is a constant rijx(n+r) matrix [32]. It is well
known that if (A4, H) is completely observable, and (Ag4, By)
1s completely controllable, then equation (4.84) has a
unique positive definite solution. Furthermore, all the

eigenvalues of the resulting closed loop system matrix

Af £ By - BgR-1B4P, (4.87)

p—
p—

have negative real parts and Ag is an asymptotically stable
matrix [33]. 1In this case, equation (4.83) may be written

as:
~ r~’
A% P21 + P21A11 = -P22A21 (4.88)

. . . T
This equation has a unique solution if and only if Af and

‘Xll have no eigenvalues in common [34, 35]. That is, the

equation has a unique solution provided that:

A (ag) + Aj(E11) # 0, Y i,] (4.89)
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The eigenvalues corresponding to the matrix Af are all
negative and thus equation (4.89) will be satisfied provided

the eigenvalues of'xll are all negative too.

The subsystem matrix x11=Ah®ACeAw is, by previous
assumptions, stable and hence equation (4.88) has a unigue
solution. Note that in the case of constant disturbances,

AC=O and the above condition still holds.

To show that the above system with state feedback 1is stable,

let gi(t) given by equation (4.80) be written in the form:

X5(t)
K1(t) = (4.90)
X4(t)

The state trajectory xg5(t) will clearly be bounded, since

Xxg(t) satisfies:

xs5(t) = B11xs(t) (4.91)

and'Xll is assumed stable. The control signal which
determines the zero input response of the system is given by

equation (4.48) and (4.85) as:

T
u*(t) = -R-1BIPy1x5(t) - R™IBZPox4(t) (4.92)
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and thus x4(t) satisfies:

. _ (2 -1 T
x4(t) = Agxgq(t) + (A2] - B4R B4P21)x5(t) (4.93)

The matrix Af has eigenvalues with negative real parts and
the state trajectory x5(t) is bounded, which implies that
the response x4(t) will also be bounded. It follows that
the system is stable. However, for a constant input
disturbance (modelled by setting Ac=0), the plant states may
not all tend asymptotically to the set point. The plant
states which must be driven to the set point values are, of
course, included in the integral term. The disturbance
system A, was in fact, assumed to be asymptotically stable.
It therefore follows that both Xll and the closed loop

system are asymptotically stable.

The above uniqueness and stability arguments depend upon the
assumption that the A4 subsystem 1is controllable and
observable. The latter assumption may be easily justified,
since both the weighting matrix H and the integral control
matrix Ay are selected by the designer. The conditions
under which the subsystem is controllable have been

established by Porter and Power [36-39]. They are:

(a) If Al is non-singular (Al' By ) must be a controllable

pair, and
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A, 1 =
rank (Ag ' BL) r (4.94)
(b) If Ay is singular (A,, Bj) must be a controllabe pair
and

rank,{AI(AL+BLF)—lBL} =r (4.95)

where r is the rank of the matrix Aj; and F is any matrix

for which (AQ+BIF) is non-singular.

In ship positioning control problems, the matrix Ay is

singular, but the second condition may be satisfied since an

appropriate F matrix may be defined.

The equivalent state feedback scheme for deterministic
systems is shown in Figure 4-3. Usually, an alternative way
to obtain integral control action may be by introducing an
additional derivative term of u(t) in the cost function.
This is often used in deterministic optimal control systems
[40-42]. However, the optimal control signal in the
stochastic control problem will include the filtered noise
input signals. Thus, if the cost is to be calculated from
the plant measurements, the cost function should not include
a term which depends upon the derivative of this control

signal. Fuller [43) has found that it is difficult to find

an appropriate justification for this type of technique.

This does not apply to the introduction of an integral
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operator into the cost function, since this clearly ensures

that the steady state regulating error is zero.

4.3.4 Filtering Problem

It is not intended to include the details of the filtering
problem in this section since this has been discussed in the
previous chapter. However, it has been shown that due to
~the optimal control problem which includes the integral
action, some adjustments have been made in the system

model. It is desirable that the filter should be adjusted

to give consistent estimates for feedback purposes.

As in the control problem, the filtering problem may be
simplified by considering the individual subsystems. The
filter matrix Riccati equation corresponding to the system

equations(4.29)and (4.30)is given by:

5E(t) = APf(t) + PE(t)AT - BE()T R7L THE(¢) (4.96)
— =T

+ DC%_D

where 6§is the covariance matrix of driving noises of the

input disturbance models and Rfis the covariance matrix of

the driving noises of the output disturbance models.
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The equation may be expanded using the system matrices
defined in equations (4.33) to (4.35). The individual

equations become:

Py1(t) = A1P11(t) + Pr3(t)Ay (4.97)
_f T _f _ AT
- Pll(t)félR%‘lellPll(t) + ’BlQ{_Dl
Pio(t) = A1P1o(t) + Pio(t)As (4.98)
_f T .. _f
- Py(t) CyRFIEIPYH(¢)
= f ~ -f _f 7T
Poa(t) = AjPpo(t) + PooA) (4.99)
£ T _f

-f < -f -f
where Pll(o)=§°, P12(0)=0, P32(0)=0. The latter two initial

covariances are zero because the initial state of the
reference (second) subsystem is completely determined.

Thence, the solutions of equations (4.98) and (4.99) are

-t _f
obviously zero (i.e. Pjp(t) = 0 and Ppy(t) = 0,V £20). The
gain matrix 1is then given by:
- ~T 1
_ _¢ T 1 Pll(t)C1R§
Kf(e) = pt(e)C Rl = . (4.100)

It follows that the filter subsystem generating the
estimates of the reference signal X2(t) is completely

separate from the other filter subsystems.
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The filter state variables associated with the integral
control action may now be considered. These states form the
second subsystem in the following partition of the state

~
vector xj3(t).

T T T T o T
K1(t) = [xp(t) xc(t) xw(t) x,(t) (LX) (t)) (4.101)

The system matrices in equation (4.54) may now be
partitioned as in equations (4.33) to (4.35).

(ad r~

A O D

Y ~n ~
Ay = D) = cy = I[C 0] (4.102)
A1 0 0

The filter matrix Riccati equation corresponding to the
system equation (4.27) is given by equation (4.97). The
equation may be expanded using the system matrices defined

in equation (4.102). The individual equations become:

o £ nf JE T Af T f
Py(t) = AP11(t) + P11A - Py1(t)C P11(t) (4.103)
N~~T
+ DOD
]
L f £ 5 T
Bor(e) = A Brice) + Top (VA (4.104)

- Pp1(t)C R; (t)CPy31(t)
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r~f _ ~f ~f T
Pro(t) = AIPlz(t) + le(t)AI (4.105)

£ aT —lrn
- B5; () R 15Pf2(t)

~

~ £ ~f ~f
Where Py](0)=2,, P12(0)=0, Py5(0)=0. The latter two
covariances are zero, for the integral control subsystem has
a known (zero) initial state. The Kalman gain matrix 1is
given by:
F—Nf -

KE(t) = = P11(t)CReY (4.106)

”zéf (t)
21

M ~T )
= | P11(t)C Re

~

~T -1
Lle(t)C R¢

The gain matrix depends only upon the solutions of the

equations (4.103) and (4.104).

The integral control subsystem has input from the plant
state estimates Alz(t) and from the innovation process via
the filter gain ?él(t). Also note that the structure of
the Kalman filter [44] depends upon the output matrix E&
(=[C, O O Cf 0]), and thus state estimate feedback
within the filter only comes from the output noise and the
plant model subsystems. The structure of the filter is

shown diagrammatically in Figure 4-4.
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Infinite-Time Solution of Filtering Problem

The disturbance and output noise subsystems are assumed to
be asymptotically stable and the plant is assumed to be
controllable and observable. Thus, the system A may be
assumed to be stabilizable and detectable [29]. It then
follows that the solution of the equation (4.103) approaches
a unique positive semi-definite solution [29] as to-+-00 ,
for every %O;O. The resulting steady state optimal observer

follows as:

(t) +’E11{5(t)-”g(t)} + Bt (4.107)

and is asymptotically stable. The section of the filter
concerned with the integral action may now be considered.

In steady state, equation (4.104) becomes:

T

~f
£ = —AIPll(t) (4.108)

~f A~
P21(t)A

f

where the steady state value of'gll(t) is given by equation

(4.103) and the closed loop filter matrix is defined as:
~f A
X, = X - %5,C (4.109)

Equation (4.108) is based only upon the assumption that Rg

and %il(t) are both symmetric.
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. . ~
The eigenvalues of the matrix Af have all negative real

M - (]
parts and thus (AfT) 1 exists, so the unique solution for
~ f

le is:
~f ~f ~T -1
le = —AIPll(Af) (4.110)

The corresponding gain matrix may be calculated using

equation (4.106) and the filter subsystem becomes:

A
~

~ ~
(t) = aR(e) + X5 ofz0) - To) (4.111)

| %2>

d
at 21

where %I(t) is the state estimate of (Lg)(t). This
subsystem consists of a number of integrators whose inputs
are given in equation (4.111). The filter shown in

Figure 4-4 is therefore stable. The integral control
subsystem must also be used for generating the signal
(Lgo)(t) contained in the gz(t) subsystem. Equations
(4.106), (4.110) and (4.111) then give the modified

subfilter as:

dxt (t _ ~ - ~
a— = Al{g(_(t) x,(t) (4.112)
- T, 3% ) "éTR'l( (t) - c?((t))}

Recall that Ay is the matrix which selects the subset of
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the plant states to be driven to their set point values. In
A

steady state, gI(t) should tend to a constant value.

4.3.5 Stability of Closed Loop Output Feedback System

In the last two sections, the closed-loop state feedback
system with constant gains was shown to be asymptotically
stable, and the Kalman filter (with the exception of the
integral control system) was also shown to be asymptotically
stable. In this section, the stability problem of the
closed loop system with state feedback and including

integral action will be investigated.

Let the white noise inputs to the system be assumed to be
zero and let the following state tracking error vectors and

reconstruction error vector be defined as:

X(t) = X(t) - Xo(t) (4.113)

% (e) = {LE-Eo} o) (4.114)
~ S

e(t) = x(t) - x(t) (4.115)

The optimal control signal is then given by the separation

principle and equation (4.48) becomes:

* ~e R NMe A
u (t) = -K7.x(t) - KIZZ—I(t) (4.116)
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From equations (4.14) and (4.15), the system equations

become:

?ﬁt) = BX(t) + Bu*(t) (4.117)
and

z(t) = CX(t) (4.118)

The filter equations follow from equations (4.107) and

(4.111).
d 2 ~ R ~f N,C lad
az‘g(t) = Ax(t) + Kjj4z(t) - Cé(t)} + Bu*(t) (4.119)
d A - A% %t K 4.120
ke = AaR(e) + K2l{g(t) - TR (4.120)

From equations (4.115), (4.117) and (4.119), yield:

: ~ nf
e(t) = (A - R110)e(t) (4.121)

and from equations (4.25), (4.113), (4.117) and (4.118),

yield:
X(t) = AR(t) + Bur(t) (4.122)

Also note that:

A’ A A
X(t) = X(t) - Xo(t) and Xi(t) = X (t) = x; (¢)
SO
Ay o
X(t) = x(t) - e(t) (4.123)
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and

|72,

’ ~ e ~? ~ ’ ~
(£) = A-BRYDX(6) - BRI X (t) + 8RS e(r) (4.124)

Similarly, from equation (4.114), (4.115) and (4.120)

A~ A ~

X(6) = X (6) - AK (t) (4.125)
and

20 ~ ~ £

Xp(t) = ALX(t) - (A~ K5 C)e(t) (4.126)

Equations (4.121), (4.124) and (4.126) may now be put into

the form:

~ ~n~C A~ C ~n~C [~ 1

Fj_)s(t)--1 FX—BKll -BK1» BKll ] é(t)

':‘; - _ Y f ~ A

xp(t) A1 0 (Ap=K5:C) | [ 2 (8) (4.127)

~ ~ fr

e(t) 0 0 A-Kj3C e(t)
b P § - - -

The eigenvalues of the closed loop system [29] may be found

using the matrix equation (4.127). This matrix has the

form:
~ ~ =C ]
(A1-B K11) Fi2
F = (4.128)
~ ~f ~
0 (A—K11C)
——
where
~ ~C
v A 0 _c Kyl
O
Ay 2 Ki1 2| ¢
AI 0 Klz
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and

a~n C

BKll

Fi12 =
-(AI-’EZ].E/)

Thence, the closed loop eigenvalues are determined by the

zeros of the polynomial.

fov

~ ~ ~C ~
f%(s) = det(sI-A1+B K11) det(sI-A+K]]C) (4.129)

and clearly, these include the state regulator and the
Kalman filter poles. The state regulator and Kalman filter
have both been shown to be asymptotically stable. It
therefore follows that the optimal stochastic regulator with
integral control is also asymptotically stable. If the
reference state vector Xo(t) is different from zero, the
plant states will be driven asymptotically to the non-zero
set point values. The integral term will ensure that any
unmodelled constant disturbances are offset, without
producing a steady state tracking error, which is based on

the assumption that a steady state solution exists for such

an input.

4.3.6 Implementation on the Dynamic Ship Positioning System

The optimal stochastic regulating system which is a

combination of the deterministic regulator and Kalman filter
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-
is shown in Figure 4-5. The controller includes the state

estimate feedback from each of the input disturbance
subsystems and proportional plus intecral feedback fror the
plant regulating error. The integral control term enables
unmodelled low frequency disturbances to be offset to
maintain zero steady state regulating errors. However, even
when the disturbances are modelled accurately, the integral
action 1is desirable. Consider, for example, the situation
where the low frequency disturbance xc(t) 1s almost
constant. Assuming for the time being that the integral
control is not being used (A7=0), then u*(t) will include
terms in both gc(t) and {ﬁo(t)—g(t)}. The latter term will
not be zero in steady state because the cost function
includes the regulating error and the control signal. The
error will of course be smaller than it would have been had
the disturbances been modelled. However, the integral

control term ensures that even these small errors are driven

to zero.

In the dynamic ship positioning problem, the input
disturbances are usually not modelled in the Kalman filter
to be implemented. The details will be discussed 1in the
next section. In this case, the stochastic optimal control
scheme is of roughly the same complexity as one based on PID
[45, 46) controllers and notch filters [22, 47). Sirilarly,

the transportation delay of the measurement system 1is
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usually neglected. However, if necessary, the above scheme

can be modified to allow for such delays [48, 49].

Belanger [50] has proposed a scheme based upon Johnson's
[51] work involving an observer for the control of linear
systems with constant output disturbances. This scheme has
an integral feedback from the innovation signals in the
observer (equivalent to A1=0). Thus, the input
distﬁrbances, for example, can still produce steady state
offsets in the states being controlled. This may not be
observed in the measured outputs. Smith and Davidson [52,
53] also describe an integral control system which uses an
observer. However, the optimal stochastic control system

was not considered in their work.
4.4 SIMPLIFIED DP INTEGRAL CONTROL SYSTEMS

4.4.1 System Model

The original theory of the stochastic optimal control scheme
given in Section 4.3 assumes that the constant input

disturbances can be modelled. Usualiy the steady current

forces in DP problems are difficult to measure. The

simulations shown in this section are based on unknown

constant disturbance, which means that the constant
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disturbance state equation (4.13) is not included in the
Kalman filter. However, in the ship dynamics simulation a
constant input disturbance, which represents the current

force and steady state wind force, is purposely injected

into the dynamical equations.

The dynamic models of Wimpey Sealat are given in Chapter 2,
Section 2.7. In the application of integral control to the
DP (dynamic positioning) problems, two integral states are
added to form a state vector of eight dimensions. The high
frequency motions are not controlled, theoretically they
have no direct effect on the performance of the integral

controller, therefore the high freguency motions are not

considered here.

Define the state vector and observed output vector:

X1 sway velocity
X2 sway position
X3 yaw angular velocity
Xx(t) = X4 yaw angle (4.130)
- X5 thruster one
X6 thruster two
X7 integral state (sway)
| X8 | integral state (yaw)
z(t) = _zfq observed sway position
| 22 observed yaw angle (4.131)
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The system matrices are given in Section 2.7, except for
Ayr. The thruster model is a first order model. With
reference to the state vector X(t), the unity elements in
A1 Ccan be assigned. They should correspond to sway
position and yaw angle so that their offsets are

eliminated. Therefore,

AL = (4.132)

The weighting matrices, optimal gains, noise covariance and
Kalman gains are given below:

State Weighting Matrix

0. = [3.00 0 o 0 0 10 o
0 500.00 O 0 0 0 0
0 0 3.0 0 0 0 10 0
0 0 0 500.0 O 0 :o 0 (4.133)
0 0 0 0 10.0 0 10 0
o0 o0 __0 _0___0o_ 1000 0 __
0 0 0 0 0 0 10.05 0.025
0 0 0 0 0 0 10.025 0.05
Control Weighting Matrix
R. = | 500.0 0
0 500.0 (4.134)
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Optimal State Feedback Gains (computed from Matrix Riccati

equation) _

Ke =1 2.333678 -0.8974105E-1
1.017820 -0.9651867E~2
0.940621E-2 -2.052542
0.5321420E-2 -1.596670
0.6298736 -0.1424548E-1

0.5698193E-2 1.318934

b e e - — — —— - . - — - ———— —— ——

0.7199648E-2 -0.4749765E-2
0.2967002E-2 -0.1147172E-1

Process Noise Co-variance Matrix

4 x 106 0
QF=
0 9 x 10-8

Measurement Noise Co-variance Matrix

10-5 0

o)
T}
N

0 1.22 x 10°°

L —

-

(4.135)

(4.136)

(4.137)

Kalman Gains (computed from matrix Riccati equation)

Kp = r_0.3013153 0.7578478E-2
0.7761472 0.1344847E-1
0.2410643E-1 0.7459922
0.1681059E-1 1.221376
0 0
._0 ________ O ________
1.0 0
0 1.0
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4.4.2 Control System Design One and Simulation Results

Figure 4-6 shows the step time responses of sway and yaw
motions. The constant disturbance came in at the 80th
second. Both the real states Et(t) and estimated states
%l(t) were deviated from the set position. The constant
bias between x,(t) and 3L(t) was due to the fact that the
constant disturbances did not go into the Kalman filter

directly.

The structure of the state feedback control with integral
action is shown in Figure 4-7. Figure 4-8 shows the time
responses of the system. The real steady errors were driven
to zero by the integral controllers. As before, the bias
between ii(t) and gﬂ(t) remained. The overall system was
overdamped with settling time about 60 seconds. It should
be emphasized that the stability and optimality of this

control scheme are guaranteed. The constant control forces

were built up to balance the steady disturbances.

Linear Analysis of Constant Error in Estimation

Assume the system output (single input single output case)

due to the constant disturbance xc{t) is in the form (see

Figure 4-2):
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ye(t) = GC(s)xc(t) (4.139)
where:
GC(s) = Cy(sI-Ay)~1p, (4.140)

Since xc(t) is not estimated, the LF filter output due to xc

can be shown to be:

A
GC(s)yC(t) (4.141)

o

o)
o+
H

~f
(Cy (sI-A;)~1K17(4) (4.142)

)
9]

0
!

Therefore, the constant estimation error in position, in

steady state, 1is:

eC(t) = yC(t) - 9°(t) (4.143)
A
= GC(o)xc(t) = GC(o)yC(t)

It will be shown in Section 6.4 that this quantity can be

estimated using self-tuning techniques.

4.4.3 Control System Design Two and Simulation Results

There are two ways of overcoming the bias between il(t) and
gl(t) observed in the last section:
(a) include the constant disturbance forces ir the filter,

(b) disconnect the integral control signal from the filter.
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Since the system matrix Al is singular and the constant
forces cannot be measured directly, thus method (a) may not
be applicable. Method (b) is an intuitive technique. The
argument is: the integral control signal is used to
eliminate the offset due to the constant disturbance, since
the constant disturbance is not modelled in the filter.
Thus, this additional driving force should naturally be

disconnected from the filter.

The disadvantage of this design is that stability and
optimality will no longer be guaranteed. Improper weighting
factors of the integral states may lead to an unstable

control system.

Figure 4-9 shows the layout of this design. The time
responses show that the bias has vanished (Figure 4-10). It
is always a problem that an integral controller may produce
an underdamped response. The underdamped problem has been

improved by reducing the weighting on the integral states.

Figure 4-11 shows the time respnses with random noise
disturbances. The constant disturbance appeared at the
200th second. The Kalman filter performed very well and the
system was stable. Note that this test was with input

disturbance, measurement noise and HF output disturbance

-112-



Input Disturbances and Noise

Output Disturbances

and Noise
v 3 | + 9
X, ne's 1 <
I +
e
%,
| u
—
p—
w
I
By
X +
=1 +
c 4
1 d R z
+
+
Al
+ - é'
+ X, + .
G 4: e | z
11 -
+
A

FIGURE 4-9 DP Regulating System with Integral Control (Design Two)




-y11l-

nEO0AR Sway Motion

g, V- C—
AN .

R Estimated Sway Motion

w11 B3N

Attt
e £l 128 154 .
ARG R

eroman Yaw Motion

P | ; y
o / 120
A%5%)

Estimated Yaw Motion

s R ] 515 Yaw Control Signal

Sway Control Signal

Control signal
for Kalman filtér

FIGURE 4-10 Ship Motions with Integral Control (Design Two)




-ST1-

FIGURE 4-11

MAREIan

\

Observed Sway Motion

"—41‘4 1'—‘__;‘ 1 1 1 ' N e P
1 1 ' R ' ' T v o
R L LF Sway Motion

AL

-+
Estimated LF Sway Motion
BV I RS YR
Ty A i L 4 1 4 1
T 1 | =T T ... T - |
1541 (s 1S
ARG

LURAR L AR P T

gt

.

Sway Control Signal

Ship Motions (Design Two) with Stochastic Disturbances




0/5/mc1708/10

(Beaufort No. 5). A self-tuning Kalman filter (to be

discussed in Chapter 5) was used.

4.4.4 Control System Design Three

In Design 2, position errors are fed back into the
integrators through block A7 [28]. This is not found in
some designs [50]. 1In their methods, only the innovations
are‘fed back into the integrators [Figure 4-12]. The step
responses of this control scheme were found to be similar to
those results obtained in Design 2. This was because the
innovations also included the steady state position errors
and these signals were also fed back into the integral
controllers, therefore the steady state errors would be zero
in both designs. However, in Design 1 and Design 2 there 1s
a unique procedure to compute the controller gains, whereas
in Design 3, because the elements of Ar are all zero, the
controller gains calculated using Riccati equation may cause

the system to become unstable.
4.5 SUMMARY OF RESULTS
An optimal stochastic controller was designed for dynamic

ship positioning of Wimpey Sealab. The controller included

integral action which drove the steady state position error
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to zero. The position errors in DP systems are due to
steady current force and steady wind force. The Kalman
filter was used to estimate the states. Three simplified
schemes, which did not include the estimation of the input
constant disturbances, were used and simulation results were
given. Because the Kalman filter did not have an input from
the constant disturbances, the estimated states were biased

from the real states.

A technique was developed to remove the bias by
disconnecting the integral feedback from the filter. It was

found to be quite successful.

A comparison between the technique which feedback only the
innovations and that feedback both innovations and position
errors (through A; matrix)to the integral controllers was

performed.

Because the position errors selected through Ag matrix to
pass the integral controllers, and the innovations also
included the steady state position errors, therefore, the
results in both designs were found to be similar. However,
a non-zero A matrix provides a unigue procedure for

computing controller gains using Riccati equation.
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CHAPTER FIVE

SELF-TUNING KALMAN FILTER

5.1 INTRODUCTION

In this chapter, a novel adaptive filtering technigue is
de§eloped for a class of systems with unknown disturbances.
The estimator includes both a self-tuning filter and a
Kalman filter. The approach was initially developed for
application to the dynamic ship positioning control problem
and has the advantage that existing non-adaptive Kalman
filtering systems may easily be modified to include the
self-tuning feature. However, the theory can be extended to
apply to any system which has an output containing low
frequency components and high freguency components provided

the low frequency model is known. Many engineering and

economical processes have this feature.

The extended Kalman filtering technique was first applied to
dynamic ship positioning systems by Balchen, Jenssen and
Saelid [17]). A simpler but non-adaptive gonstant gain
Kalman filtering solution was also proposed by Grimble,
Patton and Wise [5]. In both cases, a linearized model was

used for the estimation of the low frequency motions and
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optimal control feedback was employed from these estimates.
Balchen assumed, in this and subsequent schemes [18], that
the high frequency motions were purely oscillatory and could
be modelled by a second order sinusoidal oscillator with

variable center frequency.

Grimble et. al. [5, 6, 7] used a fourth order wave model in
the specification of the high frequency motions. However,
the dominant wave frequency varies with weather conditions
and the corresponding Kalman filter gain must therefore be
switched for different operating conditions. The extended
Kalman filter of Balchen automatically adapted to these
varying environmental conditions. The computational load
resulting from the gain matrix calculation was reduced by
making suitable approximations. An alternative extended
Kalman filtering scheme proposed by Grimble, Patton and Wise
(6, 7] employed the higher order wave model but suggested
the use of fixed low frequency filter gains to achieve the
necessary computational savings. These are all described in
Chapter Three. The self-tuning filter described here is
based upon a similar decomposition property. This approach
was first proposed by Fung and Grimble ([16] using a scalar
example and without the theoretical justification given 1n

the following.
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The analysis begins with the system and problem description
in Section 5.2. The fixed gain Kalman filter is then
considered in Section 5.3 and the self-tuning filter is
described in Section 5.4. The errors which are introduced
using the self-tuning structure are discussed in Section 5.5
and the total estimation algorithm is presented in

Section 5.6. Section 5.7 discusses the advantages and
disadvantages of the technique. Finally, a summary of the

results is given in Section 5.8.

5.2 THE SYSTEM DESCRIPTION

The environmental forces acting on a vessel induce motions
in six degyrees of freedom. In dynamic positioning only
vessel motions in the horizontal plane (surge, sway and yaw)
are controlled. To simplify the problem, the motions of the
vessel in the sway and yaw directions only are considered.
This is possible because the linearized ship equations for
the surge motion are normally decoupled from these for the
sway and yaw motions [11]. The assumption is also made that
the low and high frequency motions can be determined
separately and that the total motion is the sur of eact of
them. Marine engineers often make this assumption since the
analysis is simplified and the low frequency motlons can

also be predicted with more accuracy thar the high frequency

motions.
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The canonical structure of the system under consideration is
shown in Figure 5-1. The model for a vessel can be
separated into low ()) and high (h) frequency subsystems.
The low frequency motions (subsystem SL) are controllable
via thruster action and the high frequency motions
(subsystem Sp) are due to the first order wave forces and
are oscillatory in nature. The ship positioning problem is
to control the low frequency motions (output of Sg) given
that the measured position of the vessel (z) includes both
Y and Yp- The object in the following is to design a state
estimator to provide estimates of the low frequency motions
K The estimator must be capable of adapting to variations
in the high frequency subsystem Sy which occur due to

variations in the weather conditions.

The plant S! can be assurmecd to be completely controllable
and observable and to be represented by the following

discrete, time-invariant, state equations:

. . 51(t+1) = Azil(t) + Blg(t) + Dpw(t) (5.1)
zy(t) = y,(t) + v(it) (5.2)
where:
- 2 = ’ (5.3)
E{mt)} - 0, E{o_o(k)g) (m)} = 0 §km .
E{_\g(t)} -0, E{\_*(k)_\iT(m)} = R Sm (5.4)
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and Skm 1s the Kronecker delta function, ig(t)eR”, u(t)eRrRmM,
w(t)eRI and Xl(t)eRr. The process noise w(t) is used to
simulate the wind disturbance and v(t) represents a white
measurement noise signal. The plant matrices Al’ Bl’ Cy and
Dy are assumed constant and known. The observed plant
output includes the coloured noise (wave disturbance) signal

- yp(t) and is given by:
z(t) = gL(t) + yh(t) (5.5)

The high frequency disturbance can be represented by the
following multi-variable auto-regressive moving-average

model :
Sh:  Apl(z llyp(t) = cph(z™1) &(v) (5.6)

which is assumed to be asymptotically stable and Yh(t)eRE
and E(t)eRr. Here é(t) represents an independent zero mean
random vector which is uncorrelated with w(t) and v(t) and
has a diagonal covariance matrixjﬁg. The polynomial

matrices Ah(z‘l) and Ch(z—l) are assumed to be square and of

the form:

Ap(z~1) I, + A1z-1 + Apz~2+...+ Apgz N@ (5.7)

cp(z=l) = cyz71 + Cpz=2+...+Cpc2™"@ (5.8)

-124-



0/5/mcl1708/17

where z71 is the backward shift operator. The matrix
Ah(z‘l) is assumed to be regular (that is Ang 1s
non-singular). The zeros of det(Ap(x)) and det (Ch(x)) are
assumed to be strictly outside the unit circle. The order
of the polynomial matrices are known but the coefficient
matrices {Ai} and {Cj}, i=l, ... na., j=1, ... nc, are
treated as unknowns, since in practice the wave disturbance
spectrum varies slowly with weather conditions. It is also
assumed [1l] that the disturbances in each observed channel
are uncorrelated so that the matrices {Ai} and ﬁcj} have

diagonal fcrm.
5.3 THE LOW FREQUENCY MOTION ESTIMATOR

Assume for the moment that the coloured noise signal yp can
be measured, and thence z, can be calculated. The plant

states x, can be estimated using a Kalman filter with input

L
Zgr assuming the ship equations and noise covariances are
known. It is reasonable to assume that a good time-
invariant model for the low frequency motions is known and
that the noise sources are stationary. This subsystem 1is
stabilizable and detectable, and under these conditions the
Kalman gain matrix is constant and may therefore be computed

off-line. Thus, the solution to this part of the estimation

problem is particularly simple.

-125-



0/5/mcl1708/18

The Kalman filter algorithm becomes:

Predictor:

X, (8/t-1) = Ak, (£-1/t-1) + Byu(t-1) (5.9)
A A
Y, (£/t-1) = G X (t/t-1) (5.10)
P(t/t-1) = A,P(t-1/t-1)AF + D, 0D, L
1 1  Y£Dy (5.11)
A A .

Xy (t/t) = X (t/e-1) + El(t)ﬁl(t) (5.12)

Corrector:

A A
X}(t/t) = Clxl(t/t) (5.13)
P(t/t) = P(t/t-1) - Kf(t)ClP(t/t-l) (5.14)
K, (t) = P(t/t-1)Cr [GP(t/t-1)Ci+ Re] 1
where:

él (t) = z(t) - 9}(t/t—l) - yh(t) (5.16)
=z (t) - Ql(t/t-l) (5.17)

and Kl(t) is the Kalman gain matrix, P(.) is the error
covariance matrix. Of and Rf are the process noise
covariance matrix and measurement noise covariance matrix
respectively. Unfortunately yh(t) cannot be separated from

z(t) by measurement, and the signal ﬁl(t) cannot be
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calculated. The way in which it is approximated will be

discussed in Section 5.5.

5.4 High Frequency Motion Estimator

The wave spectrum 1is represented by the coloured noise model
(5.6) and in this section, the high frequency motion
estimator is constructed based upon this model. The
assumption is made that the low frequency motions can be
estimated via the techniqué of Section 5.3. For the
present, the problem of generating Ql(t/t—l) when yh(t) 1is

unmeasurable will be ijnored.

Define the new variable mp(t) as:

z(t) - §L<t/t-1) (5.18)

|3
g

+
i

and from (5.16):

mp(t) = ﬁﬂ'(t) + oyp(t) (5.19)

The innovations signal él is white noise and mp can be

treated as the measured output of a plant Shp with

measurement noise ﬁl' The covariance matrix for §1 is
denoted by zfl' The innovations signal model becomes:
Ap(z=l)mp(t) = Dh(z"HHE (t) (5.20)
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where {E(t)} 1s an independent random sequence with

covariance matrix EE

The matrix polynomial Dp(z~1) has the form:

Dh(z~1l) = 1, + Dyz=l+..... +Dpgz~nd (5.21)

where the zeros of det(Dp(x)) lie strictly inside the unit
circle. The parameters of Dp(z7l) are determined by the

following spectral factorization:
T
2. Dp(z) = Cplz Ech ¥ (5.22)

1) 2, Ap(z2)

Note that nd=na (since normally na»>nc) and that by
multiplying both sides of equation (5.22) by z"d and taking

the limit as z-0:
Dng 2¢ = AnaEEL (5.23)

Since Ah(z‘l) is regular, that 1is Ana is non-singular,

the following identity holds:
A D = - (5.24)
natnd :;22

Hagander and Wittenmark [54] (for the scalar case) and Moir
and Grimble [55] (for the multi-variable case) have shown

that the optimal estimate of yh(t) can be calculated usingj:
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N
(t/t) = Im (t) - —]. t
Yh ul E;;Ee E(t) (5.25)

where:

E () = mp(t) - §pt/t-1) (5.26)
Using the identity in equation(5.24), Qh(t/t) becomes:

ih(t/t) = mph(t) - AﬁéDnd £(t) (5.27)

The estimate of yp(t) is not needed for control purposes but
is required for updating gl(t/t)' The -wave fregquency model
changes with environmental conditions and these variations
are accounted for in (5.27) by on-line estimation of Ap,,

Dhgq and the innovations g(t) (Section 5.6).
5.5 MODIFIED ESTIMATION EQUATIONS

The signal yh(t) is not measurable and must be replaced in
A .

the low frequency Kalman filter by yh(t/t). This

substitution causes a difference in the state estimates

A )
(denoted XL(t/t)) and in the calculated innovations:

E (t) 2 z(t) = g,(t/t=1) = yn(t/t) (5.28)
= &,(t) + np(t)
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where Qh(t)=lh(t)-ih(t/t). The signal nh(t) for the high
frequency motion estimator has a zero mean value if the
errors in calculating gh(t/t) are neglected. Notice from
(5.16) and (5.26), the innovations £(t) is identical to the

signal &h(t) where:

En(t) 2 mp(t) - Ynit/t) (5.29)

If the above substitution is made, the new low frequency

filter has the form:

>

X (t/t) = A x, (t-1/t-1) + B u(t-1) + Ky(t) E(t) (5.30)

but this equation may be decomposed into two parts:

N A

x,(t/t) = Algl(t—l/t-l) + Byu(t-1) (5.31)

A + Kp(t) € (t)

% (t/t) = 3, %) (e-1/t-1) + Ky (E)np(t) (5.32)
where:

A A ~

X - 5.33)

5}(t/t) 5}(t/t) + ll(t/t) (

A

and gl(t/t) represents the change brought about by replacing

yh(t) by ¥h(t/t) in (5.27). The change in the predicted

output:
~s .A. A
y_l(t/t—l) =y (t/t-1) - xl(t/t-l) (5.34)
where:
v 3 (5.35)
Xl(t/t—l) = qtil(t/t—l) .
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but from (5.9) and (5.33)

A

~ — A
Xl(t/t-l) = (5l(t/t—l)-51(t/t—l)

A

CpA X (t-1/t-1) (5.36)

For later reference, note that ;l(t/t—l) is generated from

1
the output of the low frequency subsystem (see (5.32))
driven by the zero mean signal np. The resulting position

variations are relatively slow in comparison with the high

frequency motions.

The high frequency motion estimator is also modified because

the signal mp(t) in (5.18) cannot be calculated but instead

mp(t) can be found where:

ne

A
z(t) —zl(t/t—l) (5.37)

Eh(t)

The basis of the parameter estimation equation (Section 5.6)

follows from (5.19) and (5.34) as:

mp(t) = mp(t) - 'il(t/t—l)

= ap(z~1)~Ipy(z=1) E(t) - ¥ (t/e-1) (5.38)

Assuming that £ and Yy can be calculated the estimate of

Yh(t) can be generated using (5.27) and (5.38):

_ -1
Yh(t/t) = Wp(t) - Anabna E(t) + ¥ (t/t-1) (5.39)
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The signal £ must be calculated to obtain the desired state

estimates gl(t/t) and this can be found using (5.18), (5.27)

and (5.28):

E(t) = AnaDng £(t) (5.40)
Recall that the gain Kl(t) is calculated based upon the low
frequency subsystem rather than the total system model.

This has the advantage that the gain is fixed and
independent of variations in the high frequency subsystem.
The optimal low frequency position estimate should therefore
be calculated from (5.31) but this is not possible since
gl(t) cannot be computed directly. The state estimates are
therefore obtained via (5.30) but are corrected using the
estimated il(t/t—L). This can be achieved in the ship
positioning problem because the position states are
identical to the outputs of the system. Thus, let the

corrected estimate

i(t/t) - gl(t/t-l) (5.41)

position states in gl(t/t)

1]
<>

A
Xl(t/t)

In the application of Kalman filters, it is unavoidable that
errors will arise from incorrect models for the plant and
noise signals. The signal il(t/t-l) will include such

errors, but in the following section it 1is shown how this
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quantity can be estimated and may be used to correct the low

frequency state estimates.
5.6 KALMAN AND SELF-TUNING FILTER ALGORITHMS

The Kalman and self-tuning filter algorithms are combined
below to produce the desired low frequency motion

. . A
estimator. The Kalman filter to estimate Zl(t/t) becomes:
Algorithms 5.1

Predictor:

A

A —
X (t/t=1) = AjX,(t-1/t-1) + By (u(t-1)) (5.42)

A A
il(t/t—l) = Clgl(t/t—l) (5.43)

Corrector:

(£/t-1) + K, (t) £(t) (5.44)

1
|>)>

% (t/t)

1 !
T (t/8) = G (e/t) (5.45)

The signal £ is required in the above algorithms but this
can be computed from (5.40) given the innovations signal
and the matrices Ap, and Dng- These matrices may be
estimated as described in the following. Note that at time
t-1, the predicted output %L(t/t—l) is known (from (5.42),
(5.43)) so that Wp(t) can be computed from (5.37). From

(5.39):
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Ap(z=L)mh(t) = Dh(z~1l) E(t) - -1y
h(z74)mp h(z™) &(t) Anpl(z )Xl(t/t'l) (5.46)

The quantity zl is a slowly varying signal (from

Section 5.5) and can be treated as a constant over a short
time interval. Let s(t)=Ah(z‘l)§’(t/t—l) (where using the
final value theorem z may be replaced by unity) then (5.46)

becomes:

An(z=l)mp(t) = D(z"1) E(t) - s(t) (5.47)

The innovations signal model can be represented in the usual

form for parameter estimation:

mh(t) = P(t)h + E£(t) (5.48)

and the algorithm due to Panuska [56] can be employed to

estimate the unknown parameters.

In the ship positioning problem, the high frequency
disturbances can be assumed to be decoupled, so that
Ah(z‘l)“th(z‘l) is a diagonal matrix and the parameters for
each channel can be estimated separately. Thence, standard
extended recursive least squares or maximum likelihood

parameter identification algorithms may be used. For the

ith channel:

Mpi(t) = Pi(t)Bi + Ei(t) (5.49)
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where:
Yilt) = [-mpi(t-1)],...,@h;i(t-na); (5.50)
Ei(t-1),... &j(t-nd);1]
T _
i = lajs...aipna’di1r-+-dingrsil (5.51)

Past values of the innovations signal are approximated by:

£i(t) = mpilt) = Yi(t) éi (5.52)

N
where j(t) is given by (5.50) with £;(t-j) replaced by
N

A
£i(t-3) j=1, 2, ..., nq and @, represents the estimated

parameter vector.

The recursive Kalman/self-tuning filter algorithm now

becomes:

Algorithm 5.2

1. Initialize. i, initial parameter covariance for each
channel and assign the forgetting factor ﬁ.

Initialize state estimates.

A
2. Generate the Kalman filter estimates gz(t/t—l) and

%i(t/t~l) using (5.42) and (5.43).

N
3. Calculate mp,(t) using (5.37) and form (t).
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4, Parameter update:
A A P A A
Bilt) = Bi(t-1) + Ki(t)(mpi(t) - Pit) Bi(t-1))
(5.53)
5. Covariance and gain update:
P P P A A
PL(t) = {Pi(t—l)—Ki(t)( B+ bite)pf(e-1) qﬁ(t))K?(t)T}/p
P P ~ A A
Ki(t) = Pi(e-1) Qice)(p+ ¢ice) phee-1) $T(e))-2
(5.54)
where 0.955P$1.
6. Innovations update:
A _ A A
Eil(t) = mpi(t) - ¢ilt) Gi(t) (5.55)
7. Calculate éli(t) for channel i using (5.40):
Z A=14 A
E;i(t) = apadng £i(t) (5.56)

8. If 1 £ number of channels (r), go to step 3.

A
9. Generate the state Zl(t/t) (using equations (5.44) and

(5.45).

10. Calculate the estimated El(t/t—l) as:

Vyi(t/5-1) = 5i(t)/Ap;i (1) (5.57)
Veilt) = a¥si(t-1) + (1-&) ¥pj(t/t-1)
0 & <1
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11. Correct the position estimates using (5.41). Return to

step 2.

A

The signal ?1i(t/t—l) in step 10 may be processed, to

A
produce the smoothed estimate ?gi(t), before it is used to
correct the state estimates. The algorithm described in

Appendix D can predict the velocity as well as smoothing the

estimation of ?li(t).

The structure of the self-tuning/Kalman filtering scheme for
the dynamic positioning system is shown in Figure 5-2. The
surge motions are decoupled from the sway and yaw motions

and thus these are normally estimated by separate filters.

5.7 DISCUSSION

The self-tuning Kalman filtering technique is the
alternative scheme for a dynamic ship positioning control
system. The advantages and disadvantages are listed below.
Most of the advantages are also i1ts advantages over harmonic
wave model and fourth order wave model extended Kalman

filtering approaches.
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5.7.1 Advantages

(a) The varying wave disturbance is represented by

single-input single-output channels and thus the

adaptive filter is not multi-variable in nature.

(b) The high frequency adaptive filter forms a separate
subsystem to the low frequency Kalman filter and thus

the gain calculations are simplified and the system may

be commissioned more easily.

(c) The filter gains for the low frequency estimator are
fixed and can be computed off-line whereas all of the
gains in an extended Kalman filter must be computed

on-line unless approximations are made [17, 18].

(d) Existing constant gain linear Kalman filtering DP
systems [5] may easily be modified to include the

self-tuning features described here.
(e) There is no need to specify the process noise

covariance or the form of the high frequency rodel.

Only the total order of the model 1is assumed known.

-139-



0/5/mc1708/31

(f) The high frequency model states which are not needed

for control purposes, are not estimated in the

self-tuning approach.

5.7.2 Disadvantages

The full extended Kalman filter in which all of the gains
are computed on-line can be classed as being locally optimal
(1f ﬁhe linearizations are correct) whereas the self-tuning
scheme is sub-optimal unless the low frequency estimator
gains are calculated on-line using knowledge of the changing

high frequency model.

In fact, the harmonic wave model extended Kalman filtering
approach is not an optimal extended Kalman filter. The
fourth order wave model [6, 7] extended Kalman filter
approach involves too many states and is therefore very
difficult to implemented for it may easily cause numerical

problems and the stability problem is difficult to analyze.
5.8 SUMMARY OF RESULTS

A self-tuning technique has been developed to replace the

usual fixed high frequency estimator in Kalman filtering
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dynamic positioning systems. Thus, systems which do not

currently have automatic adaption to varying environmental

conditions can be provided with such a feature. The

approach has the advantage of simplicity over extended

Kalman filtering dynamic positioning systems. In addition:

(b)

The

There is no need to specify the process and measurement

noise for the high frequency model.

High frequency model states which are not needed for

control are not estimated.
The structure of the multi-variable estimator which
involves separate adaptive and non-adaptive subsystems

simplifies both implementation and fault finding.

technigue can also be applied to other engineering and

economical processes which nave the same features as the

dynamic positioning systems.
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CHAPTER SIX

THE USE OF SELF-TUNING KALMAN FILTERING TECHNIQUES IN

DYNAMIC SHIP POSITIONING SYSTEMS

6.1 INTRODUCTION

In Chapter Five, the theory of a self-tuning Kalman filter
was developed. Originally, the theory was inspired by the
Dynamic Ship Positioning (DSP) problem. 1In psp systems, the
controlled ship motions are due to the current, wind and
second order wave disturbances. These motions are slow
compared with the high frequency oscillatory first order
wave disturbances. The control problem and system modelling
are fully described in Chapter One and Chapter Two. The
self-tuning Kalman filter has several advantages over the
more usual extended Kalman filter [7, 17, 18]. The
separation of the LF and HF estimation functions is
convenient for both fault analysis and error detection. The
existing constant gain Kalman filtering DSP system [5] can
easily be modified to include the self-tuning section. Most
of all, the self-tuning filter subsystem is adaptive to the

weather condition changes.
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The application of self-tuning Kalman filter to DSP is
tested in four conditions. 1In the linear case, both single
input, single output (SISO) system and multi-input,
multi-output (MIMO) system are used to test the filtering
and control scheme. The results are given in Section 6.2.
In the next test, instead of using a linear model to
simulate the low frequency ship motions, the original
non-linear differential equations are used. The estimation
of states still remains the same, that is, a linear Kalman
filter is employed. In the above three cases, no integral
action is included in the controller. The final test is to
demonstrate a special feature of the self-tuning Kalman
filter when integral control is employed. The MIMO system
is used in non-linear cases. The filter and controller
parameters are given in each section. These parameters may
vary among the tests, since the model used for the design

may not be the same for each test.

6.2 LINEAR SYSTEM IMPLEMENTATION

6.2.1 Single Input - Single Output Systems

Low Frequency Model

In this study, the sway model of Wimpey Sealab [11] 1s

considered with Beaufort No. 8 sea condition (equivalent to
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a mean wind speed of 19 m sec'l). The normalized linear
model 1is:

x)(t) = A x,(t) + Bju(t) + Dyjw(t)

yl(t) = lel(t) (6.1)

The system matrices are:

-0.0546 0 0.5435
Al = 1 0 0
0 0 -1.55

By = [0 o 1.55]
0

¢ = [0 1 0] (6.2)
T
Dy = [0.5435 0 0]
x{l(t) sway velocity
Eg(t) = | xp2(t)| = | sway position (6.3)
xp3(t) thruster state

Here u(t)€ R! represents the control input to the thruster,
w(t) € Rl is a white noise sequence representing the random
force on the vessel. Other disturbances, such as wave drift
and current forces cannot be measured and can be considered
to produce an unknown mean value on the signal w(t). Let
yl(t)é Rl denote the low frequency motion, v(t)eR1 the

measurement noise and zl(t)E.R1 is the measurement noise and
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LF sway motion respectively. For Wimpey Sealab, the
estimated standard deviation for co(t) is 6b=0.00228, and

that for v(t) is 64,=0.0033.

High Frequency Model

The simulation model used is described in Method (1) in

Section 2.8.4.

For the self-tuning filter subsystem, it is assumed the HF

motion can be modelled by a second order transfer function.

_ Ch(z~1
ynt) = zhei=ry E(t) (6.4)
where:

Ch(z=1) = cyz71 (6.5)

Ap(z—1) l+ajz~! + apz~2

The parameters of the polynomials Ah(z‘l) and Ch(z‘l) are

unknown and g(t) is an independent random sequence.

The total measured output is:

z(t) = zQ(t) + yh(t)
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Filtering Problem and Results

A steady state Kalman gain matrix is used in the LF state
estimation subsystem. For Wimpey Sealab, the process noilse
and measurement noise covariances are 6;= 5.1984 x 10-6 ang
Q1= 1073 respectively. The computed steady state Kalman

gains are given as:

r —
0.301351
kEs ={0.776339 (6.6)
0.0

The thruster state has zero gain because the process noise

is not fed into this state.

The estimated parameters are shown in Figure 6-1. The
parameters converged to steady values after 350 seconds. It
is, of course, well known that the convergence rate of any
technique, where the innovations must be approximated, 1is
very slow. Figure 6-2 shows the total sway motion, and the
estimated LF motion is shown in Figure 6-3. When the
uncontrolled vessel was drifting away from the station, the
estimator tracked the position well even though the
parameters had not reached steady state (see Figure 6-1).
The high frequency estimation is shown in Figure 6-4. The

HF estimator started to track accurately the HF motion after
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20 seconds. Before this time, it tracked reasonably well

except for a noisy envelope.

For the innovation process equation (5.20) to be stable, the
parameters aj and dj should lie in the interval [0, -2], and
ap and dp should lie in the interval [0, 1]. Thus, the best
guess of the initial values for aj and d; are both -1.0 and
those for ap and dp are 0.5. When using the extended least
square algorithm, the parameter gains and the estimation
errors should be restricted so that {ai} and {di} lie in the
stable region, otherwise, it has been observed that the

estimated parameters may blow up in the initial estimation.

It is important to consider how the filters behave in steady
state. Figures 6-5 to 6-7 show the motions between 400 to
500 seconds. Both LF estimator and HF estimator behaved
well. The cumulative losses are shown in Figure 6-8. These

tests were based on Beaufort No. 8 (h1/3=7.47m) sea

condition. Figure 6-9 shows the parameter estimation when
the sea condition was changed to Beaufort No. 5

(h1/3=2.7 m). As the Beaufort number decreases, the natural
frequency of the wave spectrum increases, therefore, the
absolute values of the parameters {ai} should increase. The

absolute values of the parameters {ai} do increase at the

time when sea condition is changed, and they converge to new

steady state values. This demonstrated that, as required,
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the self-tuning scheme adapted to different weather
conditions. The simulated frequency range of HF motion at
Beaufort No. 8 is 0.3%1l.2 radians per second, and that at

Beaufort No. 5 is 0.5%1.9 radians per second.

In this simulation test, the quantity of s(t) equation
(5.66) was not estimated. This was based on the assumption
that 1f the variance of the measurement noise was
sufficiently high, the signal np(t) in equation (5.51) was
almost negligible compared with Sﬂt). Thence, the
estimation of s(t) may be dropped. The results have
verified this assumption. However, if the variance of the
measurement noise was unable to suppress the effect of np(t)
in the system, significant error in the LF estimation was
found. Therefore, it is recommended that the estimation of
s(t) should always be included. On the other hand, if the
variance of the HF disturbance is low (the variance of np(t)
is low), this will give better estimation in LF motion (see

equation (5.32) and (5.33)).

6.2.2 Multi-Input - Multi-Output Systems Low Frequency

Model

The DSPsystem to be considered here is a two-input and two-
output system. The controlled variables are sway and yaw

motions. The LF linear ship model is given in Section 2.7
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(Wimpey Sealab). Model A was used in this simulation. The

LF state vector is defined as:

X1(t) sway velocity
xp(t) sway position
il(t) = x3(t) yaw angular rate (6.7)
xq(t) yaw angle
xg5(t) thruster one
hx6(tlj thruster two

High Frequency Model

The HF wave motions were simulated using Method [2]

described in Section 2.8.4.

The high frequency model for the self-tuning filter is a
second order ARMA model which is described in Section
2.8.2. The order of Di(z~l) is identical to that of the

Ap(z=1).

Filtering Problem and Results

The steady state Kalman filter gain matrix is computed based
on the process noise variances (LF only) defined in eguation
(2.18) but the measurement noise covariance matrix (2.19) 1is

inflated to diag [5 x 10-5, 1.22 x 1074}, The first and

second diagonal elements are five and ten times the
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simulated measurement noise variances equation (2.19)

respectively. The computed Kalman gain matrix is:

0.1263 0.0031
0.5023 0.0086
0.0170 0.2201
kf =] 0.0210 0.6633 (6.8)
0.0 0.0
| 0.0 0.0

The filter gains corresponding to thruster states are zero

because the process noises are not fed to these states.

The simulation results presented below were obtained using
the above high frequency model to generate the wave
motions. The tests were based on sea states corresponding
to Beaufort No. 8 and 5 (wind speeds 19 m/sec. and

9.3 m/sec., respectively), which correspond to typical
rough and calm seas respectively. The first set of the
filtering results (Figure 6-10 and Figure 6-15 are for

Beaufort No. 8 without closed loop control.

The total sway motion is shown in Figure 6-10 and the
estimated and modelled low frequency sway motions are shown
in Figure 6-11. The estimate of the low frequency motion 1s
required for control purposes and it is clear the estimate

is good throughout the time interval (even after initial
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start up). The high frequency sway motion estimates are not
needed for feedback control and are not shown. The total
and the low frequency yaw motions are shown in Figure 6-12
and Figure 6-13 respectively. It is important that the LT
motion estimates are relatively smooth to reduce the
consequential variations in the control action. The major
role of the combined estimator is indeed to separate the HF
and LF motion estimates. Since the LF Kalman filter does

not have z, as an input, but rather:

z(t) - yplt/t) = z,(t) + np(t) (6.9)

the predicted measurement noise covariance should be
increased if the LF estimates contain an HF component.
Since the HF wave conditions are slowly varying, the amount
by which Rgf should be increased is not known exactly, but
the system is not oversensitive to such an adjustment
(factors of 5 on sway and 10 on yaw were used for the

results shown here).

The cumulative loss functions for the position estimation
errors in sway and yaw (both HF and LF) are shown in

Figure 6-14. The LF loss function for sway is defined is:

N S AS 2
J =2 (y, (&) - yL(t/t)) (6.10)
t=1
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If the measurement noise were not artifically increased when
calculating the Kalman filter gain, the HF and LF loss
functions for yaw would be found to be similar. This is an
indication of optimal performance which has been sacrified
to some extent to obtain smoother position elements. The
parameter estimates for the high frequency model are shown

in Figure 6-15 where:

r;i 0 r;; 0
Ap(z=l) =15 + z=1 + 272 (6.11)
L? a{ 0 ag
i _ |
— -1 — -1
dj 0 dj 0
Dh(z'l) = Iy + z-1 + z=2
L_0 di LO dg_ (6.12)

Note that even before the estimated parameters have
converged, the position estimates are still accurate (see
Figure 6-11 and Figure 6-13). The initial parameter
estimates for the matrices Ap and Dn can be based upon the
knowledge that these have stable inverses. The polynomials
are all of the form a = l+ajz”l + arz~?2 = (mpz~! + 1)x
(m22‘1 + 1) and since|mp{<1l, |m2|<1l then -2< mp+mp <2,
-1<mmp <1. Assuming m},m2<0 implies that good initial

estimates are az = 0.5 and a; = -1. It was found that the
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initial error covariance for s(t) should be small (e.g. 0.1
in this test) but the initial covariance for the other
parameters should be high (e.g. 100). The estimate of s(t)
may contain a high frequency component and this may be

smoothed by use of a simple first order lag filter.

The filtering results for a calm sea (Beaufort No. 5) are
shown in Figures 6-16 to 6~21. The state estimates are much
better for this case. This is consistent with the theory of
Section 5 that shows that when the modelling errors are
negligible, the term il(t/t—l) is caused by the estimation
error of the high frequency motion (see (5.22) and (5.33))

which 1s reduced in a calm sea.

Control Problem and Results

The controller design 1is based on the well known separation
principle of stochastic optimal control theory. The
controller with input X and output u is chosen to minimize

the performance criterion:
_lim 1 T _ T _ 613
J = Te00 3T E{‘S—T(il ry) O.(xy - ry) (6.13)
+ uTRCudt}
where O, and R, are positive definite weighting matrices.

The optimal control signal is generated from a Kalman filter
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cascaded with a control gain matrix Kg:

u(t) = -chl(t/t) (6.14)

The control gain matrix may be calculated from the steady
state Riccati equation in the usual way. The closed loop

control system is shown in Figure 6-22.

The optimal control weighting matrices were chosen to
penalize the position error corresponding to the low
frequency motions (states 2 and 4) and to give an

appropriate step response. These were found as:

Oc = diag[5,60,5,60,1,1]
(6.15)
Re = diag[400,400]
The computed optimal steady state gain matrix is:
1.2907 —0.0475-_1
0.3873 0.0030
0.0116 -0.8371
Ko = 0.0030 -0.3873 (6.16)
0.3815 -0.0095
- . S
__0'0095 0 663'_J

The saturation limits on the control signals were set at
+0.002 per unit. These represented the actual saturation

which can occur when thrusters are at full load. The
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details of the controller design is described in Chapter
Four. Integral control is not included in this test, it is

shown in Section 6.3.3.

Closed Loop Control

The first set of results are again for the rough sea
(Beaufort No. 8) condition. To allow the parameter
estimates to converge (as will be possible in practice) the
step response of the system is measured over the time
interval 150 to 300 seconds. A step reference of 0.06 per
unit is input to the system at t=150 seconds. The sway and
yaw responses are shown in Figures 6-23 to 6-26. The low
frequency variations, due to wind and current disturbances,
are much reduced under closed loop control but the high
frequency motions are, as required, almost unchanged. The
rise time for the step response can be reduced if larger
control signal variations are allowed. These are shown in
Figures 6-27 and 6-28 and it is clear the sway control
enters the saturation limit for a few seconds when the step
demand is entered. This is not a problem, since in practice
position reference changes are not made in steps. One of
the main design objectives is to reduce "thruster
modulation", that is, a variation of the thrusters 1in
sympathy with the wave motions. That this objective has

been achieved is clear from the control signals shown 1in
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Figures 6-27 and 6-28.

The equivalent results for the calm sea (Beaufort No. 5)
condition are shown in Figures 6-29 to 6-34. The parameter
estimates are improved and the control signal variations are
reduced in this case, as would be expected. Note that in
comparing the high frequency motions in Figures 6-23 and
6-29 the magnitude of the HF motion is reduced in the calm
sea but the frequency of the wave motion is higher. The
sway motion is less than the allowed limit of 3 metres for

both sea states.

The estimated guantities of §si(t)(i=l,2) shown in

Chapter 5, algorithm 5.2, step 10 are illustrated in

Figures 6-35 and 6-36. In Beaufort No. 5, this signal
§si(t) is much smoother than it is in Beaufort No. 8. These
results are consistent with the theory. The argument is:
§si(t), a smoothed signal of éli’ has been shown to be
driven by the estimation error, np, of the HF motion. In
calm sea, the variance of the estimation error (driven
noise) is small, thence, this noiéé is attenuated by the

N
ship dynamics. As a result of this, Ygj(t) is smoother in

calm sea than it is in rough sea.
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6.3 NON-LINEAR SYSTEM IMPLEMENTATION

In the last section, the self-tuning Kalman filter has been
applied to linear DSP systems and was found to be
successful. Practically all physical systems in one way or
another, are non-linear. To extend the study on the
application of the self-tuning Kalman filter to DSP systems,
a non-linear dynamic ship model is used to investigate the
filtering and control problems. A non-linear thruster model
is also included in the LF dynamics. The Kalman filter,
however, is based upon the linearized version of the

models. The thruster subsystem of the filter is a second
order model (Section 2.6.2). The high frequency model is

basically the same as in the linear case.

Low Frequency Model

The non-1linear model for the thrusters is shown 1in

Figure 2-6.

The LF eguations of motion for the vessel Wimpey Sealab have

been derived from tank tests and are non-linear

(Section 2.7.1):
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X] = =2.4022|x)|x] + 0.03696|x3|x3
- 0.5435]x3| x3 + 0.535u; + 0.05435w,

X2 = X]

x3 = 2.5245|x1}x] - 1.585[x3|x3 - 1.634u, (6.17)
+ 9,785 W)

Xg = x3

where x)=sway velocity, xj=sway position, x3=yaw velocity,
x4=yaw angle, uj=thruster 1 output, us=thruster 2 output,
W), Wo=process noise. The ship simulation is based upon

the above model.

The LF linear ship model B described in Section 2.7.1 was

used for the Kalman filter and controller design.

X] = sway velocity

X2 = sway position

x3 = Yyaw angular rate

X4 = yaw angle (6.18)
X5 = thruster one state one

Xg = thruster one state two

X7 = thruster two state one

xg = thruster two state two

-176-



0/5/mcl1708/50

High Frequency Model

The simulation of high frequency motions and the self-tuning
filters are identical to the linear system case described in

Section 6.2.2.

Filtering and Control Problems and Results

The system matrices for the Kalman filter are identical to
the linear system except that the thrusters are represented
by second order models. The process noise covariance matrix
Qf(LF only) for the calculation of the Kalman gain is given
in equation (2.18). The first and second diagonal elements
of the modelled measurement noise covariance matrix,

are increased by a factor of 4 and a factor of 10

respectively, which gives [c.f. eqguation (2.19)]

RE = [4x10-5, 1.22x1074) (6.19)

The adjustment will allow the Kalman filter to accommodate
the errors due to the estimation of the HF motions which
though not computed directly, do affect the Kalman filter as

additional measurement noise.

The computed Kalman gain matrix is:
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]

0.1427
0.5341

K. = 0.01829

0.02129
0
0
0

e

-

0.003191
0.008514

0.2453

0.7003
0
0
0

(6.20)

The optimal controller design criterion is similar to the

linear system case (Section 6.2.2) but the state vector in

the non-linear system has two additional thruster states.

This requires the weighting matrices to be redefined.

are:

0O
0
]

R~ = diag (500 200]

By solving the Riccati equ

of the optimal feedback gain matrix was found to be:

—

3.048 -0.174
1.0 0.002
0.01137 -3.049

Kg =| 0.001463 -1.581
0.6652 -0.012
1.892 -0.053
~0.005076 1.315
-0.0164 4,322

S

diag [3 500 3 500 0 10 0 10]

They

(6.21)

(6.22)

ation, the steady state solution

-

396

77
95

-178-

(6.23)



0/5/mcl1708/52

The optimal control signal, based on the separation theorem,

becomes:

U(t) = -KgX)(t/t) (6.24)

A . N
where ﬁl(t/t) 1s the estimated state vector of the LF
motions. The stochastic control scheme is illustrated in

Figure 6-37.

Simulation Results

The performance of the optimal state estimation scheme is
illustrated in the first set of results (Beaufort No. 8)
shown in Figure 6-38 to 6-41. The system has a step
reference input of 0.03 per unit to the sway subsystem at
t=50 seconds. (N.B. real time = 3.104 x simulated time).
The results demonstrate that the system remains stable even
in the non-linear case. The estimates of the LF motions
(Figures 6~39 and 6-41) are needed for control purposes and
are good even in this non-linear situation. The parameter
estimates of the HF subsystem (Figure 6-42) converge
rapidly. The initial parameter estimates for the matrices
Aj and Dy are similar to the linear situation described 1n
Section 6.2. The accumulative loss functions for the LF
estimator (Figure 6-43) increase steadily after the

parameters have settled down. The estimated thrusts, shown

in Figure 6-44 and 6-45, are as expected varying more than
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the thrusts generated from the modelled non-linear
thrusters. This also applies to the estimated and modelled
velocities shown in Figures 6-46 and 6-47. The estimates of
the self-tuning parameter s(t) for sway and yaw (Figure 6-48
and 6-49) show higher frequency variations than are obtained
with linear ship models (recall that s(t) is related to the
error term'zl(t)). Note that the amplitudes of these
signals are very small. Also note that at t=50 seconds,
s(t) for sway has a significant over shoot. This over shoot
indicates that s(t) can detect the modelling errors when a
step input is applied to the non-linear system while a
linear filter is being used. The response shown in

Figure 6-39 indicates that, when a step input is applied,
the linear estimator reacts faster than the non-linear
system response, and so gives a significant estimation
error. When this error is detected in s(t), the estimation

is upgraded to follow the actual system output.

The second set of results for Beaufort No. 5 is shown in
Figure 6-50 to Figure 6-59. As expected, better results are
obtained. The s(t) signals (Figures 6-58 and 6-59) are less
oscillatory and the amplitudes are lower in Beaufort No. 5
than in Beaufort No. 8. This is consistent with the theory

that s(t) is caused by the HF estimation error.
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6.4 SELF-TUNING KALMAN FILTER WITH INTEGRAL CONTROL

The ship positioning system with integral action has been
discussed extensively in Chapter 4. A simplified scheme was
proposed for practical application purposes in Section 4.4.2
design 1. The simulation results show that the overall
control system is stable and well damped (Figure 4-8). The
plant output states have zero steady state error, but the
drawback is that there are constant errors e€(t) in the
position estimation. In this section it will be shown that
these constant errors due to constant disturbances, can be
estimated, and therefore, the output state estimation will

have no constant errors.

In Section 4.4.2, it has been shown that the constant
estimation error is gc(t)=xf(t)—§f(t). Since e€(t) appears
in the usual Kalman filter estimation (because the constant
disturbances are not modelled), these gquantities will be
included in the variable mh(t) defined in equation

(5.5.10). Thus, mp(t) can be redefined as:

B (t) 2 z(t) - §l(t/t_1) - eC(t) (6.25)

»
where z(t) is the measured output and Xl(t/t'l) is the
predicted output generated from the Kalman filter at time

t-1. Assuming eC(t) can be estimated, the total output
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estimated positions using equation (5.41) can easily be

shown to be:
. A .
y(e/0) = geese) - {%,(t/e-1)-ec(0)} (6.26)

It is clear in eqguation (6.26) that compensation signals
zl(t/t—l) and eC(t) need not be separated. Thence, these
two quantities can be combined into one parameter. From
equation (6.26) and equation (5.46), the equation for

parameter estimation can be rewritten as:

Ap(z~1)mp(t) = Dp(z~1)E(t)
- Ah(z‘l){zl(t/t—l)-gc(t)} (6.27)

To estimate the sum of zl(t/t—l) and e€(t), the only change

in algorithm 5.2 is to redefine the variable s(t) as:

s(t) = Ah(z-l){zl(t/t—l)—EC(t)} (6.28)

This is the theoretical analysis of estimating the error
term eC€(t). In practice, the algorithm 5.2 does not require
to be changed at all. 1In general, the variable s(t) can
represent any slowly varying and/or constant errors as well
as errors due to linearization of non-linearity. The
algorithm will automatically feed the estimate of s(t)

through a filter Ah'l(z‘l) to yield a signal for correctng

the position output estimate.
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Simulation Results

The simulation of the non-linear low frequency motions and
high frequency motions are identical to those described in
Section 6.3. Due to the introduction of integral states,
the system matrices for the linear Kalman filter and for the
calculation of the optimal feedback gain matrix are defined

as follows:

- - B
5;(t) = 5l(t)+ wit) (6.29)

where matrices Ay, By and Dy are defined in eguation
(6.27). The matrix E, (steady state wind disturbance) is

defined in equation (2.13).

Ap = 01 000O0O0O
0001O0O0O0O

— r_ ] .

x(t) = X1 sway velocity
X9 sway position
X3 yaw angular velocity
X4 yaw angle
Xg thrust velocity of thruster 1
X thrust of thruster 1 (6.30)

6

X7 thrust velocity of thruster 2
Xg thrust of thruster 2
X9 integral state for sway motion
x10| integral state for yaw motion
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z(t) = z] observed sway position (6.31)

z) observed yaw angle

The state weighting matrix Q. and control weighting matrix
Rc are the same as those defined in equation (6.21) and
(6.22) except for an extra Aj. The weighting factors

corresponding to the integral term are:

Or = (6.32)

When the steady state Kalman gain matrix was computed, the
measurement noise covariances of sway and yaw motions were

inflated by twice and three times respectively.

The performance of the entire stochastic control system is
shown in Figures 6-60 to 6-63. The system has a constant

current disturbance input of 0.002 per unit to the sway

subsystem at t=50 seconds. The disturbance is much larger
than would occur in practice since it would involve the
thrusters acting continuously at full load to counteract the
effect. However, the results demonstrate that the system
remains stable even in this extreme situation. The steady
state error can be reduced to zero by the use of integral

action. The estimate of the LF motions which are needed for

control purposes are good even in this non-linear situation.
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6.5 SUMMARY OF RESULTS

The self-tuning Kalman filter has been shown to be
successfully applicable in DSp systems in both calm and rough
sea conditions. The filter and control scheme worked very
well in single-input single-output, linear multi-variable
and non-linear multi-variable cases. It was also shown that
the self-tuning filter could estimate the errors due to
linearization of non-linearities and the constant error due

to constant disturbances, in the position output estimation.
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CHAPTER SEVEN

THE ADAPTIVE TRACKING OF SLOWLY VARYING PROCESSES WITH

COLOURED NOISE DISTURBANCES

7.1 INTRODUCTION

In many industrial processes and communication systems the
low frequency signals of interest are corrupted by high
frequency disturbances. The conventional technique to
remove these disturbances is to use low pass filters. It is
well known that the filtered output will contain a
significant phase lag especially when the filter has been
designed to produce very smooth estimates. If the signal
model and the noise covariances of a process are known, an
extended Kalman filter can be used to adapt to the varying
coloured noise disturbances. However, if the model of the
plant and disturbances are unknown, it is very difficult to
use this approach. In this chapter, an adaptive estimation
technique is developed to deal with slowly varying processes
where the process model is unknown. The adaptive estimator
is divided into two parts, namely a primary estimator and a
vernier estimator. The primary estimator is a low pass
filter or its equivalent. The vernier estimator is self-
ying disturbances. The terms

tuning and 1is adaptive to var
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primary and vernier were borrowed from the space shuttle
orbital control system where primary jets are used to
control large errors and vernier jets to correct small

errors.

The adaptive estimator can be used to track constant, ramp,
step and sine wave signals. It is well known that the
motion of a ship at sea consists of low and high frequency
motion components. The low frequency motion is due to wind,
current, second order wave and propulsion forces. The high
frequency motion is caused by the first order wave forces.
The adaptive tracker can be employed to estimate the low
frequency motions, and simulation results for this are

presented.

The theory of the adaptive tracking problem was originally
inspired by the self-tuning Kalman filter theory developed
in Chapter Five.

7.2 SYSTEM DESCRIPTION

The canonical structure of the single-input/single-output

system to be considered is shown in Figure 7-1.

The slowly varying process is modelled by:
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FIGURE 7-1 A Single Input - Single Output Stochastic System
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. _ N(z~1)
SL- xL(t) = HT;:r;‘”(t) (7.1)

and the high frequency disturbance is modelled by:

G(z~1)
Sh: (t) = t
h® Yh F(z=-T) E(t) (7.2)
and E{Yh(t)} =0 (7.3)

where z~1 is the backward shift operator, v(t) and %(t) are
independent random variables with variances q? and 6%2,
respectively. The signal W(t) is also an independent random
variable with variance qg but not necessarily zero mean
value. M(z~1) and N(z=1) represent the unknown plant
polynomials. The plant can be a non-linear system or a
linear system. The polynomials F(z~1) and G(z~1) are

defined as:

F(z=1l) = 1+f12714f,27 24, ..., +fneznf (7.4)

G(z—1)

"
—
+

Q
—
N
!

b

+
Q
N

N

I

N
+
+

(0]
3
Q
N
3
Q

The parameters of the polynomials F(z-1l), G(z-1l) are
unknown. Only the order ng is assumed known. The process

output xl(t) is corrupted by the high frequency disturbance

Yh{t) and measurement noise v(t). The measured output 1is

given by:

z(t) = yl(t)+yh(t)+v(t) (7.5)
where v(t) usually represents measurement noise.
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An example of this process is a vessel's motions at sea
The motion due to current, wind and second order waves is
slowly varying and the motion due to first order wave forces

is of high frequency.
7.3 TRACKING AND FILTERING PROBLEMS

In many applications, the observation z(t) is not the
desired signal for feedback. It is essential that the
process output X!(t) is estimated. The conventional method
is to design a low pass filter. However, this will give
significant phase lag in the system response, particularly
when the filter is of high order. With the knowledge of the
polynomials M(z-1), N(z-1), F(z~1), G(z-1l) and the variances
of the disturbances, a Kalman filter may be suitable. If
these parameters are unknown the Kalman filter can only be
based on rough estimates which may not be adeguate. For the
analysis here it is assumed that the order ng of the
polynomial F(z~l) is known. In most cases, nfg can e
obtained from knowledge of the physics of the process.
Generally, ng = 2 is adequate for most disturbance models.
In the next section, an adaptive filter is developed to
estimate yl(t) which has a small time lag relative to fixed
parameters filters. The adaptive filter can adapt to the
range of parameters in the polynomials as well as to change

in the variances of the random disturbances.

-199-



0,5/mcl1708/63

7.4 THE DESIGN OF ADAPTIVE ESTIMATOR

It is assumed the signal xl(t) can be decomposed into two

components ?E(t) and §i(t):

y (t) = §2(t) + ¥,

~
where y‘(t) represents the component which

boundary of iﬁ, that is:

-8« Q’L(t)ss

Here <Sis a constant which 1s close to the

of the sum of yhR(t) and v(t). That is,

Sr(max |yp(t) + v()l) x k, k > 1

In the present discussion ?L(t) represents
primary estimator. There are several ways

coarse estimator.

A, Averaging Method

§}(tq = E{yl(tj}

(7.6)

varies within a

(7.7)

maximum amplitude

(7.8)

the output from a

to design such a

The expectation of both sides in equation (7.5):
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E{Yl(t)}+E{Yh(t)}+E{v(t)} (7.10)
E{y;(t)} (7.11)

E{z(t)}

The expectation of the last two terms on the RHS are zero.

Thence,
y) (&) = E{z(t)} (7.12)

The result in equation (7.12) is useful because §i(t) can be

generated from the measured output z(t).

B. Conventional Low Pass Filter

yl(t) = W(z-1l)z(t) (7.13)

where W(z~-1l) is a low pass filter in which §)(t) can be

generated directly from the output.

C. Innovation Disturbance Model

Define a new variable n(t):
n(t) = z(t)-?l(t) (7.14)

Using equations (7.5) and (7.6):

n(t) yl(t)+yh(t)+v(t)—§1(t) (7.15)

yh(t)+v(t)+§1(t) (7.16)
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The variable yh(t) and the disturbance v(t) can be
represented by a new process called an innovation model,

defined as:

H(Z-l) E

t
Pg-ly (t) (7.17)

Yh(t) + v(t) =

where the polynomial H(z~-1) and the variance of E(t) satisfy

the spectral factorization:

H(z‘l)H*(z‘l)qf = G(z‘l)G*(z‘l)qf (7.18)

2
+ F(z~l)r*(z~1)6,

and §£(t) is an independent random sequence. The polynomial
H(z=1l) is of the form

H(z=1l) = 1 + hyz=1 + ... + hypz NP (7.19)
If nf » ng then from equation (7.18) nh = nf. D*(z~1)

represents the reciprocal of polynomial D(z‘l), which 1is

defined as:

D*(z-1) = z-nh(D(z)) (7.20)

Substitute equation (7.17) into (7.16) to yield:

H(Z-l) ~
£y = —— E(t) + (t) (7.21)
n{t) F(z~1) Y1
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. ' ~n .
D. Adaptive Tracking of yj(t) (Vernier Estimator)

Equations (7.12) and (7.13) show that the quantity il(t) can
be generated from the measured output z(t). The conditions
set in equation (7.7) can easily be fulfilled by using
either the averaging method or a conventional low pass
filter. In order to obtain a good estimation of yl(t),
there is still a quantity ?l(t) to be estimated (equation
7.6). The variable ?i(t) varies within the envelope of 16
(equation 7.7). Therefore, if yl(t) varies slowly, the
quantity Qi(t) can be treated as a constant within a few
sampling intervals. Hence equation (7.21) can be

represented as:

n(t) = XT(e-1) Q(t) + &) (7.22)
where
XT(t-1) = [-n(t-1),...-n(t-nf),
g(t-1),... & t-nh),1] (7.23)
T = (f1,...,nf ,hl,...,nh ,s(t)] (7.24)

where s(t) = F?i(t)

The commonly used methods for estimating the parameter

vector 6(t) are (1) recursive extended least square, (2)
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recursive maximum likelihood and (3) recursive generalized
least squares. Suppose the recursive extended least squares
technique is used. The unmeasurable innovation signal £(t)

is approximated by:
E(t) = n(t) - XT(t-1)8(t) (7.25)

where é(t) is the estimate of vector B(t).

The quantity §1(t) is assumed to be varying slowly, and the
parameters of the disturbances may also be varying. It is
essential that the identification algorithm has a forgetting
factor ﬁ of slightly less than unity. This will enable the
recently observed output to be weighted more heavily than
past information. The value of ﬁ should be within the range
of 0.98 to 1.0. There are methods for varying the
forgetting factor ﬂ but most of them are intuitively based.
A more detailed analysis of such an algorithm was done by
Osomio Cordero and Mayne [113]. They modified the algorithm
so that the trace of the error covariance was divided by'ﬁ.
They claimed that it may prevent the algorithm from
diverging but care must be taken when choosing the constants
§ and A\ in the algorithm. It was found that the algorithm
is sensitive to these parameters. Collecting the above

results the desired adaptive tracking algorithm becomes:
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[1 + XT(t-1)P(t-1)X(t-1)]"1P(t-1)x(t-1)

E. Adaptive Tracking Algorithm

(1) Initialize data: P(o), 6(0). ﬁ(o), S, A

(2) Measure output z(t)
Primary Estimation

(3) Generate ?x(t) = M(z"1)z(t) or

= E{z(t)}

(4) Generate n(t) = z(t)-yj(t)
Vernier Estimation

(5) &(t) = n(t) - XT(t-1)8(t-1)

(6) K(t) =

(7) 8(t) = 8(t-1) + K(t) E(t)

(8) N(t) = 6/[1 - XT(t-1)K(t)]g2(t)

(9) p(t) =1 - 1/N(t)

(10) W(t) = [I - K(t)XT(t-1)]P(t-1)
If trace W(t)/ﬁ(t)<,k set P(t) = W(t)/ﬁ(t)
Else set P(t) = W(t)

(11) £(t) = n(t) - XT(t-1)8(t)

(12) §p(t) = 8(e)/Fz7ly, 2 = 1
Total Estimated Output
A - ~

(13) xl(t) Y;(t) + Yl(t)

(14) Go to Step 2
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A
It may be necessary to smooth ?i(t) in step (12) using the

following algorithm:

A A
V) (t) =&y (e-1) + (1-x)&(e)/Fiz7l), 2 = 1

where X should be less than 0.5, otherwise it will introduce
too much lag and deteriorate the performance of the vernier

estimator.
7.5 SIMULATION RESULTS

In order to test the stability of the adaptive estimator
under the condition where there is a severe change in the
plant output, the adaptive estimator was used to track a

square wave which was corrupted by high frequency noises.

The measured output, primary estimate and final estimate are
shown in Figure 7-2. The primary estimator alone is quite
insensitive to the step changes. This is the well known lag
problem in the low pass filter. However, with the vernier
estimator being activated, the lags observed at step changes
are much reduced. When the plant output becomes constant

the final estimate settles very well to the plant's constant

value.
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The second test is to demonstrate the adaptive tracker's
capability in following trapezoidal (ramp and constant)
signal. The results are shown in Figure 7-3. It is found
that the significant lag in the primary estimate when
following a ramp signal is quickly eliminated by the vernier
estimator. The difference between the cumulative losses of
the primary estimate and of the final estimate shown in the
Figure 7-3(d) have justified the contribution of the vernier
self-tuning estimator to the accuracy of the estimation.

The estimated parameters of the disturbance model are shown

in Figure 7-3(e).

The disturbance consists of high frequency oscillatory noise
(simulated using the method described in Section 2.8.4,
method one) and white noise component. The disturbance
model was assumed to be of second order. Four parameters,
{fi}, {hi}, i =1, 2, and ;i(t)‘were estimated in

the self-tuning vernier estimator. The initial parameters
are {flrf23 = {hl,h2§-= {—1,0.5}. These initial guesses
ensure the disturbance model is stable and that the

parameters lie at the mid-point of their maximum range of

values.
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The third test is the tracking of a sinusoidal signal which
is corrupted by a high frequency oscillatory disturbance and
white noise. The measured output is shown in

Figure 7-4(a). The vernier estimate shown in Figure 7-4(b)
varies consistently with the error, ?i(t), between the
primary estimate and the true signal (shown in

Figure 7-4(c)). The vernier self-tuning estimator performs
very well even when it crosses the zero value. However,

the estimate fluctuates whenever the gradient of ?l(t)
changes sign, but the magnitude of this fluctuation is small
compared with the output disturbances. The fluctuation
observed in the vernier estimate was due to the fact that
the forgetting factor in those regions was small. Notice
that the small forgetting factor enables the vernier
estimator to adapt to any the change faster than in normal

operation. The final estimate is shown in Figure 7-4(d).

The last test is to track the sway motion of a vessel on
sea. The measured output is shown in Figure 7-5(a). The
primary estimate and the final estimate are shown in
Figure 7-5(b) and 7-5(c) respectively. The final tracking
lag was found to be smaller than the primary tracking lag,

particularly when the velocity of the ship varied slowly.
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7.6 SUMMARY OF RESULTS

An adaptive tracking technique has been developed to
estimate the output of a slowly varying process which is
corrupted by a coloured noise disturbance. No assumption
was made on the plant model and the noise covariances. The
only assumption made in the disturbances is that they are
modelled by a second order process and the parameters are
treated as unknowns. The estimator consists of a primary
estimation subsystem and a vernier estimation subsystem.
The primary estimator is simply a low pass filter or its
equivalent. The vernier estimator is self-tuning and is
adaptive to varying disturbances. A variable forgetting
factor technique is employed in the parameter estimation
algorithm. The adaptive estimator was used to track a
square signal, trapezoidal signal, sinusoidal signal and

the sway motion of a vessel at sea.

It was shown in the simulation results that the vernier
self-tuning estimator is capable of reducing or eliminating
(depending on the variation of the signal being tracked) the

lag caused by the primary estimator.
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CHAPTER EIGHT

SELF-TUNING CONTROL AND WEIGHTED

MINIMUM VARIANCE SELF-TUNER

8.1 INTRODUCTION

There are two objectives in this chapter. The first is to
overview the self-tuning control technigues which have
become popular since the early seventies. The self-tuning
methods developed in the previous chapters were originally
inspired by this methology. The second objective is to
develop a class of self-tuning controllers called Weighted
Minimum Variance (WMV) self-tuning controllers. An explicit
WMV self-tuner for multivariable systems and an implicit
algorithm for single input-single output systems are
proposed. The robustness of these self-tuners suggests

further development may be possible in the future.

8.2 SELF-TUNING CONTROL OVERVIEW

8.2.1 The Self-Tuning Control

Self-tuning Control is a Direct Digital Control (DDC)

technique. The objective is to achieve a high performance
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system in which conventional Proportional-Integral-Deriva-
tive (PID) control may have difficulty in fulfilling the
requirements. Self-tuning begins when the identification
procedures are combined with control strategy. One approach
is to perform a plant identification and then to calculate
the control action directly from the estimated parameters.
This is called self-tuning control with explicit
identification. A more subtle approach is to set up the
control and identification problems so that the plant
parameters are incorporated into the controller gains and to
identify the latter. This route is known as self-tuning
control with implicit identification. The basic assumptions
made on self-tuning control are: (a) the parameters of the
plant are constant or varying slowly; (b) the order of the
plant is known; (c) the time delay is known. However, some
self-tuning techniques are able to identify the time delay

on-line.

In a wider context than self-tuning, the class of control
systems known as "optimally adaptive" incorporate on-line
process identification with optimal control action. In
particular, the system input signal provides data for
parameter estimation and executes the control strategy
giving rise to the term "dual control”. A categorization
due to Jacob and Patchell [58] breaks down the control

signal into three components:
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(a) Certainty Eguivalent Control: The control which would

be exercised if the estimated parameters were the

actual ones.

(b) Caution: The component which recognizes that errors in
parameter estimates may cause excessive deviations in
‘the control signal. This component takes account of
uncertainties in the parameters estimated and is a

function of estimated parameters and their accuracies.

(c) Probing: This component is used to inject an optimal
testing signal into the process to improve the

estimates of uncertain parameters.

The optimal self-tuning theory approximates the optimal
signal via the first component. Identification and control
are regarded as separate operations so that the control law
i1s derived under the assumption that the plant parameters
are known. In this respect, the self-tuning controllers
[74] may be classified as a certainty equivalent control
law. Thence it is not optimal in the dual sense [59]. The
pole and zero placement self-tuner [87], which is based on
conventional control theory, does not fall in either

category.
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8.2.2 The Development

Self-adaptive control is always a challenging subject for
control theoreticians and engineers. It is very much like
non-linear control system theory, and though many techniques
have been proposed, the application to a particular system
is usually unique. The ad hoc tuning was the earliest
technique in this field. This method developed in the early

fifties is based on conventional control theory.

In 1958 Kalman [60] developed a simplified algorithm of a
self-optimizing control system. However, the theory was
inadequate and the digital computer technology at that time

was unable to perform the adaptive feature.

In 1970, Peﬁerka [63]) revised and strengthened the minimum
variance (MV) control law. The hundred flowers blossom
period began when Astrom and Wittenmark [65] developed a
Peterka type minimum variance self-tuning regulator in

1973. The MV control law suffers two drawbacks in applica-
tion: (a) the control signal cannot be shaped or weighted,
therefore it may be exceed the hardware limitations, and;
(b) it can only be applied to a non-minimum phase system.

It often happens that a continuous time minimum phase system
becomes a non-minimum phase system after discretization.

Later work of Astrom and Wittenmark [66] employed the spec-
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tral factorization technique to eliminate the unstable poles
from the closed loop transfer function. The use of the
spectral factorization technique means more computing 1is
required, and increases the complexity of the self-tuning
algorithm. It also requires that the number of unstable

zeros must be known exactly.

In 1975, Clarke and Gawthrop [74] extended Astrom and
Wittenmark's theory to produce a more general self-tuning
controller which is based on the generalized minimum vari-
ance control (GMV) law proposed by Clarke and Hastings-James
(72) in 1971. The cost function of this control law has
weighting transfer functions on the system output and the
control signal. Similar to LOG control law, designers can
select these weightings according to the desired responses.
Gawthrop [75] has found a few interpretations of the control
law based on these weighting functions. One typical example
is its relation to model adaptive control. The GMV
controller can overcome the two drawbacks in the MV
controller. The control is stable in a non-minimum phase
systems if the weighting function on the control is properly
selected. This weighting function can also be used to shape
the control signal within the hardware limits. Because of
its generalized feature, the GMV self-tuner has received
greater attention in application than the MV self-tuner.

Astrom [163] claimed that the excess 1n the control signal

-218-



0/5/mcl1708/78

may be improved by adjusting the sampling rate. However,
the sampling rate is a very critical parameter in many
aspects systems [166], and it may not be freely selectable
in many applications.

The MV self-tuner is not optimal in a dual sence [59], but
is optimal in the principal of certainty equivalent. The
GMV self-tuner, because of the weighting on the control, is
only optimal based upon the conditional expectation

on all the acquired input/output data [61]). These
self-tuners require the time delay and the order of the

plant to be known.,

In 1977, Wellstead, et al [86] proposed an alternative
self-tuning technique called the pole placement self-tuner.
The latter version [87] of this class of self-tuner was
extended to include zero placement. The original concept
should be dated back to Edmund's work in this area in 1976
[62]. The closed loop pole/zero placement theory is well
established in classical control theory. The designer can
place the pole/zero of the closed loop transfer function to
achieve the desired response. It was shown that by solving
the diophantine equation using the estimated plant
parameters identified explicitly, the controller has the
self-tuning property. A controller is self-tuning 1if the

parameter estimates are unbiased and converge to the true
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values. Because of its explicit feature, this self-tuner

may allow the time delay to be estimated on-line.

Since the appearance of Astrom and Wittenmark's paper in
1973 [65] followed by Clarke and Gawthrop's article in 1975
[74], the number of reports in this field has multiplied
greatly. The articles can be divided into the following

categories:

(a) MV Self-tuner [65-71)]

(b) GMV Self-tuner [72-83])

(c) Pole/zero Placement Self-tuner [84-87]
(d) Multivariable Self-tuners [88-95]

(e) PID Self-tuners [96-98]

(f) State Feedback Self-tuners [99-102]
(g) Hybrid Self-tuning Control [103-104]
(h) Self-tuning filters [105-107]

(i) Self-tuning Predictors [108-109]

(j) Non-linear Self-tuners [110-111]

(k) Stability Study and Identification Algorithms [112-132]

(1) Applications [133-160]

A comprehensive review on self-tuning control by experts

from the United Kingdom is given in Reference [161].
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In 1981, Grimble [164] proposed a weighted minimum variance
(WMV) controller which fills the gap between the MV
controller and the GMV controller. When the GMV controller
encounters a non-minimum phase system, the closed loop
system may become unstable if the control weighting factor
is not suitably chosen. Whereas for the MV regulator
(non-minimum phase version), since there is no weighting on
the control, the control may be excessive. WMV control does
not suffer from the above problems. However, to modify a
WMV controller to become self-tuning involves complicated
algorithms which may be difficult to realize in complex
systems. In Section 8.3, an explicit multivariable WMV
self-tuner will be described. An implicit version for a

single input-single output system is given in Section 8.4.

Recently, Koivo and Guo [160] have applied the self-tuning
concept to robotic control. A robotic system is time
varying because the moment of inertia is dependent on the
configuration of the arm. Therefore, the adaptive
controller may not achieve the self-tuning property.
Nevertheless, the simulation results have demonstrated that

this adaptive controller is a potential candidate for highly

time-varying manipulator systems.

Indeed, self-tuning control is the first offspring of the

marriage between parameter identification and control design

-221-



0/5/mc1708/81

in this digital computer age. The reason that the
self-tuning control has received much attention in this
decade 1is mainly due to its practical features. Although
many fruitful implementation results have been reported,
many engineers still do not have confidence in self-tuning
techniques for various reasons. The implementation aspects

will be discussed in the next section.

8.2.3 Implementation, Advantages and Disadvantages

It is not uncommon that engineers in industry, due to the
'generation gap' mainly in mathematics, have the impression
that modern control theory is only an academic fashion and
that it is of little use in practical problems. It 1is
certainly true that modern control theory is strongly
mathematically based. Since the mathematical model often
idealizes a practical problem, it is not suprising that
control theory based solely on the model may not be
appropriate for practical purposes. For example, an optimal
controller with a time delay may not perform as well as a
Smith predictor type controller [162]. Recently, control
engineering research has tended strongly towards solution of
practical problems. The self-tuning control is highly

regarded as a major achievement in this aspect.
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Self-tuning control is an alternative control design
technique. The self-tuner 1is usually only a small part of a
control system and should only be used when the problem is
appropriate and only then in its most computationally

efficient form.

The percentage of success in the application of self-tuners
to chemical processes is far higher than those applied to
any other dynamic systems. The result is not surprising
because chemical processes are often complex and slow and so
plant parameters are either constant or varying slowly.
These characteristics are the basic assumptions in the
development of the self-tuning theory. The use of a MV
self-tuner in a paper machine 1is the first successful
application of the self-tuner reported in the literature
[134]. Suprisingly, the PID controller was used again in
the same plant [163] later. Two possible simple reasons
are: (a) engineers have a lack of confidence in the
robustness of the self-tuner, and (b) the MV self-tuner in
particular, or self-tuning in general, is not appropriate
for the process. To conclude, the advantages and
disadvantages of implementing a self-tuning

control solution based on experience to date are listed

below:
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Advantages

(a)

The self-tuner can be applied to a plant which contains

unknown or slowly varying parameters.

(b) It may be possible to improve the control of certain
non-linear systems by treating the gains of the
non-linear elements as variables.

(c) Existing controllers may be adjusted by self-tuning
techniques, by monitoring the controller performance
online.

Disadvantages

(a) The number of parameters to be estimated depends upon
the order of the plant polynomials. In practice, most
system constants are usually known approximately, but
no advantage is taken, in the basic self-tuners of the
information structure of the plant parameters. This 1is
in direct contrast to the extended filtering
methodology in which only the unknown or varying
parameters are estimated.

(b) If the uncontrolled system is unstable or non-minimum

phase it is possible for self-tuning controllers based
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upon a single-stage cost function to yield unstable
controllers. Grimble [164] has recently introduced a
weighted minimum-variance controller which has

advantages in this situation.

The time-delay must be known for the Clarke/Gawthrop
and Astrom/Wittenmark self-tuners. The Wellstead
algorithm has the advantage that it leaves the leading
coefficient of the B(z~1l) polynomial as an unknown and
can be used for systems with unknown delays. However,
this is a non-optimal technique which is not so
appropriate for more complex stochastic systems having
several noise and disturbance inputs (the controller is
independent of the noise intensities). For this
situation a method of weighting the importance of the
noise is required which is available with LOG
controllers [165], although such controllers are

necessarily more complex.

An optimal control system can be proposed based upon an

extended Kalman filter and a state-estimate feedback gain

matrix. Unknown parameters can then be estimated using the

extended filter. This type of controller seems to be more

robust than the eqguivalent self-tuning system, but it 1s not

called upon to do as much as in the self-tuning problems.

In self-tuning control no knowledge of the plant parameters
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or of the noise sources is assumed. In extended filtering,
however, only a few system parameters are normally to be
estimated. There is, therefore, a difference in the

assumptions made for these two types of control system.

One unknown parameter in a state-space model can affect many
of the coefficients in a transfer-function plant model.
Thus, in such cases if only one parameter is to be
estimated, an extended Kalman-filter scheme may be
appropriate. Conversely, the plant may be modelled in
z-transfer-function form with one unknown coefficient. 1In
this case, the basic self-tuners can be modified so that

this parameter only is identified.

8.3 EXPLICIT MULTIVARIABLE WEIGHTED MINIMUM VARIANCE

SELF-TUNING CONTROLLER

8.3.1 Introduction

An explicit self-tuning controller is described based upon
the weighted minimum variance control law. The controller
has the advantage that a non-minimum phase system can be
stabilized under conditions where other minimum variance

control laws fail. The system can be multivariable and can
include unknown transport delay terms which are different in

each loop.
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The weighted minimum variance controller for single input-
single output systems was recently introduced (Grimble
[164]) to overcome some of the problems in the control of
non-minimum phase systems. For example, the generalized
minimum variance controller employed by Clarke and Gawthrop
(74] in their successful self-tuning controller is unstable
when the control weighting tends to zero. Since small
control weighting corresponds to tight control action this
is an unfortunate feature of this controller. The weighted

minimum variance controller is stable in this situation.

The controller also has advantages in comparison with the
minimum variance regulator employed by Astrom and Wittenmark
[66]. The cost function includes control weighting and
control signal variations can be much reduced. The penalty
to be paid for the improvement in performance
characteristics is that the controller is more complicated
than the foregoing. A multivariable version of the weighted
minimum variance controller is derived in the following and

this is used as an explicit self-tuning controller.

8.3.2 System Description

The multivariable linear constant plant is given as:
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atz-lyy(t) = B(z7hu(t) + c(z71)E(¢) (8.1)

where the polynomial matrices are m-squared. The
disturbance g(t) is a sequence of independent zero mean
random vectors with covariance E{E(t)é(t% = Q. The
polynomial matrices A(z"l) = I, + Alz‘l +...+ ApzT, B(z~ 1)
= (BO+B12'1+...+Bn_kz‘“'"k)z‘k and C(z7 1) =

Im +

Clz'1+...+an‘n. The delay k >

> l and if this is unknown k

is assumed to be unity and the actual delay can be
estimated. Notice that By is not necessarily full rank as
assumed in most of the work on self-tuning. This implies
that different loops in the multivariable system may contain

different transport delay terms.

The matrix B(z~1l) is assumed to be of normal full rank and B
= B)B] where B2 and Bj] represent the non-minimum and minimum
phase spectral factors, respectively. The B) term includes
the delay k and without loss of generality Bj(0) can be
chosen to be full rank, (the factorization is performed via
the Smith form). The orders of Bj] and B) are denoted by nj

and n,, respectively.
For greater generality the system will include a reference

input r(t) = A(z’l)‘lE(z‘l)Q(t) and a set point w(t). The

covariance matrix for the white noise signal w(t) is denoted
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Qo+ The stochastic tracking error e(t)s r(t) - y(t). The

innovations form of the system equation becomes:

Ae(t) = DE(t) - Bu(t) (8.2)
where the matrix D follows from the spectral factorization:

D(z~1)DT(z) = E(2=1)Q.ET(z2)
+ C(z~1yocT(z) (8.3)

and D(z"1)-1 is stable. It will be necessary to write p-1B

in the form:

D-1lp, = B Dol

where det Dy = det D, D5(0) = In and ngpo = ng. The
polynomial matrices B% and Dy are right coprime and always

exist but are not unique.

8.3.3 Cost Function

The feedback control law is required to minimize the cost

function:

J = E{Ql(t + K)Tgy (¢ + k)/t} (8.4)

where the expectation is conditional upon all observations

up to time t. The signal
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g1(t + k) & Polz™lye(t) + Py(z=l)w(t)
- Po(z~l)u(t) (8.5)

and the transfer function matrices P,, P; and P> can be
specified to achieve given performance specifications. The

transfer function matrix
Po(z=1)a di(z71) (Ac(z71)Bo(271))-1 (8.6)

where dl(z'l) is a minimum phase scalar polynomial and
Ac(z‘l)'l is a stable matrix. The matrix B.(z~"l) is related
to B2(z"1l) and is defined in the following. Assume that

d1(0) =1, Ac(0) = In and P(0) » 0, and let Aj(z-1) 2

Alz=hag(z-1).

8.3.4 Multivariable Weighted Minimum Variance Controller

The weighted minimum variance controller is defined in the

following theorem:

Theorem 8.1 Weighted Minimum Variance Controller

The optimal control for the plant (8.1) and the performance

criterion (8.4) is given as:

ul(t) = (B1+DoP2) 1 (GH™1e" (t)

+ DoPiw(t)) (8.7)

-230-



0/5/mc1708/90

where ga(t) = Ac‘lg(t), G and H satisfy:
AjH + B2G = 41D 8.8)

npb = n2 = 1 and ng = max (na1 - 1, ng1 + ng - ny)

The proof follows that for the single-input, single-output
case given by Grimble, 1981 [164], and is summarized briefly

below.
Proof: Let @(t + k) & Poe(t) then from (8.2):
¢t + k) = B"ld1a171(DE(L) - Bu(t)) (8.9)

and from (8.2) and (8.8):

¢t + k) = Boml(HE(t) + A1~1ByeD lAte] (¢t) (8.10)
- HD-1lBu(t))

but from (8.8):

Ay~1BoGD-1a; = HD™1B,GH-] (8.11)
thence
$(t + k) = Bol(HE(t) + HD™1By(GH™Le)(t)
- Byu(t))) (8.12)

The term D~1B, may be written in terms of the right coprime

. O .
polynomial matrices B2 and Do as:
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- O -
pD-1p, = B3D, "1 (8.13)

where det Do = det D and Dg(0) = I,. The term Dglis stable

but

+.,

o(»=-1yy-1 = ,n2(RO o)
(BS(z7)) 2N°(BSho + B2(no-1)z

(8.14)

represents a non-causal transfer function (n2-ng = Kk ; 1).

The term B. in the cost function may now be defined as:

Bc = HB3 (8.15)
so that
B.~luD"1B, = D,7! (8.16)

and

B.~ln = (B!

From (8.12) and using the above relationships:
@t + k) = (BQ)"1E(t) + pyTl(eHler (t)

- Blg(t)) (8.18)

and from (8.5):
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gr(t + k) = (B "LEt) + pymlcr—1e] (t)
+ Doplﬂ(t) - (B + DOPz)y_(t)) (8.19)
From these results it follows that a least squares predictor

A ~n
¢1(t+k/t) and prediction error @) (t + k/t) may be defined

as:

$1(t + k/t) = Do~l(GH"1le] (t) + DoPw(t)
- (B1 + DgPplu(t)) (8.20)
b1(t + kjt) = (BQ)~1E(t) (3.21)
2

‘ A
The prediction error is uncorrelated with the signal Ql(t +

k/t) which is known at time t.

The cost function (8.4) may now be expressed as:

J = E{iﬁ(t + k/t)Téﬁ(t + K/t) + él(t + k/t)T
él(t + k/t)} (8.22)

and it follows by the usual arguments that the optimal

A
control gives @1 (t + kft) = 0 or

(B1+DoP2)u(t) - (GH™le(t)+DPrw(t)) = 0 (8.23)

This completes the proof of (8.7).

The stability of the closed-loop system can be ascertained

from the characteristic equation. This follows via:
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det (A~1(A)H+B(B1+DyPy)"1g)H~1a-1) = ¢ (8.24)

and in the limiting case as P, =+ 0 the characteristic
equation becomes det dj;D = 0 and the system is stable.
Similarly, if the plant is open loop stable the closed loop

system is stable when p, -~ 00O,

Special Cases:

(a) Assume the model for e is autoregressive (D = I,) then

(b) Assume that the time-delay and non-minimum phase
behaviour is the same in each signal path for the
plant, thus Bj = bpIy where by is a scalar, and Dy =
D. The calculation of by is also simplified in this

Case.

8.3.5 Explicit Self-tuning Control

An explicit self-tuning algorithm may be constructed in the
usual manner and this is illustrated for the plan considered
by Koivo [91]. The plant polynomial matrices are defined

as:
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. -0.9 0.5
A(z™2) = Ip + z” 8.25
0.5 =0.2 ( )
0.2 1.0 1.0 0
B(Z_l) = Z—l + 2—2 (8.26)
0.25 0.2 0 1.0

Let the performance criterion polynomials be defined as:

di(z7l) =1 -XNz71, N\ = 0.5

Ac(z71) = 15, Py(z71) = 15 and Py(z-1) = A1,
where A\ is a real positive scalar. For this system r = 0,
By(zl) = B(z71) and Bj(z~1) = 1,

In this case the expressions for the optimal control
simplify and the following simple explicit self-tuning

algorithm may be employed.
1. Estimate A and Bj using Ay(t) = Bou(t) + 5(t)

2. Solve AH + ByG = d1I) for H and G where np = np - 1 =1

and ng = ng - 1 =0

1
3. Calculate u©(t) = Tx (GHly (t) + w(t))

Return to 1.

-235-



0/5/mcl1708/95

To evaluate the diophantine equation note that it may be

expressed in the form:

12 Bg Hy| = | A1 - >\112 (8.27)
Al By1|] Bo 0
where A(z71) = 15 + Ajz-l, By(z-1) = 271 (Byg+Byy 271y,
G(z~1) = G, and H(z™1) = I, + Hyz=l. Assuming the inverse

exlsts during self-tuning:

ol T T2 B

HE | | T BTl -ay - AT (8.28)
* * *

G A% B} ] 0

where the * denotes the estimated value.

The system is open loop unstable and non-minimum phase and
thence the closed-loop system may be unstable for some
values of \. In the approach by Clarke and Gawthrop [74]
(or Koivo [91] for the multivariable case) X\ cannot be
either too large or too small if the system is to be
closed-loop stable. The advantage of the weighted minimum
variance controller is that A\ can be set to zero (as in the

simulation results) and stability is maintained.

Simulation results for both output regulator and

servomechanism are given. The estimated parameters for the
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regulator problem are shown in Figure 8-2 and the outputs
and control signals are shown in Figure 8-1. The time delay
can be estimated on-line provided an upper order on B is
known. In the servomechanism results, different unknown
delays in different loops were simulated. This was achieved
by replacing bﬁ = 0.2 in (8.26) by zero. The time delay in
loop 1 is k1 = 2 and in loop 2, k2 = 1. The estimated

A
parameters are shown in Figure 8-4 (notice that b?1= 0) and

compare with Figure 8-2. The controlled outputs are shown
in Figure 8-3 and these demonstrate the effect of a step

change in the set-point signal.

8.3.6 Discussion

A weighted minimum variance control law has been derived for
multivariable systems and has been combined with an
estimation algorithm to produce an explicit self-tuning
controller. This approach has the disadvantage that the
matrix polynomial B must be spectrally factored. Recent
work has been concerned with the development of an implicit
scheme which does not involve this spectral factorization
stage. The advantages of this approach are: (a) the range
of stability is extended over that norrally found for
non-minimum phase plants; (b) the performance criterion
includes control weighting; (c) stochastic reference or

known set point signals may be included; (d) the transport
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delay may be estimated since the controller does not depend
upon knowledge of k; and (e) the delay can be different in

each signal path.

8.3.7 Industrial Application

It is often true that the simplest solution to a control
problem is the best in an industrial situation. The
engineer would therefore choose the self-tuning regulator of
Astrom and Wittenmark [65] 1if the discrete plant were
minimum phase and the output variance was of major
importance. If say the control energy was important, then
the self-tuning controller of Clark and Gawthrop [74], which
could involve a minor increase in complexity, could be

used. Varying time delays would suggest the use of a pole

placement type of self-tuner due to Wellstead, Prager and

Zanker [84].

The WMV self-tuner involves greater computational
complexity, however, several problems might justify its
use. The control problem might be basically stochastic and
multivariable in nature, as in a marine application. The
optimal types of self-tuner have advantages here,
particularly when the cost function has some physical
significance [75]. The minimum variance types of self-tuner

described above can have problems on non-minimum phase and
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open loop unstable plants, as was demonstrated in the simple
example. These problems are due to the control laws which
form the basis of the self-tuning schemes. The WMV control
law has the property of better stability. There may of
course be computational and numerical difficulties in
implementing more complex control laws, but although

important these are not fundamental limitations.

8.4 IMPLICIT WEIGHTED MINIMUM VARIANCE SELF-TUNER

8.4.1 Introduction

An implicit self-tuning controller based on the weighted
minimum variance control law, by Grimble [164], is developed
for the single-input single-output non-minimum phase
systems. This self-tuner has the advantages of identifying
the controller parameters directly and it does not need any
spectral factorization. The robustness study of this
self-tuner and simulation work are possible areas for future

work .

8.4.2 Plant Description

The single-input/single-output linear time invariant systenm
is assumed to be represented by the following difference

equation:
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A(z7lyy(t) = z7kB(z7)u(t) + crz=1)g(¢) (8.29)

The polynomials A, B and C (z-1 are dropped for clarity) are
assumed to be of known degree na, nb and nc respectively.
The zeros of C(x) are strictly outside the unit disc in the
x-plane. k is the known time delay (or estimated on-line).
y(t) is the system output, u(t) is the control signal and
g(t) is the disturbance signal. The disturbance é(t) is
a sequence of normally distributed independent random
sequence with zero mean and covariance E{lg(t) g(t)} = qg.
Polynomial B is factorized into minimum BY and non-minimum
phase B~ spectral factors. The factorization B = B*B~ may

now be defined as:

Bt = bt + btz-l4+,.... +bt_ z—nj} (8.30)
0 nl

B =1 + b~z 1+.. +b~_z~Nn2 (8.31)
1 n2

and the other polynomials are defined as:

A 1+ alz—1+ ..... +anaz-na (8.32)
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8.4.3 Weighted Minimum Variance Controller

The weighted minimum variance (WMV) controller [164] which

minimizes the cost function (Appendix E)

J = E {}yz(t+k)/t} (8.34)
is

o) = SR Gx(8)e2
where

LP(t+k) = P'y(t+k) + Qu(t) - Rw(t) (8.36)

where P' is defined as
P' = P/B~ (8.37)
P, Q and R are weighting transfer functions, that is:

P = Pn/Pd etc.

The polynomials F and G are determined by the diophantine

equation:

PoC = PQAF + z~XB-G (8.38)

Where F and G are of degree nf = k-1 + n2, ng = na + npd-l

respectively, and are of the form in (8.32) and (8.33).
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w is the reference signal.

It may be shown that the controller also minimizes the

following equivalent function:

I, = E{(P'y(t+k) - Rw(t))2 + (Q'u(t))z} (8.39)

where Q' is related to Q by a scalar [74].

The main results of WMV control are:

(a) The prediction:

P k) = 3 k) + Sy (t-k) (8.40)
Py (t/t-k) = 5 ult=k) + & yp(t :
(b) The remnant:
A
Pyr)y = Pyere=x) + &) (8.41)
(c) The control strategy:
A A
‘P(t/t—k) = (yy(t/t-k) + Ou(t-k)-Rw(t-k) (8.42)
= 0
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(d) The generalized function:

P(t) = P'y(t) + Qu(t-k) - Rw(t-k) (8
where
Yy(t) = P'y(t) = §¥(t) (8.
yp(t) = y(t)/Pd (8.
(e) The prediction error:
F &(t
Et/t-k) = g_g( ) (8.

The polynomials F and G are determined by the diophantine

equation (8.38).

.43)

44)

45)

46)

H = B*F (8.47)

= hg + hiz=l+.....+hypz~0h (8.48)

8.4.4 Implicit Self-Tuning Control

Assume the control signal uj(t), at time t, will set the

A
prediction (#y(t+k/t) equal to Rw(t). Clarke and Gawthrop

[76] have deduced the following results:
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h

u(t) = 3586 up (t) (8.49)
where

hg = B¥(0o)F(0) (8.50)

= H(o)

and

A

Yy lt/t-k) = Rw(t-k) + hg(u(t-k)=uy(t-k)) (8.51)

In self-tuning control, a suitable algorithm is required to
be used for parameter estimation. Explicit self-tuning
control identifies the plant parameters. Implicit control
should identify the controller parameters directly. The
equivalent form of (Py(t) in Clarke and Gawthrop's [76]
self-tuning algorithm is used for parameter estimation.
However, in this case, yy(t) consists of an unstable
polynomial B~ in the denominator. Furthermore, B~ 1is
unknown. Thus, the expression in equation (8.41) 1is

unsuitable for identification. The following technigue 1is

used instead:

Define

_ (8.52)
B ¢y(t) .
Py(t) (8.

(py(t)
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From equation (8.41) amd_ztuabbwlc&4e)

A
?Y(t) = B~ ¢y (t/t-k) + B-E(t) (8.54)
= BT pylt/t-k) + &) (8.55)
where
Et)= FEW) (8.56)

Substitute equation (8.40) for tpy(t/t—k) into equation

(8.55).

(t-k) + % yp(t—k)} (8.58)

-
<
i
0
w
|
o~l——\
Olx
c

Multiply both sides by C and use eguation (8.55) to yield:

Pyce) = B~ { Hu(t-k) + Gyp(t—k)lv ,
- BB~y (t-1/t-k-1) -  CE(t=4)
+ EEt-1) + £
= B™ {Hu(t-k) + GYp(t—k)} ’
- EB'(ij(t—l/t-k—l) + Et) (8:-59)
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where
"~
c=1+z1cC (8.60)
or

Pyte) = Hult=k) + Gyplt=k) - T (e-1/t-k-1)
+ BT m(t-k-1) + Fg(t)+ggt) (8.61)

where B
B =i+ G2 omd £t Fe”
m(t-k-1) = Hu(t-k-1) + Gyp(t—k-l)
- Tyy(t-2/t-k-2) (8.62)
From the control strategy (8.38)
A
Jy(t/t-k) + Qu(t-k) - Rw(t-k) =0 (8.63)

which is equivalent to

Hu(t-k) + Gyp(t-k) - G (t-1/t-k-1)
= Rw(t-k) - Qu(t-k) (8.64)

Thus

m(t-k-1) = Rw(t-k-1) - Qu(t-k-1° (8.65)
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Define
AT A
XT(t) = [ult), yp(t), Yylt+k=1/t-1), m(t-1) Et-0]) (8.66)
T N~
g (t) = (H, G, C, B7,F] (8.67)

Thus equation (8.58) can be written as:

T
yle) = X" (ek) Oit-k) + &) (8.68)

Similar to Clarke and Gawthrop's self-tuner, (t) is
uncorrelated with X(t-k), thence unbiased estimates are

achieved.

Self-Tuning Algorithm

Step 1: Select P, O, R and w(t). Assign nh, ng, nc, n2
(order of B~), k and initialize the self-tuner
with initial parameters and parameter error

covariance matrix.

Step 2: Calculate (Py(t) = Py(t), and form the information

vector X(t-k).

Step 3: Identify the controller parameters using:

(Fy(t) = xT(t-k) B(t-k) + B(t)
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by extended recursive least squares technigue or
recursive maximum likelihood technique.
Step 4: Calculate the control signal uj(t) from
G ypl(t), & (ylt+k-1/t-1
up(e) = -z YRIe L gyleriel/eh)

Step 5: Calculate the control signal u(t) from:

ult) = 7?36 uy (t)
(<]

Step 6: Approximate:
A A A
) = @y - XT(t-k) O(t-k)
Step 7: Calculate:
A
m(t-k) = Rw(t-k) - Qu(t-k) + £(t)
A
Step 8: Calculate (y(t+k/t) from:

@y<t+k/t> = Rw(t) + ho(u(t)-up(t))

Step 9: Return to step 2.

Special Cases:

1) If B~ = 1 then B™m(t) = 0, qay(t) = (y(t). This is
the implicit self-tuning control developed by Clarke
In theo tase, F needs net W be £ot omaled

and Gawthrop [76].

buwub'igw):o.
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A A
ii) If Q=0, R=0 then (), (t+k-1/t-1) = ((t+k-1/t-1) = 0.
This is the implicit version of the minimum variance

self-tuning controller for the non-minimum phase system

which was developed by Astrom and Wittenmark (66].

iii) If B7=1, Q=0, R=0 then B7m(t) = 0, Py (t) = (Y (¢),
A
L‘T)y(t+k—l/t—1) = ((t+k-1/t-1) = 0. This class of
self-tuning control is called Minimum Variance

Regulator developed by Astrom and Wittenmark [65].

8.4.5 Discussion

The implicit WMV self-tuner is complex compared with Clarke
and Gawthrop's GMV self-tuner. The WMV control law, in the
deterministic case, is more robust than the GMV control
law. However, its self-tuning version is very much
dependent on the robustness of the identification
algorithm. The robustness of the GMV self-tuner has been
investigated extensively by Gawthrop [129] and Gawthrop and

Lam [132}. The WMV self-tuner needs similar investigation

in the future.
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CHAPTER NINE

OVERALL CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

9.1 OVERALL CONCLUSIONS

The work presented in this thesis is divided into two

parts. Part One (Chapter One to Chapter Six) was tc develop
an adaptive control system for dynamically positioned
vessels. Part Two (Chapter Seven and Chapter Eight)
consists of a few contributions to the self-adaptive control

theory.

In Part One, the control problems and the basic components
of the ship positioning system were first defined, followed
by the development of dynamic models for controller and
filter design purposes. The models are: low frequency ship
model, thruster model and high frequency wave model. The
dynamic positioning control system consists of two parts:
control and filtering. A LQG (Linear Quadratic Gaussian)
optimal controller with integral action was developed.
However, this controller requires the detailed models of the

disturbances, so it may not be easily implemented. For this

reason, the control scheme was simplified and the simulation

results were still found to be good.
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The previous contributions to the filtering problem of the
dynamic positioning system were mainly from Balchen (17,1871,
Grimble [5,6) and their co-workers. It was found that their
adaptive filtering approaches either cumbersome or the
assumption on the wave model is oversimplified and the
adaptive algorithm is complicated. The author has developed
a novel self-tuning Kalman filter to estimate the low
frequency states for feedback purposes. The scheme is
relatively insensitive to the to the presence of non-linear
ship dynamics and thruster non-linearities. The self-tuning
filter is able to estimate implicitly the offsets between
the low frequency position states and their estimates due to
the constant disturbance when using the simplified LOG
controller with integral action. The structure of this
adaptive scheme is simple compared with those developed by

the Balchen and by Grimble.

In Part Two, an adaptive technigque was developed for
tracking slowly varying processes which are corrupted by
coloured noises. The technique has the advantage of not
requiring the specification of the noise properties except
the order of the noise model. Usually a second order noise
model is sufficient for most applications. The adaptive
tracker was found to be successful in estimating square,

trapezoidal, sinusoidal and low frequency ship motion. The

-253-



0/5/mcl1749/12

results were extremely good when the process output varied

linearly or near linearly.

Lastly, the published self-tuning control theory and
applications were over-viewed. A multivariable explicit and
single input-single output weighted minimum variance (WMV)
self-tuning controller were also developed. The WMV control
is stable over a wide range of control weightings in
non-minimum phase systems. However, its structure is more
complex compared with some other popular self-tuners.
Nevetheless, it does offer an alternative in certain

applications.

9.2 Suggestions for Future Work

1. It has been shown that the self-tuning Kalman filter is
able to estimate the offset between position states and
their estimates due to the absence of a constant
disturbance model in the Kalman filter. Theoretically,
this can be extended to estimate the slowly varying
position estimation errors due to the low frequency

model mismatch. This property needs further

investigation.
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The weighted minimum variance self-tuners require
further investigation. It should be compared with LQG
controllers regarding their computational efficiency
and robustness. Usually, complex self-tuning control
algorithms will give additional uncertainty to a
control system. Simplification of the algorithms

should be one of the important activities in the

future.
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APPENDIX A

TRANSFER FUNCTION WAVE MODELS FOR VARIOUS SEA CONDITIONS

TABLE A-1

Beaufort hl/3(m) K gl (31 52 (32 Wn, o

No.
5 2.74 0.52 0.50 0.77 0.24 0.70 0.93 0.74
6 4.24 0.92 0.41 0.61 ©0.18 0.57 0.73 0.58
7 5.73 1.38 0.36 0.54 0.15 0.48 0.65 0.51
8 7.47 1.95 0.31 0.49 0.14 0.42 0.58 0.49
9 9.24 2.60 0.28 0.45 0.13 0.37 0.54 0.38
hl/3 - significant wave height (metres)?*

The significant wave height h1/3 is defined by taking

99 waves, choosing the 33 largest waves and then
calculating one-third of the peak-to-peak magnitude of

these waves.
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The fourth order model transfer function 1is:

4 Gy Gyk2s?

2 2
(s2 + 2 ZlS +wWay) (s2 + 2055 + wp))

G(s)

or

K's2

G(s)

(s¥ + oqs3 + aps? + K3s + 0y)

where

X1 2 2( 01+ G2), X2 2 (w§1+a.ﬁ2)

2 2 22
O3 2 2( Qlwp, + Gowhy), X4 £ epian)

and K' = 4§1 ;2K2

The signal flow graph for the system in companion form is

shown in Figure A-1.

The characteristic polynomial of the companion form
state-space representation is the fourth order s polynomial
of the scalar transfer function G(s) above, so that the

frequency system Fp matrix is given by:

B n
0 Tp 0 0
Fn = 0 0 Tp 0 where Tp = 3.104 secs
0 0 0 Tp
-0y -3 -0 -0
L —_
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The coefficients & and overall gain constants K' may be

tabulated as follows (Table A-2) for the range of sea state

conditions corresponding to Beaufort scale numbers 5 to 9

and for time scale factor of 3.104:

TABLE A-2
Beaufort
No. 1 2 3 4 K
5 4,594 4,384 2.988 1.470 0.403
6 3.663 2.698 1.452 0.556 0.776
7 3.166 2.119 0.974 0.341 1.277
8 2.794 1.789 0.754 0.251 2.049
9 2.545 1,353 0.486 0.131 3.055

It is convenient to transfer the scalar gain K'

into the Dp

matrix so that the overall matrix Hp for both sway and yaw

is:

0 1.0

oy
o
]

o

The G matrix must then contain the gain K' divided by

suitable scaling factors
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The normalizing factor for sway position measurement is Lpp
(see Appendix B). Thus the noise input to sway motion has

unit variance, but 1is scaled by the factor:

K'/Lpp = K'/94.49 (for Wimpey Scalab)

The output of this high frequency yaw angle motions must be
in per-unit of angle, that is in radians. The approximation
is also made that the vessel dynamics have a constant

attenuation of 0.885 at the high frequencies considered, so

that the yaw scaling factor 1is:

K'(0.855)/57 = 0.0465K"

where it must be noted that K' has previously been

normalized with respect to time.

The resulting Gp matrix for the combined high frequency sway

and yaw motions is:

I
B

D)
o
Il
O O © O R O O o
r
e
O

.0465K"

l
I
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An alternative 4th order approximate HF model can be derived

which has the following companion form:

pre—— e

0 1 0 0
Fy = 0 0 1 0
0 0 0 1

-t —23e3 —4 2 -2fe
L _

The corresponding transfer function is:

K's?
G(s) = v > — 5
(s + Jfés-ke ) (s +-J7€s + £4)
where K' = 25.33 {—5—- ?/2
1/4
B
and €= 581/4

Table A-3 shows the variation of gain K' and parameter € for
Beaufort numbers 5 to 9. The corresponding significant wave

height and Pierson-Moskowitz parameters A and B are

(h1/3)

also shown.
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TABLE A-3
Beaufort
| ]
No. h1/3(M) K A B €

5 2.74 1.58 5x10"4  2.66x10"4 0.640
6 4.24 1.77 5x10-4 1.11x19-4 0.513
7 5.73 1.91 5x104  6.08x10~5 0.441
8 7.47 2.04 5x10-4 3.58x10-5 0.386
9 9.24 2.15 5x10"4  2.34x10"5 0.347

Table A-4 shows the resulting time scaled state-space

coefficients for the model for time scale factor of 3.
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TABLE A-4
Beaufort
No. o A O3 Ay K"
5 5.60 5.09 2.30 0.51 1.58
6 4,50 3.27 1.18 0.21 1.77
7 3.87 2.41 0.75 0.12 1.91
8 3.39 1.85 0.51 0.07 2.04
9 3.05 1.49 0.37 0.05 2.15

The system eigenvalues for this model are all complex

conjugate and given by:

N2 2 1/2
)\1,2=>\3,4=-7ai1/2{2a “4@2}

x { lijl}

wﬁﬂ

-292-



0/5/mcl749/50

APPENDIX B

WIMPEY SEALAB PER UNIT SYSTEM SPECIFICATIONS

Mass m = 5670 tonne

Length Lpp (between perpendiculars) = 94.49 m

Acceleration g = 9.81 m.sec” 2

Time |ZBR = 3.104 sec.

VelocitydLpp9 = 30.44 m.sec™1

Force Mg = 5670(9.81) = 55,620 KN

Moment Mngp = 5,256,000 KN-m

Angular Velocity 9 = 0.3222 rad.sec™!

Lpp

Radius of gyration in yaw Kkgzz ~ 0.25 Lpp
~ 0.243 p.u.
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Vessel's attenuation to high frequency motions in yaw =

0.855.

0.855
= ==— (3.104) p.u.

0.0466 p.u.

per unit scale factor

3.104 _ 3.104
Lpp  94.49

for sway HF noise = = 0.0327 p.u.

-294-



0/5/mcl749/52

APPENDIX C

DISCRETE KALMAN GAIN MATRIX COMPUTATION

The position measurements are not defined in continuous form
but are sampled at regular intervals. The system simulation
and the Kalman filter have both been modelled using their

discrete forms. The resulting discrete equations are as

follows:

x(k+1) = (k+1,k)x(k) + Pu(k) + (k) (C-1)

z(k) = Cx(k) + v(k) (C-2)

with

E&g(k)} =0 E{g(k)g?(m)} = 0 §km (C-3)
- T - RS (C-4)

E.{!(k)} =0 E{z(k)! (m)} = R Okm

and where Skm is the Kronecker delta function. The matrices

H?and P are related to their continuous—-time counterparts

by:
P = 5 d(1)B a1 (€-3)

(I
M- j $(T)p AT (c=e)
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and
Pik+1,002 & (1)) = AT o)

where T is the sampling interval, matrices A, B and D are

the continuous time counterparts of é, ggand .

The state estimate is given by calculating the predicted

state

X(k+1/k) = @ (k+1,k)%(k/k) (C-8)

and then calculating the estimated state at the instant

(k+l)r Using

X(k+1/k+1) = X(k+1/k) + K(k+1)(z(k+1) - Cx(k+1/k)) (C-9)

The Kalman gain matrix K(k+1l) can be obtained, first by

calculating the predicted error covariance matrix:

T
P(k+1/k) = B(k+l,k)P(k/k) (k+l,k) +TOF (C-10)

for some initial error covariance P(k/k), and then

calculating

T - -
K(k+1) = P(k+1/k)CT[CP(k+1l/k)C + R]™1 (C-11)
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Finally, the error covariance matrix is obtained using

P(k+1/k+1) = (I-K(k+1)C)P(K+1/k) (C-12)

The above equations can be used iteratively to obtain the
state estimate at any future sampling time, given the

initial state and covariance.
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APPENDIX D

A RECURSIVE ALGORITHM FOR SMOOTHING AND

PREDICTION OF A SIGNAL

The Algorithm for tracking the error yj(t) based on the

estimated position error j(t/t-1), for the ith channel

[167,168] becomes

~DP ’V* ~*
yli(t) = Yli(t‘l + Tyli(t—l)
* b ~ p
~ o~ ~
yli(t) = yli(t)+kli[y1i(t/t—l)-yli(t)]
. %k * A
~ ~ k21 A~ p
y1, (t) = y1 (t-1) + (Y1, (£/t-1)=Y1 (t)]
i i i i
where
T sampling interval
kli constant less than unity
k2t constant less than unity
" . . .
y?i(t) predicted position
N*
yi;(t) updated position error
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A

'i/'li(t) updated velocity error

A

@’li(t/t—l) estimated position error from the self-tuning
filter.
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APPENDIX E

WEIGHTED MINIMUM VARIANCE CONTROLLER DERIVATION

Discrete-Time Plant

The time-invariant single-input/single-output plant is
assumed to be represented either by the control

autoregressive moving average equation::

A(z~l)y(t) = z=kB(z=l)u(t) + c(z-1) E(¢) (E-1)
where z is the forward shift operator zky(t) = y(t+k) and t
is the sampling state. The order of the system is n and the

time-delay is an integer number of sample intervals (k 21).
This definition of k implies that bg 1is non-zero. The

polynomials A, B and C have the form:

A(z7l) =1 + alz'1 teooot anz-na (E-2
B(z=1) = bg + byz=} +....+ bpz "D, (bg # 0) (E-3)
C(z=l) = 1 + cyz=! +....4 cpz € (E-4)

The disturbance g(t) is a weak stationary sequence of
uncorrelated random variables with zero mean. The delay k

and an upper bound n to the orders of A, B and C (denoted
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Nyrnpsne) are assumed known. Owing to the physical
realizability, the discrete closed-loop system must contain
at least one step delay; thus k 21. The delay k is equal to
the magnitude of the pole excess k-ny-n, which appears
explicitly when the backward shift operator is used. The
polynomial C may, witiout loss of generality, be taken not
to have roots outside or on the unit circle in the z-plane.
This statement may be justified using the representation and
spectral factorization theorems. z=1 will be dropped in the

following polynomials for clarity.

Weighted Minimum-variance Controller

The controller derived below will be termed the weighted
minimum-variance controller and must minimize the

performance criterion:
Jy = E {(Py(t+k) - Rw(t))2 + (Q'U(t))z/t} (E-5)
Let y'(t)é P(z‘ly(t) where

N—
B—Pd

P =

Note that B~- and B~ are reciprocal polynomials and thus they

do not affect the steady state variance of Py(t+k). The
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weighting polynomial Py will always be chosen so that 1/p,
is stable. To define a predictor introduce the following

diophantine equation:

~
B~P,C = PGAF + z KB~G (E-7)

where F and G are of degree k-l+np~ and Na+tnpg-1,
respectively (assuming npp + nc £ npd+ngtk-1). Thus,

PC PB

"(t+k) = —— t+k) + —
% x g( ) a u(t)
F G G5(t)
= —  E(t+k) + — u(t) +
B A AP4 ,
but from (E-1)
(t+k) —_._F k __._G )
(t+ = t+ + t
y = g( ) 5 y(
B+
+ { B- P, - 2z KB™G } u(t) (E-8)
CPgA

Recall that zkF/B~ may be expanded as a convergent series,

lzi <1, of the form:

zKF/B~ = Xyz + Kpz2 +...

Thus, the first term in (E-8) represents an unpredictable

random sequence.
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The k steps ahead predictor follows from (E-8) as:

A (E+k/t) G BtF
Yt S Jp— t) +
Y PdC y(t)

u(t) (E-9)

The prediction error is given by

' _ ' ) Al F
glittk/t) = y'(t+k) = y'(t+k/t) = —B_-_E(t+k) (E-10)

where E'(t+k/t) depends upon future values of the
dusturbance signal. It follows that gkt+k/t) is
uncorrelated with all y(t-1i), and u(t-i) values for i Z 0.
Since g(t) is zero mean it also follows that the prediction
error is uncorrelated with w(t) which is known at time t.
Let 6{ & E( &'(t+k/t)2/t) then the performance criterion

may be simplified as:

Ji

E {(§'(t+k/t) + E(t+k/t) - Rw(t))? + (Q'u(t))z/t}(E-ll)
E {(§'(t+k/t) - Rw(t))? + (Q'u(t))z/t} + g%

]

The necessary condition for optimality may be derived by

noting that (9'(t+k/t) - Rw(t)) is known at time t,

o J1
Ju(t)

9)
u(t)

= 2(y' (ty+k/t) - Rw(t)) +20'qult) = 0 (E-12)

o N N o . .
where q; is the coefficient of z° in the power series

expansion of Q'. Note that

' BtF
_ELX__ = (——)(0) = bp
ou(t) C

(E-13)
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since B¥(0) = bg,F(0) =1 and C(0) = 1. Define the transfer
function Q = Q'qzbo then the condition for optimality

becomes:

P (t+k/t) + Oul(t) - Rw(t) = 0 (E-14)

The second partial derivative of J] with respect to u(t) is
always positive which confirms that (E-14) is also a
sufficient condition for optimality. The optimal control

law follows as:

A
ug(t) =-(y'(t+k/t) - Rw(t))/0 (E-15)

An alternative expression for the optimal control may be

derived as follows. From (E-9) and E-14):

(1 + B'F (t) sty + 2wt
t = +
o " P4C0 7 0"
or
CR t - G t P
up(t) = wit) - Gy(t)/Fg (E-16)
(FBTY + QC)

It may easily be shown that this controller also minimilzes

the followihg equivalent cost function:
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where

¢l(t+k) = Py(t+k) + Qu(t) - Rw(t) (E-18)

The performance of the weighted minimum variance controller
is compared with the generalized minimum variance controller
using the example treated by both Astrom and Wittenmark [66]
and Clarke and Gawthrop [74]. The results are shown in

Figure E-1 and E-2.
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Abstract — A novel sdaplive filtering technique is described for s class of
.s)\lems with unknown disturbances. The estimator includes both a self-tun-
ing filter and & Kalman filter. The state estimates are employed in a
doved-loop feedback control scheme which is designed via the usual linear
Quadrutic appruach. The approach was developed for application 10 the
‘.\fﬂfnic ship positioning control problem and has the advantage that
“AMing nonadaptive Kalman filtening systems may be easily modified to
Include the self-tuning feature.
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I. INTRODUCTION

DYNAMIC positioning (DP) system is used to m:

tain a floating vessel on a specified position and :
desired heading. The system involves a position /heac
measurement system, a thryster control algorithm, an
sct of thrusters (including the main propulsion unit:
some cases). This type of vessel is used for several app!
tions in the survey and development of offshore min
and oil resources. The number of countries involvec
offshore exploration is increasing rapidly. For exam
Saudi Arabia and the Sudan are preparing to dredge
deposits of zinc, copper, and silver from the Red Sea n
Manganese nodules of the highest grade have been (c

0018-9286,/83 /0300-0339501.00 ©1983 IEEE
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in the international waters between Hawaii and California,
and hence have become the subject of a prolonged debate
at the United Nations Conference on the Law of the Sea.

The basic components in a DP system are illustrated in
Fig. 1. Several types of position measurement systems can
be used including taut wire [1], short range radio reference,
and sonar systems. These measurements can be pooled and
this gives rise to a combination of measurement problems.
The heading measurement is given by a gyrocompass.
Communication satellites are increasingly being used to
provide a position fix and this enables vessels to be moved
from a reference position in just a few minutes. A maxi-
mum allowable radial position error is normally specified,
for example, 3 percent of water depth (under 100 m) [2].

The control loops for dynamically positioned vessels
include filters to remove the wave motion signals. This is
necessary because the thrust devices are not intended and
are not rated to suppress the wave induced motions (greater
than 0.3 rad/s). The position control system must only
respond to the low frequency forces on the vessel. The
filtering problem is one of estimating the low frequency
motions so that control can be applied. Notice that even
though the position measurement includes a noise compo-
nent, this does not cause the filtering problem. If the total
position of the vessel was known exactly there would still
be a need to estimate the low frequency motions.

The extended Kalman filtering technique was [irst ap-
plied to dynamic ship positioning systems by Balchen,
Jenssen, and Saelid [3). A simpler, but nonadaptive, con-
stant gain Kalman filtering solution was also proposed by
Grimble, Patton, and Wise [4]. In both cases a lincarized
model was used for the estimation of the low frequency

Basic components in a dynamic positioning system

motions and optimal control feedback was employed from
these estimates [5]. Balchen assumed in this and subsequent
schemes [6] that the high frequency motions were purely
oscillatory and could be modeled by a second order
sinusoidal oscillator with variable center frequency.

Grimble er al. used a fourth order wave model in the
specification of the high frequency motions. However, the
dominant wave frequency varies with weather conditions
and the corresponding Kalman filter gain must therefore
be switched for different operating conditions. The ex-
tended Kalman filter of Balchen automatically adapted 1o
these varying environmental conditions. The computa-
tional load resulting from the gain matrix calculation was
reduced by making suitable approximations. An alternative
extended Kalman filtering scheme proposed by Grimble.
Patton, and Wise [7], [8], employed the higher order wave
model, but suggested the use of fixed low frequency filter
gains to achieve the necessary computational savings. The
self-tuning filter described here is based upon a similar
decomposition property. This approach was first proposed
by Fung and Grimble [I8] using a_scalar example and
without the theoretical justification given in the following

The advantages and disadvantages of the self-tuning
approach in comparison with the usual extended Kalman
filtering schemes can be listed as follows.

Advantages

1) The varying disturbance is represented by single-
input single-output channels, and thus the adaptive filter 1s
not multivariable in nature.
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Fig. 2. Low and high frequency subsystems for a ship model.

2) The high frequency adaptive filter forms a separate
subsystem to the low frequency Kalman filter, and thus the
gain calculations are simplified and the system may be
commissioned more easily.

3) The filter gains for the low frequency estimator are
fixed and can be computed off-line, whereas all of the
gains in an EKF must be computed on-line unless ap-
proximations are made [6].

4) Exisuing constant gain linear Kalman filtering DP
systems [4] may easily be modified to include the self-tun-
ing features described here.

5) There is no need to specify the process noise covari-
ance or the form of the high frequency model. Only the
total order of the model is assumed-known.

6) The high frequency model states which are not needed
for control purposes are not estimated in the sell-tuning
approach.

7) The scheme presented here is relatively insensitive to
the presence of nonlinear ship dynamics and thruster non-
linearities [23}. ~

Disadvantages

1) The full EKF in which all of the gains are computed
on-line can be classified as being locally optimal (if the
linearizations are correct), whereas the sell-tuning scheme
is suboptimal unless the low [requency estimator gains are
calculated on-line using knowledge of the changing high
frequency model.

The analysis begins with the system and problem de-
scription in Section 11. The fixed gain Kalman filter is then
considered in Section 11l and the self-tuning filter is de-
scribed in Section IV, The errors which are introduced
using the self-tuning structure are discussed in Section V
and the total estimation algorithm is presented in Section
V1. The controller design is considered in Section VIl and
the simulation and results are described in Sections VIII

and IX, respectively.

1. THe SYSTEM DESCRIPTION

The environmental forces acting on a vessel induce mo-
tions in six degrees of freedom. In dynamic positioning

only vessel motions in the horizontal plane (surge. sway,
and yaw) are controlled. To simplify the problem. the
motions of the vessel in the sway and yaw directions only
are considered. This is possible because the linearized ship
equations for the surge motion are normally decoupled
from those for the sway and yaw motions {9]. The assump-
tion is also made that the low and high frequency motions
can be determined separately and that the total motion is
the sum of each of them. Marine engineers often make this
assumption since the analysis is simplified and the low
frequency motions can also be predicted with more accu-
racy than the high frequency motions.

The canonical structure of the system under considera-
tion is shown in Fig. 2. The model for a vessel can be
separated into low / and high h frequency subsystems. The
low frequency motions (subsystem ;) are controllable via
thruster action and the high frequency motions (subsystem
S, ) are due to the first order wave forces and are oscilla-
tory in nature. The ship positioning problem is to control
the low frequency motions (output of S;) given that the
measured position of the vessel (z) includes both y;, and y,.
The object in the following is to design a stale estimator 10
provide estimates of the low frequency motions x,. The
estimator must be capable of adapting to variations in the
high frequency subsystem S, which occur due to variations
in the weather conditions.

The plant S, can be assumed to be completely controlla-
ble and observable and to be represented by the following
discrete time-invariant state equations:

S x,(t+1)=Ax,(1)+ Bu(1)+ Dw(r) (1
(1) =Cx,(1)
5, (1) = p(r)+elr)
where

(3)
(4)

E{w(h)w’(m)) =0Q8,.,
E{v(k)o'(m))= RS,

E{w(t))=0,
E{v(1))=0.
and 8, is the Kronecker delta function. x,(1) € R". u(r) €

R™. w(1)€ RY and y (1) € R’. The process noise wif) 1s
used to simulate the wind disturbance and o(1) represents
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using
Flelr) =m, (1)=Z 2 (1) (25)
where
(1) =m, ()= g, (el - 1). (26)
Using the identity in (24), 5,(¢|r) becomes
Falelt) = my(1)= 45D, £(1). (27)

The estimate of y,(1) is not needed for control purposes,
but is required for updating £(s{r). The wave [requency
model changes with environmental conditions and these
variations are accounted for in (27) by on-line estimation
of A, . D,,. and the innovations (1) (Section VI).

V. MODIFIED ESTIMATION EQUATIONS

The signal y, (1) is not measurable and must be replaced
in the low frequency Kalman filter by §,(r}¢). This sub-
stitution causes a difference in the state estimates [denoted
x,(r|1)] and in the calculated innovations

() 2z()= 5 (e =1)= 5, (e10)

=¢(t)+n,(1) (28)

where n, (1) 2 y,(1)— $,(1]1). The signal n,(r) for the high
frequency motion estimator has a zero mean value if the
errors in calculating ¥, (r|¢) are neglected. Notice from (16)
and (26) that the innovations &(r) are identical to the signal
¢, (1) where

()& m, ()= 5,01).

If the above substitution is made the new low frequency
filter has the form

5(000) = AE (0= W= 1)+ Bu(e = 1)+ K,(1)er),
(29)

but this equation may be decomposed into the following
two parts:

)= A1 = =D+ Bu(r - 1)+ K (1)¢(r)

(30)

£ (1) = A& (= e = D)+ K () (1) (31)
where

Frjr) = £(010)+ £ (1) (32)

and .l:',(lll) represents the change brought about by rcplac-
ing v,(1) by §,(¢1]1) in (27). The change in the predicted
output

Fe=1) 2§ == #l -1 (33)

where

Sl = 1) = C 5 (11 - 1) (34)

143
but from (9) and (32)

Flilr =1y = £tk = )= £,(e1r - 1))

=C A (1 -1 =1). (35)

For later reference note that (¢}t — 1) is generated from
the output of the low frequency subsystem [see (31 )] driven
by the zero mean signal a,. The resulting position vari-
ations are relatively slow in comparison with the high
frequency motions.

The high frequency motion estimator is also modified
because the signal m, (1) in (18) cannot be calculated, but
instead #, (1) can be found where

i, (1) 22(0)= (1) = 1) (36)

The basis of the parameter estimation equation (Section
V) follows from (19) and (33) as

ﬁh(’)’"’h(’)‘ﬁ/('l"‘ 1)
=A,(z ") 'D,(z Velr)- 5Lt =1). (37)

Assuming that ¢ and 5, can be calculated the estimate of
3, (1) can be generated using (27) and (37)

J-'n(’l’)"'ih(’)"A;_,'D,.}(’)*J"/(’ll"‘)- (38)

The signal @ must be calculated to obtain the desired state
estimates X,(/|r) and this can be found using (18). (27). and
(28)

Wr)=A,'D, e(1). (39)

Recall that the gain K,(r) is calculated based upon the
low frequency subsystem rather than the total system model
{7). This has the advantage that the gain is fixed and
independent of variations in the high frequency subsystem.
The optimal low frequency position estimate should there-
fore be calculated from (30). but this is not possible since ¢,
cannot be computed directly. The state estimates are
therefore obtained via (29). but are corrected using the
estimated y,(¢}r —1). This can be achieved in the ship
positioning problem because the position states are identi-
cal to the outputs of the system. Thus, let the corrected
estimate

§(r1e) = F, ()= §, (e = 1)

= {position states in £,(7]t)). (40)

In the application of Kalman filters it is unavoidable
that efrors will arise from incorrect models for the plant
and noise signals. The signd v, (r|r — 1) wll include such
crrors. but in the following section it is shown how this
quantity can be estimated and may be used Lo correct the
low frequency state estimates.

VI, KALMAN AND Sttr-TuNiNG FILILR
A1 GORIIHMS

The Kalman and sell-tuning llter algorithms are com-
hined below to produce the devired fow frequency motion
estimator. The Kalman filter 1o estimate a,(7{7) becomes
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Algorithm 6.1:

predictor:
(-0 = A&~ = 1)+ Bu(t—1)  (41)
FAe=1)=Cx, (1)t - 1) (42)

corrector’
000y = F(00 - )+ K, (1)dr) (43)
;;I(II’)=CI§I("I)' (44)

The signal € is required in the above algorithm, but this
can be computed from (39) given the innovations signal ¢
and the matrices A, and D, . These matrices may be
estimated as described in the following. Note that at time

 — 1 the predicted output j(¢]t — 1) is known [from (41),
(42)] so that m,(1) can be computed from (36). From (38)

A;,(Z_‘)ﬁ(’): D;.(Z_l)((’)_ Ah(zhl).‘.’/(”’_l)-
(45)

The quantity y, is a slowly varying signal (from Section V)
and can be treated as a constant over a short time interval.
Let s(1)2 A,(z ") 5,(t)t = 1) (where using the final value
theorem z may be replaced by unity) then (45) becomes

A (2 N, (1) =D, (27" )e(1) - s(1).

The innovations signal model can be represented in the
usual form for parameter estimation

m,(1)=y(1)0+e(1)

and the algorithm due (o Panuska [12] can be employed to
estimate the unknown parameters.

In the ship positioning problem the high frequency dis-
turbances can be assumed to be decoupled, so that
Az "y 'D,(z7"Y is a diagonal matrix and the parame-
ters for each channel can be estimated separately. Hence,
standard extended recursive lcasl squares or maximum
likelihood parameter identification algorithms may be used.
For the ith channel

(46)

(47)

i, (1) =y,(1)8, +¢(1) (48)
where
b () =[= A (=1 = (=)
(r=1. . (1=n,): 1] (49)
87 = [ap a i dinis]) (50)

Past values o the innovations signal are approximated by
o() =, (=¥, (b, (s1)

where (1) is given by (49) with ¢ (1~ J) rcplaged by
é(t—j)j=1. 2+, n,and 6, represents the cstimated
parameter vector.
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The recursive Kalman /self-tuning filter algorithm now
becomes

Algorithm 6.2:

1) Initialize 6, initial parameter covaniance for each
channel and assign the forgetting factor B. Initialize stale
estimates.
. 2) Generate the Kalman filter estimates f,(r|l —-1) and
¥, (1]t — 1) using (41) and (42).

3) Calculate i, (1) using (36) and form ¥.(1).

4) Parameter update:

8,(1) =81 = 1)+ KP(0)(m, (1)~ d,(NB.(r=1)). (52)

5) Covariance and gain update

PP(e)={PP(1=1)-K!(2)
(B4, ()PPt =) (1)K ()T} /B
k2 (1) = P2(1=1)y,(1)
B+, (1) PP(1=1)¢](1) "

where 095 < B8 <. -
6) Innovations update:

(1) =m, (N =¥,(1)8,(1).

(53)

{34)

7) Calculate ¢, (r) for channel i using (39)

(1) =4, 'd, ¢ (1) (55)
8) If i < number of channels (r) go to step 3).

9) Generate the state x,(7{r) [using (43) and (44)).

10) Calculate the estimated y,(t{t — 1) as

5, (10 =1) = 5,(1) /4, (1)
):','(l) =a):',‘(l —D)+(1=a)y, (fe=1).

O<a<l. (56)

1) Correct the position estimates using (40). Return to
step 2).

The signal ):/,(tll = 1) in step 10) may be processed to
produce the smoothed estimate F(n before 1t is used to
correct the state estimates. The algorithm described in the
Appendix can predict the velocity as well as smooth the
estimation of y, (r).

The structure of the self-tuning /Kalman filtering scheme
for the dynamic positioning system is shown in Fig. 3. The
surge motions are decoupled from the sway and yaw
motions. and thus these are normally estimated by separate

filters.

VIl. CONTROLLER DESIGN

The controller design is based on the separation princt-
ple of stochastic optimal control theory [16]. The controlier
with input : and output w 1s chosen o minimize the
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performance criterion

J= tim ZLTEU_'T(:, —r,)TQ,(.r,—r,)+uTR,ud1}
(57)

where Q, and R, are positive definite weighting matrices.
The optimal control signal is generated from a Kalman
filter cascaded with a control ga n matrix K,

u(r)=- Krfl(l). (58)

The control gain matrix may be calculated from the
steady-state Riccati equation in the usual way. The closed
loop contro! system is shown in Fig. 4.

The optimal control weighting matrices were chosen to
penalize the position error corresponding to the low
frequency motions (states 2 and 4) and to give an ap-
propriate step response [17]. These were found as

0, = diag(5.60.5.60.1.1)
R, = diag{400.400).

The saturation limits on the control signals were set at
1 0.002 per unit. These represented the actual saturanon
which can occur when the thrusters are at full load. The
selection of the optimal control weighting matrices in the
ship positioning problem can be based upon resuits from

asymptotic root loci {17] since the system is uniform rank
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VIill. SIMULATION AND SHIP EQUATIONS

A. Low Frequency Ship Motions

The low frequency motions of a vessel are determined by
nonlincar equations [13) which are linearized for system
analysis. The forces which produce the low frequency
motions can be listed as follows: 1) forces generated by the
thrusters and propellers; 2) wind forces: 3) wave induced
forces; 4) hydrodynamic forces.

The lincarized low frequency model of the vessel can be
represented by (1) and (2) where the state vector is defined
as

[ x, (1) ] } sway velocity
x,(1) | ) sway position
(1) = x;3(1) { ) yaw angular velocity (59)
x4(1} | )} yaw angle
x5(1) | ) thruster one
LXG(’) | ) thruster two.

The system matrices for Wimpey Sealab [4] corresponding
10 the zero current condition and the continuous time state
equations become

[ _0056 0 00016 O 05435 0O
10 0 0 0 0 0
4| 0573 0 -00695 0 0O 9785
! 0 0 1.0 0 0 0
0 0 0 0 —1.55 0
[ 0 0 0 0 O -~ 1.55
[0 0 0.5435 0
0 0 0 0
to 0 _10 9.785
Bi=1o 0 bi=1y 0
155 0 0 0
L 0 1.55 0 0
(0384 0O
0 0
_1o 6.92 _[o 1 0 00 o] 0
E=lo 0 G [0 0 01 00 (60)
0 0
L O 0

where E, is the input matrix corresponding to the wind
force disturbances. The above lincarized cquations are in
per-unit form and have been time scaled (real time = 3.104
x simulated time). The following simulation results are
also in terms of per-unit quantitics and scaled time.

The covariance of the process noise is dependent upon
the wind force level and can be defined as

Q = diag(4x 10 ©.9x10 .
The standard deviation of the measurement noise (sonar
position measurement device) is assumed 10 be 1/3 and 0.2
degrees. giving the normatized sway and yaw covariances

R = diag{10 %.1.22x10 *). (61)
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B. High Frequency Motions

The high frequency motions of the vessel are due 10 the
first order wave forces. The worst case high (requency
motion is determined by the sea wave spectrum alone and
can be represented by the input-output vector difference
(6). The order of the polynomial matrices A,(: ') and
C,(z7") can be assumed to be second and first order.
respectively. The parameters of these matrices vary with
sea state.

It is usual 1o test the DP designs for real applications
using simulated rather than measured sea wave data. This
is partly due to the difficulty in collecting representative
sea wave data, but also reflects the fact that tests over
range of different conditions must be made.

The high frequency motions were simulated using two
fourth order coloring filters driven by white noise. In state
space notation

X, = A,x,+ D,k (62)
i =Cyx, (63)
where _
A A0 ] and D, = b0
0 A, 0 D,

and the submatrices for the sway and yaw directions have
the same form

0 1 0 0 0
B 0 0o 1 0 s 0
A=l o o 0 | Bl
—ai -a} -—a) -a K

(64)

ci=lo o 1 ol (63)

The parameters of the system matrices are calculated to
minimize the integral squared error between the modeled
and Pierson Moskowilz sea spectra {8].

Tests on the Filters: The simulation results presented
below were obtained using the above high frequency modcl
to generate the wave motions. The tests were based on
weather conditions corresponding 1o Beaufort numbers &
and S (wind speeds 19 m/s and 9.3 m/s. respectinely)
which are typical examples of rough and calm seas. respee-
tively. The first set of “filtering™ results (Figs. 5-8) are for
Beaufort 8, without closed loop control.

The total sway motion is shown in Fig. 5 and the
estimated and modeled low frequency sway mations are
shown in Fig. 6. The estimate of the low frequency motien
is required for control purposes and il is clear that the
estimate is good throughout the ume interval (even after
initial startup). The high frequency sway motion estimates
are not needed for feedback control and are not shown. It
is important that the LF motion estimates are relatnveby
smooth to reduce the consequential vanations in the con-
trol action. The major role of the combined estimator v
indeed to scparate the HF and LF monon estimates
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Because the LF Kalman filter does not have z, as an input,
but rather

2(0)= 5u(110) =2, (1) % my (1)

the predicted measurement noise covariance should be
increased if the LF estimates contain an HF component.
Since the HF wave conditions are slowly varying the
amount by which R should be increased is not known
exactly. but the system is not oversensitive to such an
adjustment (factors of 5 on sway and 10 on yaw were used
for the results shown here).

The accumulative loss functions for the position estima-
lion errors in sway and yaw (both HF and LF) are shown
in Fig. 7. The LF loss function for sway is defined as

N h)
J=Y (y ()= 3 )y

t=1

If the measuremeni noise were not artificially increased,
when calculating the Kalman filter gain, the HF and LF
loss functions for yaw would be found to be similar. This is
an indication of optimal performance which has been
sacrificed to some exient to obtain smoother position
estimates. The parameter estimates for the high frequency
model are shown in Fig. 8 where

Az =1+ a 04 ) ol (68)
W2 )=kt o) 0 a
d 0 y 0

Sy =14 P B 2% (69

Dz N=h+ly 4 0 d:,] (69)
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Note that even before the estimated parameters have con-
verged the position estimates are still accurate (see Fig. 8).
The initial parameter estimates for the matrices A, and D,
can be based upon the knowledge that these have stable
inverses. The polynomials are atl of the form u =f:,: e
ayz”t=(m: "+1)m,z "+1) and since |m <1, ||
<] then —2<m+m,;<2, —l<mm,<l. Assumin_g
m,, m, <0 implies that good initial estimates are ¢, = 0.5
and g, = — 1. It was found that the initial error covariance
for §(1) should be small (¢.g.. 0.1 in this test), but the ininal
covariance for the other parameters should be high (e.g.
100). The estimate of s(/) may contain a high [requency
component and thus this is smoothed by usc of a simple
first order lag filter.

The filtering results for a calm sea (Beaufort 5) are not
shown since the parameter estimates are much better for
this case. This is consistent with the theory of Section V
that shows that when the modeling errors are neghgible.
the term ,(1|¢ — 1) is caused by the estimation error of the
high frequency motion [see (35)] which 1s reduced in a calm
sed. ‘

Closed Loop Control: The first set of results are again for
the rough sea (Beaufort 8) condition. To allow the parame-
ter estimates to converge (as will be possible in practice)
the step response of the system is measured over the tme
interval 240-360 s. A step reference of 0.06 per unit s
input to the system at (=240 s. The «way and vaw
responses are shown in Figs. 9-12. The low frequency
variations, due to wind disturbances. are much reduced
under closed loop control, but the high frequency mouons
are. as required. almost unchanged. The rise ttme for the
step response can be reducced if larger control signal vara-
lions are allowed. These are shown in Figs. 13 and 14 and
it is clear the sway control enters the saturation limt for a
few seconds when the step degnand is entered Thisis nota
problem since in prachice position reference changes are
not made in steps. One of the main design objectines is 1o
reduce “thruster modulation,” that as, vanaton of the
thrusters in sympathy with the wave motions. That this
objective has been achieved s clear from the control wig-
nals in Figs. 13 and 14,

The equivalent results for the calm sea (Beaufon
conditions are not shown. The parameter osumuies Jre

5)
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|m'pmved and the control signal variations are reduced n
”.“s case, as would be expected. Note th.' in companng the
high frequency motions the magnitude of the HF motion 1~
reduced in the calm sca, but the frequency of the wure
motion is higher. The sway motion is less than the allowed
limit of the + 3 for both sea states.

Rapid Weather Changes: The sea state will. relative to
the system time constants, take a long time to chang- It
might thercfose he expected that the sell-tuning filter could
casily track such variations and this has been demonstrated
in [18]. If the weather direction changes or if the heading 1«
changed the direction of the disturhances acting on the
vessel will also vary. The magnitude of the wind and
second-order wave forces will change according to the sine
of the angle of incidence of these forces on the vessel and
also according to the shape of the superstructure and hull
exposed to these forces. The change in the angle of the
current forces will be reflected in a change to the low
frequency dynamics of the vessel. and hence to the lin-
earized low frequency model {23} These changes necessr
tate a variation in the drift estimator or integral action
term, and the optimal control gain of this loop must by
carefully chosen by posing an appropriate cost function
[22]). This design problem is of course common 1o other
Kalman filtering dynamic ship positioning schemes,

Comparison: A comparison between charactenstic focus
and optimal designs for dynamic ship positioning svstems
has recently shown [24] that the performance achievable is
roughly the same in both cases. The differences lie more in
the engineering implications and the relative ease of use of
the different design procedures. Similar conclusions may
be drawn when comparing the usual and self-tuning
Kalman filtering solutions to this problem. The swuv step
response and control signal vanations. shown in {24]. for
the usual fixed Kalman filtering solution, are very similar
to those in Figs. 10 and 13, respectively. Il the Kalman
filter is matched to the sea state model (by using the same
dynamics to the filter as in the wave model {8)) the Kalman
filter gives a slightly lower mean square estimation crror of
about 10 percent. However, whenever the sea state model is
significantly mismatched with the Kalman filter the self-
tuning filter gives the best results. This is the situation 1n
practice since the HF dynamical model structure is a poor
representation of the nonlinear sea spectrum generator.
Extended Kalman filtering schemes can also of course
adapt the dominant wave frequency pararmeter. but these
usually have a more restrictive structure than the self-tun-
ing wave filter. A full EKF also involves a considerably
larger computational burden.

IX. CONCLUSIONS

The self-tuning filter replaces the usual fixed high
frequency estinator in Kalman filtering DP svstems, Thos,
syatems which do not currently have automatic adaption toe
v.ur)'ing environmental conditions can be provided with
such a feature. The approach has the advantage of simplic
ity over extended Kalman ffenng DP svsiems in addition
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1) there 15 no need to specily the process and measurement
noise covanances for the high frequency model, 2) high
frequency model states which are not needed for control
are not estimated, 3) the structure of the multivariable
estimator which involves separate adaptive and nonadap-
tive subsystems simplifies both implementation and fault
finding. and 4) recent simulation results using nonlinear
ship models and thruster nonlinearities have demonstrated
that the scheme is robust in the presence of such nonlinear-
ies [23].

APPENDIX

The algorithm for tracking the error y,(r) based on the

estimated position error ):',(Ilr — 1), for the ith channel [19],
[20]. becomes

P = =1+ Tif (0= 1) (70)
w0 =5+ B e=n=3r ] ()

2 . k .
_f,f(:)=_;-,f(:-|)+—T2-'[;~,,(,.»—1)—_;-,{'(,)] (72)

where

T sampling interval

Ky constant less than unity
Ay constant less than unity
) predicted position error
sr(r) updated position error
_{‘,f( 1) updated velocity error
\:',‘( tr=1) estimated position error

from the self-tuning filter.
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