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KALMAN FILTERING TECHNIQUES APPLIED TO THE DYNAMIC SHIP POSITIONING
PROBLEM

A A G Al-Takie
Abstract

The dynamic ship positioning problem using Kalman filtering techniques
is considered. The main components of the system are discussed. The
ship dynamics, based on a linearised model, are represented by state
equations. These equations involve low and high frequency subsystems.
A simplified design procedure for the implementation of a Kalman filter
is described based on the linearised equations of motion. The Kalman
filter involves a model of the system and is therefore particularly
appropriate for separating the low and high frequency motions of the
vessel. The filtering problem is one of estimating the low-frequency
motions of the vessel so that control can be applied. An optimal
feedback control system simulation based on optimal stochastic control
theory is used. The optimal control performance criterion weighting
matrices Q, R were pre—selected and the optimal feedback gain matrix
was computed. This control scheme involves the low-frequency part
of the ship model. The Kalman filter has been simulated on a digital
computer for different modelled operating conditions. The computer
simulation results showing the behaviour and responses of the Kalman
filter applied to the dynamic ship positioning problem were
investigated. The system dynamics vary as the weather conditions vary
and can be classified from a calm sea condition (Beaufort number 5) to
the worst condition (Beaufort number 9). Different tests involving
systems modelling and filter mismatching have been carried out.

Another field in which the robustness of a Kalman filter has been
assessed involved a test in which the system observation noise
covariance was increased keeping the filter with the usual noise
information. Saving in both computation and computer storage
requirement were achieved using a form of semi-constant filter gain and
reduced-order Kalman filter respectively.

System non-linearities have been considered and a non-linear control
algorithm was proposed and implemented using an extended Kalman filter.
These non-linearities involve the thruster dynamics and the associated
low-frequency part of the system model.

All data that have been used within this work for system implementation
were obtained from two different models ("Wimpey Sealab'" and "Star
Hercules" vessels). Our system has been employed by GEC Electrical
Projects Limited, Rugby, for a new vessel ("Star Hercules') and this

has been commissioned and is currently operating successfully off
Brazil.
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CHAPTER 1

GENERAL ASPECTS OF THE DYNAMIC POSITIONING PROBLEM

1.1 General Introduction

Since the end of World War II, it has been increasingly realised that
the seabed and rock beneath are rich in mineral resources which should be
exploited. The best known example is the offshore oil reserves.
Initially, exploitation was limited to shallow water close to the shore
but 1t has moved progressively into deeper water and less hospitable
locations. Early exploration for oil production was carried out from
fixed platforms. Inspection and maintenance work on fixed structures
involve extensive use of diving services and lifting facilities. From
these has arisen the need for the floating vessel with the necessary
technique to keep it stationary with respect to some reference point.
Recently many floating drilling rigs and drill ships have been intro-
duced and many of these are working in the North Sea. In addition to
drilling, offshore operations involve:
(i) coring

(ii) surveying

(iii) cable laying

(iv) dredging

(v) diving

(vi) fire fighting
The most significant limitation of using the conventional floating vessel
is the difficulty of anchoring in deep water. To overcome these
limitations, the concept of a dynamic positioning technique was intro-
duced. Dynamic ship positioning is defined as the technique for main-

- taining the position of a vessel stationary over a specific preselected



point on the seabed without the use of anchoring systems. The second
definition of dynamic positioning is that the vessel may be moving at

controlled speed, which can be extended to include the tracking

problem.

The process of automatically controlling a ship or floating platform
position and heading [13] [19:] over a preselected area is concerned with
providing the necessary thrust in appropriate quantity and direction
to match the mean loads imposed on the vessel by environment and other
forces. This will involve using:
(1) a cbmbination of thruster mechanism and propulsion
(ii) position and heading measuring devices
(iii) wind speed sensor

(iv) control computer

The design of an automatic position and heading control system for a
vessel depends on the required criteria, which must be satisfied by
the vessel and its control system (or computer control system) to
perform its mission, on the environmental conditions in the area where
the vessel will operate and on the expected behaviours of the vessel

for changing weather.

The control system is part of a closed loop system, schematically
shown in Figure 1.1. The main components are:
(i) measurement subsystem, including all devices for generating the

information to be processed by the computer,

(ii) the filter to attenuate the unwanted signals and to generate the
required estimates for state feedbadkcontrol,
(iii) the controller, of which the output is sent to the propulsors
(main propellers and other thrusters),

(iv) thrust generating system to drive the vessel to the required

2
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position.

This control scheme should be capable of:

(i) contrelling the propulsors for maintaining a reference position
and heading under specified weather conditions (with the ability to
react to changing weather conditions), with a maximum allowable radial
position error of 3 per cent of the water depth,

(ii) avoiding high-frequency fluctuations in the thrust demand
(filtering problem) since this may cause unnecessary wear of the
propulsors and waste of energy,

(i1i) controlling the propulsors for changing the position or heading

of the ship in case a new reference position or heading is selected.

Dynamic positioning systems with on-line computer control involve
one of the following [30]:
(i) Simplex computer control, where longer term or more accurate
position keeping is necessary, such as for support purposes. This
fully automatic control system is an economic scheme and it normally
comprises:
(a) one computer complete with monitoring unit and peripherals
controllers
(b) one operator console, with full set-up, control and
display
(c) one position measurement system
(d) set of environmental and attitude sensors
(ii) Duplex computer control, which is usually used for oil exploration
drilling vessels, which is required to remain on station for long periods
of time.A Full automatic duplex dynamic positioning system comprises of:
(a) two computers complete with monitoring units and peripheral

controllers



(b) one operator comsole, with full set-up, control and
display,
(c) two position measurement systems,

(d) two sets of environmental and attitude sensors.

The design of a vessel's dynamic positioning system involves a
compromise between the two conflicting requirements of accuracy of
position holding and the need to suppress the thrusters response to
part of the wave motions. These external forces are assumed to consist
of low-frequency and high-frequency forces. The thrusters response

to the first order high-frequency wave motions is oscillatory in
nature, and involves an extra power demand and wear and tear of the
thrust~producing mechanisms, without any gains in counteracting vessel

motion due to the above waves and forces.

The accuracy of the dynamic positioning system will depend to a certain
extent on the philosophy of the wave filter selection method and the
corresponding controller design procedure. Thus, the amount of the
thrusters oscillations will depend on the wave filter attenuation and
the controller bandwidth. Filtering for the dynamic positioning
problem can be defined as the process of operating upon the corrupted
information (the noisy measured system output) to attempt to construct
a signal which can be used for control purposes [13],[?2]. The control
systems for the first dynamically positioned vessels [3{1,[?Q] included
Notch filters and PID controllers. Using such a scheme, the position
measurement signal can be filtered out to obtain a comparatively good
estimate of the low-frequency part of the vessel motions, and hence,

control can be applied [?i]. An introduction to Notch filter

networks is given in Section 1.2



Using the above conventional Notch filter scheme with PID control can
cause some difficulties since a compromise should be made between
improved filtering and good control system performance. Such diffi-
culties led to the use of the alternative Kalman filtering technique
together with modern stochastic optimal control theory. The
Kalman-Bucy filter [58:] > [60] , [47] ,[46] has assumed a role of ever
increasing importance over recent years in the field of filtering and
estimation of processes, and its applications in dynamic systems.
Theoretically, the Kalman filter gives the unbiased, minimum variance
estimation of the state vectors of a linear or linearised dynamic
system when output measurements are provided which represent a

linear function of the system states with some additive white noise.
In practice, optimum performance will be very hard to realise since
the information required to construct the Kalman filter is only
approximately known. Hence, to get the best filtering and estimation,
the Kalman filter has to be provided with as much information as

possible concerning the noise statistics and system dynamics.

In dynamic vessel positioning the low-frequency part of the system
states are required to be estimated by the Kalman filter so that control
can be applied. Kalman filter dynamics, based on the separation
theorem [:21], [54] will involve a model of the actual low and high
frequency part of the system dynamics (Figure 1.2), and hence, the
estimated high-frequency state vectors can be ignored, while the
estimated low~frequency states can be fed back to be used within the
control loop. An introduction into the use of the Kalman-Bucy
filtering scheme and its applications to the dynamic positioning

problem for this study will be given in Section 1.3.
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1.2 Notch, PID Filtering and Control

Notch filters [PQ],[}Oj] have been developed and used in dynamic ship
positioning for some years with relatively good results. If the control
system were purely analogue ,this filter would obviously be preferred.
With digital processors available, other filter structures might yield
additional advantages. A Kalman filter with such properties [@i],[ﬁi]
will be introduced in the next section. A Notch filter is often used

in dynamic positioning problems to attenuate the high—-frequency wave
motion signals from the position measurement system. The Notch filter
must be capable of providing a constant attenuation ratio either for a
fixed sea wave resonant frequency or for a range of resonant frequencies.
A typical range of Notch frequencies [3¥] would be 0.06 Hz to 0.12 Hz
corresponding to Beaufort scale number 9 down to 5 (Appendix 2). To
provide a wide band-stop characteristic it is necessary to use a
cascaded system of Notch filters with each section tuned to a

particular resonant frequency [?d],[}i]. In this application three

such cascaded sections are normally used. The Notch filter transfer

function can be defined 1?03] by:

s? + ;€=Eg=== s + w?
- 2
H(s) = 2d ceeevresesess (1.1)
s2 + —L2 5 + w?
Y1 - 24?2
where:
w Notch centre frequency (rad/sec)
b the 3 dB bandwidth of the Notch (rad/sec)
d the attenuation ratio at the Notch centre frequency

The above parameters w, b and d can be used to describe the Notch
network. For a three cascaded section of this network the above
transfer function H(s) can be written as [?2]:

i=n

H(s) = 1 Gi(s) teaceessasves (1.2)
i=1



[¥8)

where: n = (for three cascaded sections), and:

s? 4+ “Eigi“ﬁ + 2
M- 2af 5T %
Gi(s) = N b' 2 ® 8 5 ¢ 0 000 0 (1.3)
2y s 0
vl - Zdi
where:
ws the ith section centre frequency
bi the ith section 3 dB bandwidth
di the ith section attenuation ratio

1.3 Alternative Kalman Filtering and Stochastic Optimal Control Solution

Considerable research has been devoted during the last twenty years to
various problems in the estimation of the states of linear dynamic
systems using system measurements corrupted by Markov

noise. The Kalman-Bucy filtering technique for such applications has
been thoroughly examined in the literature. The optimal, continuous
time filtering problem for the case of linear system dynamics, additive
measurements and Gaussian white disturbance measurement noise was
first solved by Kalman (1960) [58] and Kalman and Bucy (1961) [60].
Specifically they considered the problem of finding the unbiased,
minimal variance state estimate‘g(t) of the system state x(t) in the
presence of stochastic input disturbances and output measurement

additive noise.

The problem of state estimation of noisy systems using Kalman filtering
scheme requires a knowledge of the system structure and its parameters Bﬂ.
If the system is linear or linearised and its different parameters are
known, the solution is a straightforward application of Kalman
algorithms for filtering and estimation and is given by Kalman and Bucy

. (1961). In actual industrial applications, some of the plant



parameters may be unknown and hence it is necessary to estimate them
together with the system states simultaneously. This parameter
estimation problem requires the extension of the Kalman filtering
scheme to include the system non—-linearity. This will involve the
implementation of the extended Kalman filter. This form of
non-linear filter problem can be dealt with by constructing an
additional linear dynamic model corresponding to the unknown parameters.
The parameter equations are added to the system model equations and the
combined states and parameter variables of this augmented model are to
be estimated. Feedback control can be applied using the low—frequency
part of the state estimates only (Figure 1.3). All the necessary
information concerning the process and observation noise as well as
system inputs have to be fed into the proposed filter dynamics for good
estimation and filtering accuracy. The non-linear filtering problem
for systems with random inputs is of great importance in control
processes, especially in industrial situations. The Kalman filter has
been proved to be efficient and reliable for many industrial

applications.

The Kalman filtering scheme and its application to the dynamic
positioning problem has been proposed by the Norwegians (Balchen et al,
1976 [}i],[ié]). Balchen's design involves a more complicated and
computationally inefficient form of filter in which some of the
high-frequency parameters were estimated. An alternative solution to
the linear and non-linear Kalman filtering problems with their
applications to the dynamic ship positioning problem was proposed and
used by Grimble [?i],[%g]. The use of the proposed alternative
solution of Kalman filtering combined with the optimal control

theory to the dynamic positioning problem was part of a Case

research study supported by GEC Electrical Projects Limited, Rugby

10
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and carried out by a team of researchers. This work on dynamic
positioning using Kalman filtering was an extension of in depth

study of general filtering and control problems by Grimble [35],[§i],
[3{]. The simulations were involved in some high-frequency parameter
estimations to estimate some of the unknown parameters within the
high-frequency dynamics using an extended Kalman filter [;é],[}i].
These estimated parameters are to affect the high-frequency block

of the system dynamics structure which varies in accordance with

the weather and sea conditions (Beaufort 9 for the worst sea condition

down to Beaufort 5 for calm sea).

The team research provided a basic design for the dynamic ship
positioning problem using Kalman filtering techniques based on data
avalilable from the "Wimpey Sealab'" vessel. The author produced a
complete design for the implementation of Kalman filtering and
optimal stochastic control with its applications to the dynamic
positioning problem based on data from the new "Star Hercules"
vessel. This vessel has already been commissioned by GEC Electrical
Projects Limited, Rugby. The author has also contributed to an
original idea in which a special form of extended Kalman filter has
been used employing the optimal control loop within the low-frequency
part of the vessel dynamics. This form of non-linear control

caters for the non-linearities within the low-frequency dynamics and
deals specifically in detail with the non-linearity of the thruster
devices which form part of the 16w—frequency dynamic structure

(Chapter 7).

12



1.4 Thesis Layout

In the previous sections of Chapter 1, the overall dynamic vessel
positioning problem has been introduced and its usefulness for
exploitation processes and other industrial applications were outlined.
An introduction for the use of Notch or Kalman filtering techniques
within the dynamic positioning control loop were finally drawn in

Sections 1.2 and 1.3 respectively.

Chapter 2 contains a brief description of the main basic parts of the
dynamic positioning systems. This will include the overall system
structure, the systems for measuring the position of the vessel, the
thrust producing devices (for both "Wimpey Sealab" and "Star Hercules"
vessels) and finally, the general statistics of both the process and

observation noise.

Chapter 3 includes the basic linearised mathematical equations
representing both the low and high frequency motions of the vessel.
These differential equations have been formulated on the basis of data
obtained from a set of "tank-tunnel-tests" and carried out by GEC
Electrical Projects Limited, Rugby. These data were provided for both
"Wimpey Sealab'" and "Star Hercules" vessels. Finally, system matrices

were summarised for control and system simulations.

In Chapter 4, Grimble's approach for the selection of the Q and R
control weighting matrices has been implemented and used within the
problem of the dynamic ship positioning. A form of the separation
theorem has been used and the matrix Riccati equation was solved to
calculate the optimal feedback gain matrix. Finally, the low-frequency
dynamics for both "Wimpey Sealab" and "Star Hercules" vessels were

. simulated for the selection of the optimal Q and R matrices, and hence

13



the selection of the optimal gain matrix for future design (Chapters

5, 6).

Chapter 5 contains the main design results for a complete implementation
and installation of the dynamic positioning system on both "Wimpey
Sealab" and "Star Hercules' vessels using linear Kalman filtering and
stochastic optimal control techniques. This chapter has been extended
to include tests and investigations into the reliability and

robustness of the Kalman filter algorithm and its application to the

dynamic ship positioning problem.

In Chapter 6 the reliability and goodness of the Kalman filter and its
application to the dynamic ship positioning are to be investigated

and several tests to be carried out to examine the scheme robustness.

Chapter 7 deals mainly with the case of non-linear filtering and control.
Non-linearities in both the high-frequency and low-frequency dynamics

of the system were studied and an extended Kalman filter has been used.

Finally, in Chapter 8, all the design procedures and results were

concluded, together with some future work recommendations.
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CHAPTER 2

MAIN PARTS OF THE DYNAMIC SHIP POSITIONING SYSTEMS

2.1 Introduction

The design of on-line computer control of a vessel position and
heading under dynamic positioning control depends on certain criteria.
These must be satisfied by the vessel and its control system in order
to perform its mission (drilling, diving, fire fighting, etc), in the
environmental conditions in the area where the vessel will operate

and on the expected behaviour of the vessel under these environmental
conditions. In dynamic positioning only the vessel motion in the
horizontal plane (surge, sway and yaw) are controlled, where the ship
will be regarded as a rigid body. The vessel motions induced by the
waves are oscillatory motions with frequencies equal to the wave
frequencies. At the same time the vessel drift from its original
position is due to forces induced by the wind and the current. The
vessel motion is assumed to consist of a low-frequency component and a
high-frequency component. To keep the vessel motions, induced by the
external forces, within the required allowable limits, the vessel is
fitted with a set of thrusters (Section 2.2). Considering the
requirements and environmental conditions, it may be stated that the
control system should be designed to accept the relatively high-frequency
motions without any counter-act measures, while the low—frequency
motions should be reduced and controlled on the basis of the required
accuracy for the different applications within the dynamic positioning

technique (Table No 2.1).

As it has been defined,dynamic positioning is the technique for

15
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ENVIRONMENTAL CONDITION

DUTY ACCURACY
Wind Waves Current
(knots) (metres) (knots)
Drilling 25 3.9 3 37 Water depth
Diving Support 30 4.5 1 * 3 m, Heading * 20
Equipment Transfer 20 2.0 1 Headingizlo, Excursion 1.5 m

maximum

Fire Fighting

Weather up to severe gale
or storm conditions

* 15 metres

Table (2.1): The required position accuracy




maintaining the position of a vessel above a reference point on the
seabed without the use of anchors. This is to be achieved by
employing a set of active thrusters controlled by a computer. The
error within the position can be monitored using different kinds of
measurement techniques. These measurements could be corrupted by noise.
The main components in the dynamic positioning systems are the thrusters,
the measurement systems, filter and the computer control (Figures 2.1,
2.2). System input Signals'from wind sensor, gyro compass and position
measurements are fed into the control system and ité associated computer
to produce a command signal to the thrusters for appropriate action.
This computer control system should be capable of:
(1) controlling the propulsors for maintaining a reference
position and heading under specified adverse weather conditions, with
a maximum allowable radial position error of 3 per cent of water depth
or 7 metres (whichever is the smaller in case of drilling), or
controlling the propulsors to maintain the vessel at a constant speed,
(ii) avoiding high—-frequency fluctuations in the thrust demand since
this may cause unnecessary wear of the propulsors and power consumption,
(iii) controlling the propulsors for changing the position or heading

of the ship in case a new reference position or heading is selected.

In this chapter the thrusters, the measurement systems and the
associated noise will be considered in detail, while the control system

and the related filtering are due to be considered later.

2.2 Thruster Devices

2.2.1 Introduction

The dynamic ship positioning system has been defined as the process of
automatically controlling a ship, or floating platform position and

heading above a pre-selected fixed position on the seabed by using a

17
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set of thrust-producing devices. In a dynamically positioned system
the forces required to overcome the effects of wind, waves and currents
are provided by propellers, and the vessel pre-selected position

can be maintained by the use of a combination of thrusters and the main
propulsion unit. Numerous types of thrusters are used for the dynamic
ship positioning problem including plain propellers, ducted propellers
and cycloidal propellers [7i], (Figure 2.3). When thrusters or
propellers are operated on a dynamic positioning vessel, the force and
moment produced on the hull are not only due to the thrust devices
since interactions arise due to pressure changes on the hull, and these

should be taken into consideration in some cases.

The principal types of thrust-producing units are:
(i) screw propellers or thrusters,
(ii) cycloidal propellers (Voith Schneider units),
(iii) pump type thrusters,
(iv) transverse tunnel thrusters, and
(v) steerable thrusters.
Figure (2.3) shows the most common configuration being used. The
thrusters have both dead zone and saturation characteristics (the dead
zone for "Wimpey Sealab" is approximately 1-27 of the rated value of
the thrusters [4§}). The size of thrusters required is determined by
the largest magnitude of the steady drift forces and moments. To avoid
the unnecessary wear and tear on the thrusters the control system should

not attempt to compensate for the high cyclic vessel motions.

2.2.2 Thrusters used on "Wimpey Sealab' vessel

George Wimpey and Company Limited have been involved in offshore
drilling for many years. The dynamic positioning system, Figure 2.2,

has been developed and included in the "Wimpey Sealab" vessel in
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November 1972. The vessel (Figure 2.4) was the first British owned
dynamically positioned drillship, and it has been used for site
investigation in addition to the drilling activities. "Wimpey Sealab"
emplovs retractable a.c. motor driven thrusters:with variable pitch
propellers (Figure 2.5). The vessel has two rotatable bow and two
rotatable stern thrusters (capable of 360° rotation and each rated at
12.5 tonnes). The basic configurations of the thrusters are fully
rotatable outboard propellers. Data from "Wimpey Sealab" were used

as the basic information for the implementation of the dynamic

positioning technique throughout this work (Chapter 3).

2.2.3 Thrusters used on "Star Hercules'" vessel

"Star Hercules'" vessel (Figure 2.6) is the other vessel to be
considered in this work. Data from the "Star Hercules'" have been

obtained and used for design and simulation implementations.

The control thrust for the '"Star Hercules" is provided by the main
engine and by two forward and one aft tunnel thrusters. Thruster
locations used on '"'Star Hercules" are shown in Figure 2.7 and have the

following specifications:

The thrust Maximum thrust Thruster lever arms relative
producing device (tonne force) to centre of gravity
Main Engine 28 (FWD) -
19 (REV) -
FWD.FWD Thrusters 5.1 31.03 metres
AFT.FWD Thrusters 9.1 28.62 metres
AFT. Thrusters 5.1 28.62 metres
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2.2.4 Thrusters applied forces

The fore and aft thrusters on "Wimpey Sealab" act at angles ¢; and ¢,
relative to the vessels coordinates respectively (Figure 2.5). Let the
thrusters forces be f, and f2 respectively for the fore and aft

thrusters. Then the thrusters force in the surge direction is:

f1 cos ¢ + £, cos ¢, ... (2.1)
the total force in the sway direction is:
£, sin ¢, + £, sin ¢, i i (2.2)
and the total force in the yaw direction is:
f121 sin ¢1 - lez sin ¢, ... e .. (2.3)
where %, = 22 = 10 metres ("Wimpey Sealab"). Hence, the per-unit
equations in a matrix form (Appendix 1) will be:
r - —_—
surge force-w cos ¢1 cos ¢2 [‘f\
) 1
sway force = | sin ¢1 sin ¢, L N EEREERERE (2.4)
force J a sin ¢ b2 sin ¢ :
yaw L 7. 1 g J
L Qb Qb 2
where:

£], f, are the per-unit values of f , f, respectively.

2

2, is the per—unit base length = 30 metres

b
O<&<]_,O<_Q'_2—<]_an &1‘.—&& —l

Ly b S, ) I 3

The matrix in equation (2.4) can be written in appropriate notation as:

_‘Yll Yo " cos ¢, cos ¢, )
y=| Y1 Yao|= sin ¢, sin G, | eeeeeeeaenen (2.5)
LI 2 .
LY, Vs _3;; sin ¢, —-ﬂj sing
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2.3 Position and Heading Measurement Systems

Dynamic positioning system is basically the technique in which control
signals can be applied to propellers and thrusters for specific action
based on information concerning position and heading deviatioms from
the pre—determined limits. In recent years the need for dynamic
positioning has been increased by the problems associated with oil
exploration and production. With these applications, accuracy will be
one of the main requirements. Accuracy within dynamic positioning
systems depends to some extent upon the reliability and availability
of the information regarding position, heading and different wind and

environmental forces as measured and fed into the system.

System inputs (Figure 2.2) could come from:
(i) wind sensor, measuring the wind speed and direction,
(ii) gyro compass, for heading measurements,
(iii) position measurements, which could be provided by one or more
of the following techniques:
(a) hydroacoustic systems (with 122-305 m ideal depth of operation)
(b) radionavigation systems, and

(c) taut wire systems.

Due to the demand for accuracy within the dynamic positioning systems,
the most commonly used technique for measuring  the position (Figure
2.8) is based on an acoustic system where a beacon is deployed on the
seabed and designed to transmit signals at a frequency around 20 KHz
[}3] at specific time intervals. The pulses transmitted by the beacon
are received at an arrav of hydrophones fitted at the hull underneath
the vessel, and the position of the vessel relative to the beacon is

computed from the time differences in receiving the signal. These
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position calculations are carried out by the on-board computer on the

basis of the following formula:

-1 v8t N Dvdt

vy = D tan (sin 3 ) 3 R )|
where:

y the displacément of the vessel

St the difference in the time of arrival of the pulses

at two of the hydrophones set

v the velocity of sound in water
D the water depth
d the separation between the two hydrophones

The great disadvantage with this technique in providing position
reference deviations are the sensitivity to acoustic noise and air
bubbles in the signal transmission 1ine‘[ié]. In addition to the accuracy
requirement of the measurements, reliability and repeatability are also
required. With the hydroacoustic system in operation alone, blocking

of measurements in 20-40 per cent of the operation time may occur. To
avoid the loss of the measurement signal, and to improve the

reliability of the measurement systems, various back up systems can be
used. The most commonly used system is the taut wire system shown in
Figure 2.9, which consists of a sinker weight, wire, tensioning winch
and inclinometer. The wire is maintained in tension by means of the
constant—-tension winch, which is also used to raise and lower the sinker:
weight when required. The measurement inaccuracy within the taut wire
system may arise from the effect of the sea currents and the catenary
effect on the wire due to its welght. Measurement systemsdeveloped by
GEC and installed on "Wimpey Sealab" are to consist of one beacon and
two sets of hydrophones using the computer to calculate the vessel

position. These acoustic position measurement systems are backed by the
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taut wire measuring system shown in Figure 2.10. The vessel heading

measurements are obtained by the ship gyro compass.

As to the applications of dynamic ship positioning, considered in this
work, the vessel position accuracy is about +3 per cent of the water
depth of 200 metres and *2 per cent in 500 metres of water depth. The

vessel positional accuracy can be defined by the following expression:
Radial Error = e;.d + W/2 + e, ceeeeeane. (2.7

where:
e, is the per unit error of the position measurement system
d is the water depth
W is the peak to peak wave motion

e, is the accuracy of the control loop

2.4 Process and Measurement Noise Analysis

The vessel motions under dynamic positioning control are assumed to
consist of low and high frequency components. Our main concern in

this section is the low-frequency part of the motions, which are
assumed to be due to the current, wind and the second order wave

forces (Section 3.2). The mean wind forcing level and the sea current
speed and direction are all normally assumed constant over a period of
time and up to several hours [74]. Like all environmental phenomena,
wind has a stochastic nature which greatly depends on time and location.
To compensate for such uncertain forces, the low-frequency part of the
system dynamic is excited by random variables. These random variables
are modelled as stationary zero mean and Gaussian white noise sequences.
Stationarity of these sequences [Si] can be pictured as the absence of

any drift in the ensemble of realisations as time proceeds.
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Mathematically, this means that the probability distribution and

density functions are unchanged over some specific period of

time.

The wind forces are often the most important disturbance acting on the
vessel. Wind feedforward control is often used to counteract the
effect of steady wind (Figure 1.1) and hence, it will be assumed that
the vessel positioning will be affected by a white component of wind
only. The noise analysis can be extended to include the study of both
process and observation noise, which in turn affect the system

estimation for them causing the plant uncertainties.

2.4.1 The Process Noise

The process noise will be considered here in terms of their covariance
matrices. The continuous or discrete time noise covariance matrices
are related by the step length of the system simulations time interval

(At), and hence the discrete process covariance matrix will be:

_ Q
U = 3 e (2.8)

where At is the step length time interval = 0.1 and Qp is the discrete
form of Q. The process covariance matrix (Q) is assumed to consist of
a QK submatrix corresponding to the low-frequency part of the system

dynamics, and a Q submatrix corresponding to the high-frequency part

of the dynamics.

The high~frequency submatrix in Q is determined by the least squares

fitting procedure [34] and assumed to be unity (i.e. Q, = I).

The low-frequency part of the system dynamics has a Qg matrix

determined by the mean wind forcing level (in per-—unit, see Appendix 1).
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Hence, per-unit sway force = 126.8/55620 = 0.00228, and per-unit yaw
torque = 1636/(55620 x 94.5) = 0.00031. Thus, for two degrees of

freedom in sway and yaw, the low-frequency part of Q-matrix will be:

(0.00228) 2 0.0
Qz =
0.0 (0.00031) 2

2.4.2 The Observation Noise

The observation or measurement noise and their re1a£ed covariances
will be examined here. The position measuring systems are always
contaminated by superimposed noise and assumed to have a standard
deviation 0 = 1/3 metre. The per-unit position measurement noise

covariance (Appendix 1) therefore will become:
" (sway) = 0.0033 and (0°)% = 0.1 x 10"

The yaw angle standard deviation is assumed to be one degree, and

hence

. -y
0" (yaw) = 0.02 radians in per-unit and (O Y2 = 4 x 10 .
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CHAPTER 3

THE SHIP MOTION

3.1 1Introduction

The motion of a ship induced by the waves is an oscillatory motion with
frequencies equal to the wave frequencies [}8]. At the same time the
ship drifts off from its original position in the wave direction.

Drift of the ship is also induced by the external environmental

forces of wind and current. The current speed and direction may be
constant over some period of time. Current speed and direction changes
could occur but these changes are slow compared with fluctuations of
wind speed and direction. The wind may be treated as a random Gaussian
process (white Gaussian noise throughout the modelling and simulation).
The ship motion is also induced by the wave forces which consist of a
small drift second-order component and a very large first-order

oscillatory component.

Depending on the type of the external acting forces the ship motion [3]
is assumed to consist of a low-frequency component and a high-frequency
component. The combined motion of the vessel due to both low and high
frequency components [12] is 1indicated in Figure 3.1. The low-frequency
motion in the range of O.d - 0.04 Hz (which is 0.0 - 0.251 rad/sec) is
assumed to be induced by:

(i) forces generated by the thrusters and propellers,

(ii) hydrodynamic and interaction forces due to the ship motion
relative to the water [25],
(iii1) wind forces,

(iv) 1induced second-order wave forces.
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The low-frequency motion will be the combination of the applied forces
due to the thrust devices and due to the wind and waves. So that for

one degree of freedom:

Total force = fa + fb Ceeeseeenen eeee (3.1)

where:

fa represents the applied forces due to (i), (iii) and (iv) above.

fb represents the hydrodynamic forces in (ii) above.

The high-frequency motions in the range 0.05 - 0.25 Hz (equivalent to
0.314 - 1.57 rad/sec depending on the actual sea spectrum) are assumed
to be due to the first-order wave motions. These motions are of a very
large level and cause the oscillatory motions of the vessel. These
motions cannot be effectively counteracted because of the limited thrust
of the propulsors. The basic assumption for the development of models
of the vessel to correspond to the high-frequency motion is that the
sea state is known and can be described by a spectral density function.
The high~frequency wave motions are normally modelled using the

Pierson-Moskowitz sea spectrum [51].

In the worst case the vessel motions are simply the Pierson-Moskowitz

excitation since the vessel dynamics filter the sea wave spectrum.

In dynamic positioning,only the vessel motions in the horizontal plane
(surge, sway and yaw) are controlled. Heave, roll and pitch motions
(Figure 3.2a) are neglected. All motions will be referred to the body

axes of the vesset (Figure 3.2b).

Surge motion has only a minor effect upon the directional stability of
the ship. Sway motion mainly occurs due to the imbalance of wind and

tidal forces acting upon the vessel. Yawing is induced by orbital
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Figure (3.2) (a): Cartesian Coordinate System
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Figure (3.2) (b): Earth and Body Axes Coordinate System
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motions of the water in the wave [73]. There is differential static
pressure on the hull because of the shape and the gyroscopic couple due
to the imposition of rolling motion on the pitching ship. Sway and yaw

motions are normally associated with each other. To simplify the

situation, the equations of motion of the vessel in sway and yaw only

will be considered. This is possible because the linearised equations
of motion indicate that surge motion can be assumed decoupled from the

sway and yaw motions, and hence it can be considered and controlled

separately ,

3.2 Low-Frequency Dynamics

3.2.1 Introduction

A study of the dynamic positioning control of a vessel at sea requires
the formulation of a set of equations which describe its dynamic
behaviour under the forces imposed on it by the enviromment of wind,
waves and current flow as well as by its own thrust producing devices
@Oé]Bﬂ.These equations of motion which represent the vessel dynamics
are assumed to involve a complex multiplicity of coefficients for
reasonable accuracy and good modelling to be achieved. Such equations
will be regarded as the basis of the whole modelling and simulation
involving the position control scheme of the vessel. However, the need
is apparent for a simplification of the set of equations which give a

more realistic feel of the vessel dynamics.

For an efficient control scheme using Kalman filtering, a good
mathematical model of the vessel dynamic is required. The reason for
this is that the Kalman filter uses the model dynamics, together with
some knowledge of the noise statistics, to generate the unbiased
estimates of the system states. This assumption will introduce the need

for some reasonable means of linearisation based on common practice,
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and at the same time provide reasonable representation, good accuracy

and simplicity.

The low-frequency part of the vessel dynamics should describe:
(1) the wind and wave forces,
(ii) the part of the vessel dynamic to be controlled,
(1iii) the thruster dynamics, and
(iv) the interaction between the thrusters devices and the vessel

dynamics.

The dynamic ship positioning system controls the low-frequency part of
the ship motion in surge, sway and yaw. Treating the ship as a rigid
body [104] having freedom of movement in surge, sway and yaw, but
restricted in heave, pitch and roll. These movements are taken with
respect to the body axes (Figure 3.2b). The vessel dynamics are
represented by a set of non-linear differential equations, then
linearisation procedure has to be applied to these equations for control
purpose. The linearised form of the ship equations have the following

differential state equation form:

.§2 = A%ER + B%El + D%9£ + EQEQ R 5

where:
xg(t) € R* are the system state vectors
ug(t) e R® are the control inputs to the thrusters
wz(t) € R? are white noise signals representing the random
forces applied to the vessel

nl(t) € R3 are the wind disturbance forces

A, is the system matrix

L
Bz is the input matrix
Dl and El are the noise matrices.
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Different parameters and coefficients of equation (3.2) above have been
obtained from a set of tank and wind tunnel tests, carried out by the

National Physical Laboratory on two different models, namely "Wimpey

t

Seala and "Star Hercules'".

The obtained non-linear set of equations
have to be linearised, time-scaled and comnverted into per-unit form,

before it can be used in the control loop. Originally, these dynamic

equations were provided by GEC Electrical Projects Limited, Rugby, and

derived from first principles of Newton's laws of motion.

3.2.2 Derivation of the Low-Frequency Dynamics

The body axes are chosen to be the principle axes of the vessel for

the derivation of the dynamic equations with its origin located at the
centre of gravity (Figure 3.2b). For the position control of a vessel,
interest is directly concerned with the motions in the horizontal plane
of surge, sway and yaw (Figure 3.2a).

Regarding the vessel as a rigid body having freedom in surge, sway and
yaw, but restricted in heave, roll and pitch, the equations of motion

can simply be represented by [104] :

X = m(@ - rv) e, (3.3)
Y=m(v +Tu)  sessseenes (3.4)
N = I,,t e (3.5)

The forces and moment acting on the vessel in equations (3.3) to (3.5),
X, Y and N respectively can be considered as a sum of two components as

shown in the following equations:

Xp + X = m(d - rv)  eeesecenen (3.6)
YA + Yy = m(v +ru) Cereceraas (3.7)
Ny Ng = It e (3.8)
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where Xp, Y, and Np represent the applied forces and moment due to

the thrust—-producing devices, and to the environment of wind and

second-order wave drifts.

Xy, Yy and Ny represent the hydrodynamic forces and moment due to
relative motion between the vessel and the water. To determine the
equations of motion, expressions for Xy, Yy and NH are required,

appropriate to a vessel making small movements about a fixed reference

position.

Xy, Yy and Ny are assumed to be a function of the velocities and
accelerations (u, v, r, 4, v and r). It is assumed that the velocity
and acceleration dependent forces can be separated. Acceleration
dependent forces, referred to as added masses and added inertia are
Xﬁ, YG and Ni’ which depend on the nature of the body motion and flow
pattern.

m : mass of the vessel.

I, : radius of gyration.

The above equations in (3.6) to (3.8) can now be written as:

Xp + Xﬁ u - Y rv + XH(u,v,r) = m(a = rv) Ceeeseaon (3.9)
; =m(Vv + TU)  eeeeeees 3.10
YA + Y% v + Xﬁru + YH(u,V,r) m(v + ru) ( )
Y i = I ieeesens 3.11
NA + Nf T + NH(u,v,r) Izzr ( )

Equations (3.9) to (3.11) can be rearranged into the following form:

(m - Xﬁ)ﬁ - (m - Yﬁ)rv =X, + XH(u,v,r) ........ (3.12)
(m - YG)G + (m - Xﬁ)ru = YA + YH(u,v,r) ceeeeean (3.13)

r =N + N.(u.v,r)  ceeceves .14
(IZZ - Nf)r = NA + NH(u,V,r) . (3.14)

These non-linear equations can be dimensioned using the appropriate base

units, based on the specifications and dimension of the vessel under
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consideration. The per-—unit variables are shown by using a primed

symbol, and are obtained using the following base units:

u\_ u \_ Vv - r
g
1232 pp8 /g/Lpp
[N — u *n, \.7 AN ].’..
u - [ v = — > Y = ——_—
g g L
g/ oD
X <
m
&4pp
- t . K
e ==t g -.z2
4 / 2z L
pp/ 8 PP
_ -~ - 2_ -~ 2
Izz =nm (Kzz) = (Kzz)
where:

Lpp is the length between the perpendiculars

g is the gravitational acceleration (= 9.81 m/sec?)

Kzz is the radius of gyration in yaw (= 0.243)
The above per-unit system formulas are valid for a vessel with small
fixed displacement, which is the case of the dynamic positioning

problem.

1" 1"
3.2.3 Low-Frequency Equations for Wimpey Sealab Vessel

There are a variety of methods by which an estimation of the different
coefficients in equations (3.12) to (3.14) can be achieved. These
methods are mainly based on experimental results on a model of the
vessel in tank tests, or on a theoretical basis using previous
experimental evidence. An estimation of the coefficients for the drill
ship "Wimpey Sealab'" is obtained by a combination of results from tank
tests and theory, performed at the National Physical Laboratory [104].
After reference to the base unit details of "Wimpey Sealab" in Appendix

1, the set of non-linear equations (3.12) to (3.14) can be expressed as:
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(1 + 0.044)40" - (1 +0.84)r v X, + 0.092(v")?

- 0.138U" (3.15)
(1 +0.84)%" + (1 +0.044)r"u™ = Y, - 2,58y 0"
- 1.84(v")*/U" + 0.068r" |r"|
((K;z)2 + 0.0431)1" = Ny - 0.764u™v" + 0.258v"U"
- 0.162r" |r"]| e (3.17)
where:
U™ = modulus of the vessel velacity (surge and sway) = /GTTFTTT§3?
The prime is used to denote the per-unit variable. Equatioms (3.15) to

(3.17) above represent the vessel motions in surge, sway and yaw with

respect to the vessel axes.

For the dynamic ship positioning system, the vessel deviations from its
reference position are assumed relatively small, and hence a reasonable
linearisation process can be applied to get a form of linear state
equations for simulation and control. Previous experience with Notch
filter designs [51],[99] suggests that a linear low-frequency model

can be good enough for the design and control of the dynamic ship
positioning system uing a Ralman filtering scheme. The linear state
equations can be obtained using Taylor expansions [65] and some useful
approximation to the non-linear dynamics [104]. However, a number of
linearised models could be obtained for different sea current and state
of environment. The following linearised dynamics have been used which

correspond to a Beaufort number 8 sea state with a mean wind velocity

of 19 m/sec:

1.0440° = x; - 0.01593u” teeesessess (3.18)
1.84v" = Y; - 0.1004v> + 0.002981r> = eieeceennes (3.19)
0.1022t° = N; - 0.007101r" + 0.005859v" Ceeiencenas (3.20)
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As a result of the little interaction between the surge and the sway
and yaw motions within the above equations, simulation and control will
be applied initially using the sway and yaw motions only and described

by equations (3.19) and (3.20). Surge motion then can be simulated

separately.

The low-frequency model for sway and yaw motions is to include the
velocity, position and heading of the sway and yaw, as well as to
represent the thruster dynamics. The thrusters have been modelled by
simple first order lag terms with two seconds time constant real

time. Referring to Section 2.2, Section 2.4 and Figure 3.3, the overall
low-frequency dynamics for "Wimpey Sealab" can be represented by the

following state space equation and its related details:

X, = A

Xy + D,w, + E,n

2.9 + B%BQ PIary Qg e (3.21)

where:
§£(t) € R® is the system state vectors in which,
x1(t) = sway velocity

sway position

x2 (t)

angular velocity

x3(t)

x4 (t) = yaw heading

xs5(t), xs(t) = thruster outputs
Eg(t) e R? are the control inputs

wQ(t) e R? and ng(t) € R? are process and disturbance noise.
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The low-frequency components of the position and heading is given by:

Z/Q/l
Lo =
J
where:
0.0
C. =
% 0.0

0.0

0.0

0.0

1.0

0.0 0.0

0.0 0.0

Substituting for the above different variables in terms of the respective

approximated and calculated values, the following system matrices can be

obtained:

-0.0546
1.0
0.0573
0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0016

0.0

-0.0695

1.0

0.0

0.0
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0.0

0.0 .

0.0

0.0

0.0

0.0

0.5435

0.0

3.268

0.0

-1.55

0.272 )
0.0
-1.634
0.0

0.0

-1.55

(3.23)



0.0 0.0 0.0 0.0 1.55 0.0 |

0.0 0.0 0.0 0.0 0.0 1.55

0.5435 0.0 0.0 0.0 0.0 0.0 |

0.0 0.0 9.785 0.0 0.0 0.0

0.384 0.0 0.0 0.0 0.0 0.0 |

0.0 0.0 6.92 0.0 0.0 0.0

-

The above linearised equations have been time-scaled with 3.104 as the

time normalisation factor for "Wimpey Sealab" vessel (Appendix 1).

3.2.4 Low-~Frequency Dynamics of "Star Hercules'" Vessel

Using the step by step procedures outlined in Section 3.2.3 above, the
linearised equations of motion for the three degrees of freedom,
(surge, sway and yaw), based on per—unit data from the "Star Hercules"

(Appendix 1) are:

1.0334" = x; - 0.01088u" teeeeeneees (3.27)
1.709v" = Y; - 0.03307v" + 0.00221r" i eieee (3.28)
0.1042%" = N; - 0.003272r" + 0.004344v" Cececareenn (3.29)

Taking a time normalisation factor of 2.728 and considering sway and
yaw motions for simulation and control, different elements of the system

matrix will be:

a;, = -0.03307/1.709 = -0.01935 per-unit
a;3 = 0.002210/1.709 = 0.00129
ais = 1.0/1.709 = 0.585

ag; = 0.004344/0.1042 =0,04168
as3 = -0.003272/0.1042 = -0.0314

asg = 1.0/0.1042 = 9.596
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ags = ag, = -1.364

Therefore the A-B-C matrices building up the low-frequency dynamics

for "Star Hercules" will be:

[-0.01935 0.0 0.00129 0.0 0.585 0.0 i
1.0 0.0 0.0 0.0 0.0 0.0
0.04168 0.0 =-0.0314 0.0 0.0 9.596
A =
e. (3.30
Y| o.0 0.0 1.0 0.0 0.0 0.0 )
0.0 0.0 0.0 0.0 -1.364 0.0
| 0.0 0.0 0.0 0.0 0.0  -1.364
r | 00 0.0 0.0 0.0 1.364 0.0 ]
By = e (3.31)
| 0.0 0.0 0.0 0.0 0.0 1.364 |
[ 0.0 1.0 0.0 0.0 0.0 0.0 ]
Cl = ... (3.32)
| 0.0 0.0 0.0 1.0 0.0 0.0 |

3.3 High-Frequency Dynamics

3.3.1 Introduction

Section 3.1 outlined a brief introduction to the high-frequency motion
of the vessel. The high-frequency motions are the linear wave induced
ship motions, which take place at the wave frequency. A mathematical
model of the vessel for automatic control system implementation can
only be made if the characteristics of all its components are known.
Therefore, the high-frequency motions of the vessel have to be
determined and fed into the system together with the low-fregquency part

of the vessel dynamics.

The automatic control system must be capable of avoiding high-frequency
fluctuations since this may cause unnecessary wear of the thruster

devices. Balchen, J G [}Z],[}{] modelled the high-frequency part of the
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snlp aynamics using separate harmonic oscillators in each degree of

freedom (surge, sway and yaw).

Since the frequency of the wave motion is time-variant and unknown, the
dominant oscillator frequency must be estimated as a parameter in the
state space equations [49]. For simplicity, all oscillators are assumed
to be running with the same frequency and that will reduce the cost of
simulation. The oscillator frequency can be estimated individually

using an extended Kalman filter.

As an alternative to the above approach by Balchen, Grimble adopted a
fundamental assumption for the development of models for the
high-frequency motion of a vessel, in which the sea state is regarded
as known and can be described by a spectral density function. An
internationally accepted sea spectrum is similar to the Pierson-
Moskowitz sea spectrum. The vessel dynamics act as a filter on the
sea spectrum for different Beaufort sea states [17]. The worst case
high-frequency motion of the vessel is determined by the Pierson-
Moskowitz spectrum alone. Grimble's approach for estimating the
unknown parameters within the high-frequency dynamics using extended

Kalman filters will be considered in Chapter 7.

3.3.2 Development of the High-Frequency Model

The internationally accepted sea wave spectrum, which is similar to the
Pierson-Moskowitz spectrum for a stationary wave system can be defined
by the following sea spectrum:

‘b/wu

S(w) = e mssec teeeeenes (3.33)

€lm

where

w is the frequency in rad/sec
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4.894

[
0

o
|

= 3,109 (h1/3)2

h1/3 1s the significant wave height in metres, which is defined by
taking 99 waves, choosing the 33 largest waves and then calculating

the mean of one third of the peak to peak magnitude of these waves.

The above sea spectrum can be obtained by passing a white noise source
into a rational transfer function [49]. Therefore, to fit the sea

spectrum S(w) above, consider:

S, (W) = (leGwy 2. A, e, R (3.34)

in which Ao is the white noise amplitude.

For a unit magnitude white noise,

S, = (JeGwyH®. 1 e, (3.35)
where:
Ks?
G(g) = mm————— e, (3.36)

2 2, ,.2 2
(s + 0y + w,)(s” + 0,8 + W,)
in which 0,, 0,, w,, W, and K are constants for a given sea spectrum, and

given in Appendix 2. These constants can be determined by minimising

the integral of the squared error criterion:

5o fwm (S(w) = S (w)? duw e (3.37)
(o]

over a range of frequency from zero to wm. The worst case
high-frequency dynamic of a vessel can be represented by a white noise
source input to the above transfer function G(s) in each degree of
freedom. The state space representation of the high—frequency dynamic

of the vessel in sway and yaw motions can be expressed in a companion

. form as:
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X, A Y Dw .. .. (3.38)

where:

Eh(t) € R* for each degree of freedom,

Ah 0.0

ya

0.0 Ah

*n

D 0.0

o
il

h 0.0 Dzla e ceteeaees (3.39)

. sw a . . .
The above sub-matrices Ah and Az i1n sway and yaw directions have the

same structure of:

(0.0 T, 0.0 0.0]

s ya |00 0.0 T, 0.0

" T 0.0 0.0 0.0 T
| -0, -a;  -a, -o |
and

[ 0.0 ]

s va _ 0.0

bk 0.0
o e (3.40)

where T, = 3.104 sec for the "Wimpey Sealab™ and = 2.728 for the

"Star Hercules". The parameters a,, o,, 03 and &, are constant for a
given weather condition and a specific vessel as indicated in Appendix
2 for both the "Wimpey Sealab" and the "Star Hercules" vessels. The
values displayed in both tables are to correspond to Beaufort number 5
(calm sea) to Beaufort number 9 (the worst weather condition) for

the "Wimpey Sealab" and the corresponding Beaufort number 5 and number
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8 for the "Star Hercules'" vessel.

The high-frequency component of the position of the vessel is given by

the following output equation:

v, = C x Cereeiaeeaas . (3.41)

where:

0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0

c, - e (3.42)
0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0
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CHAPTER 4

THE STOCHASTIC OPTIMAL CONTROL PROBLEM

4.1 Introduction

Optimal control problem,have attracted and received a great deal of
attention during recent years owing to an increasing demand for systems
of high performance especially for industrial applications. A solution
to the stochastic control problem [40],[42],[10],[27] is the next step in
applying the optimal control theory to the multivariable industrial

systems with noisy observations [43],[63],[90],[95].

The essential components of a control system are:

(1) the system dynamics of the plant to be controlled,

(1i) measurement systems, and
(1ii) the controller, which is the heart of the control system, which
compares the measured values to their desired values and adjusts the

input variables to the plant.

There are two traditions in control, which may be classified as,

classical, which is based on a transfer function representation of the
system, and modern control theory which deals directly with the differential
equations, representing the system dynamics and often uses optimisation
theory. Throughout this work the state space differential equations
procedure will be adopted to implement the controllers. One basic
difficulty with these optimal controllers is that they are often
impractical, if not physically impossible to implement. Typically, the
feedback portion of the optimal control system is a function of all the
states of the system [85]. This would be satisfactory provided that all the

*states were accessible [631,[8] or available for measurerents. In this case
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a straightforward solution to the optimal stochastic control problem
using the system states for direct feedbadk control would be extremely
difficult. However,[Zl]{Sl]i§9],since the system is linear or linearised
(non-linear systems control will be considered in Chapter 7), and the
measurements are directly or indirectly available then a special form
of the separation ﬁheorem.can be used and the optimal stochastic
controller calculations can be separated (Figure 4.1) into:

(1) a filter (Kalman filter in our case) to generate. the conditional
mean of the system states, and |

(ii) a solution to the linear optimal control problem using the

estimated states in (i) as true states of the system.

Hence, the separation theorem as applied to this specific problem can
be defined as follows: "In linear/linearised systems with quadratic
error criterion and subjected to Gaussian dinputs, the optimal stochastic
controller is synthesised by combining an optimal estimation (Kalman

estimator) with a deterministic optimal control".

In the dynamic ship positioning problem the system is assumed to

consist of a low-frequency part to be controlled and a high-frequency
part to be attenuated using the filtering scheme. The dynamic
positioning control systems use the state estimates corresponding to the
low-frequency model in the Kalman filter for closed loop feedback control.
If the filter is working efficiently the control system will only respond
to the low-frequency position error signal and thus the thruster
modulation will be minimised. Hence, the purpose of the on-board
computer [iOﬁ] is to input error signals of the ship position and operate
on them to output thrust magnitude and direction commands to the thrusters,
so that ship position and heading are maintained at their fixed

reference values against the environmental disturbance. Thus, the
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control system is mainly required to:
(i) maintain the vessel within the radial position error tolerance

band (Table 2.1),

(1i1) control the hgading of the vessel (specially in the worst

weather conditions), and

(iii) minimise thruster modulation and the consequence of energy

losses.

In general, there are some difficulties in applying optimal control to
multivariable industrial systems. Two problems are of relative
importance to this work and were investigated in some detail. The first
is concerned with the implementation of the optimal control algorithms
(Section 4.2) and the second arises in the selection of the performance

criterion weighting matrices Q and R (Section 4.3).

4.2 Control Algorithm

An optimal control algorithm for the stochastic multivariable system of
the dynamic positioning problem is summarised in this section. The

plant linearised state equations may be derived as:

%(t) = Ax(t) + Bu(t) + Dw(t) N (Y
z(t) = Cx(t) + v(t) ceereeenes (4.2)
where:

x(t) € R (n = 6 as system low-frequency states in sway and yaw)

u(er (m=2)

z(t)f,Rr (r 2) is the observations
v(t), w(t) are the uncorrelated additive measurement and process

noise respectively.

The stochastic control strategy emploving Kalman estimator can be assumed

« to include two procedures:
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(1) Obtain the conditional mean estimate of the low-frequency part
of the dynamics to be controlled, using a Kalman filter, and assume the
estimates as truely representative of the system states for the state
feedback 1loop.

(ii) Calculate the feedback control gain matrix by solving the
deterministic control law [14},[28],[32],[41],[66].
The above assumptions in (i) and (ii) are often feferred to as the
separation theorem [?i], which involves two separate problems of

estimation and control (Figure 4.2) to solve the optimal stochastic

control (Section 4.1).

In solving the above optimal control problem, some rules or measures

need to be specified subject to certain constraints in order to minimise
the deviations of the system behaviour from the ideal pre-selected ones.
Such measures are usually provided by the optimisation of the performance
criterion (index). The performance criterion is important because, to

a large degree it determines the nature of the resulting optimal control
through its cost weighting matrices Q, R. Details of the selection

procedure of both Q and R are considered in Section (4.3).

The steady state performance criterion to be minimised may be defined as:

T

J) = limit = E { [ x (£).Q.x(t) + ul (8).R.u(e)dt} ... (4.3)
u 5T X X u
T=o0 -T

where Q 20 and R > O are the positive semi-definite and positive
. . T .
definite weighting matrices respectively, while x (t) is the transpose

of x(t). From the above separation principle, the optimal control

signal can be found as:
uS(t) = Kx(t) e (4.4)

. where X(t) are the best current conditional mean estimates of the system
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c .
states x(t), and X 1is the optimal feedback gain matrix.

In dynamic ship positioning,control is not needed for the high-frequency

subsystem, and hence the overall gain matrix of the feedback control

loop will have the following form:

c 2
K- =[x 0] e (4.5)

and the corresponding control signal will be:

X, (£)
u () = [&© ol | TV (4.6)

% (6
where gh(t) are the high-frequency system state estimates. The gain
. cl
matrix K may now be calculated by solving the steady state Riccati

equation [70] :

_ _ -1 T
0 = AQP200 + PgwAz PszQR BQ 9w F Q it ee i e (4.7)
and
cl -1 T
K = R BQPQw .............. (4.8)

Subscript (L) is used to refer to the low-frequency subsystem, while
subscript (®) denotes the steady state solution of the matrix Riccati
equation. Ag and BQ of equation (4.7) are the low-frequency plant
system and input matrices respectively. le is the steady state

solution of the matrix Riccati equation corresponding to the

low-frequency part of the system dynamics to be controlled.

The solution of the above Riccati equation can be obtained by a number

of methods[l&j{GZ]i?7]iBl]. The solution to the steadyv state or alsebraic
matrix Riccati equation used throughout this work is an extension to the
work done by Grimble and Patton {}9] and it has been using the

eigenvector method of MacFarlane (1963) [70]. The method used 1s to
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form the 2n x 2n matrix of:

-1T7

where n = 6 (the system dimension of the low-frequency part of the ship
dynamics for sway and yaw motioms). Now, compute eigenvalues and
eigenvectors of the above matrix (W). The eigenvalues of this matrix
are symmetrically disposed in the complex plane, and if the eigenvectors
corresponding to the most stable eigenvalues with negative real parts

are found, then the following (2n x n) eigenvectors matrix can be

written as:

Ul

U2

then the PSLoo - matrix can be found as:

-1

Ppm = ~U2.U1 e (4.11)

where Pgm is the solution of the steady state matrix Riccati equation.
. . cl . .
The feedback gain matrix (K ) can now be computed using equation

(4.8).

4.3 Selection of the Performance Criterion Weighting Matrices

One of the main criticisms in dealing with the design of optimal
controllers for industrial applications is concerned with the selection
of the performance criterion weighting matrices Q and R. For some time
there has been no neat method of selecting a suitable value for the Q
and R weighting matrices and thus the designer must resort to trial and
error procedures to achieve reasonable values of Q, R for improved
performance of the system responses. An investigation and simulation

work have been carried out [2] to help with the selection of the
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weighting matrices Q, R for the control loop as applied to the dynamic
ship positioning problem. These investigations were based on recent
techniques developed by Grimble [3{],[3@] on the design of an optimal
controller using multivariable root loci. The author contributed to
the computer implementation of the technique and the applications of
the technique to the dynamic ship positioning problem. Expressions
are obtained below from which the performance criterion weighting

matrices Q and R may be calculated.

Consider the optimal output regulating prcblem [3§]{72] as applied to the

following linear multivariable system:

x(t) = Ax(t) + Bu(t) (4.12)

y) =Ccx(e) (4.13)
with

x(t) € R

u(t) € R"

y(t) € R"

and the system (A,B,C) is assumed to be square, since additional plant
outputs may be defined in (4.13) to square up the system. This action

only affects the following performance criterion:

[o o]

30,9 = [ ¥y (£)Qyy(t) + ul(t) Ry u(t) dt e, (4.14)

for zero cross-products matrix (i.e. no interaction between the input

and the output of the system). Qy and Ry are the weighting matrices

for the output regulator contrél 1oop[§8]. Now a straightforward conversion
can be performed on equation (4.14) to obtain the energy weighting Q, R
for the state (estimated state) feedback control as applied to our

dynamic positioning problem (R values will be as those of Ry).
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y(t) = Cx(t)

. . . T
Substitute (4.15) in (4.14) with y (t) = C?Ei(t) and derive the weighting

Q-matrix for the state feedback control case as:

T
Q = C7QyC ettt aee (4.16)

Hence the values of Q and R matrices can be selected on the same

principle as in Grimble [3@], with the necessary above conversion for

the state feedback loop.

Q= (D ey e (4.17)

R= @) A7 N§* e (4.18)
where:

N=[vl,3, .. vo |

and v7, v3, ... are the set of the system eigenvectors.

)2 1 .2 }

g . 1 1 .2
A. A dla {(_Tn' ’ (—5) 9000y [N
- & Al A2 ( >‘m )

and A, (i =1, 2,..., m) are the system eigenvalues.

The above expressions of equations (4.17) and (4.18) were derived for

the case when CB is full rank, i.e.,
rank (CB) = m or |cB| #0 Ceeeneeiaas e (4.19)

The case when CB is not full rank will be considered now as applied to
the example of the dynamic positioning problem using the dynamics of the
"Wimpey Sealab'" vessel Ei],Bﬂ. In applying the above technique to this
example (Section 3.23), the following have to be noted. The first Markov
parameter (CQBQ) is not full rank, the second Markov parameter (CQAQBQ)

is not full rank either, but the third Markov parameter (CQA;BQ) is full
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rank, and thence

, 0.84243 0.4216
C,A,B, =
LR 5.0654 -2.5327

2 = -
det.(CgAQBQ) = =4.2692,

where AQ, BQ, C2 are the low-frequency part of the ship system, input
and output matrices based on data from the "Wimpey Sealab" vessel

(Section 3.2.3).

Expressions for Q and R from equations (4.17) and (4.18) can be

repeated to obtain:

L
|

= ((CSLA;BSLI\T)T)-1 (CQA;BQN)_I ........... (4.20)

PlH ™y (4.21)

e
1

where P 1is a positive real scalar which affects the values of the control

energy R-weighting matrix to shape the system responses.

1 1 1

AT = diag{ , ,
RO 0° RN

3

}

In a more general case where the first (k) Markov parameters are zero
(]CBk=O,|CAB|= o, ...,ICAk—1B|=0), and (CAkB) is full rank, the

expressions of equations (4.20) and (4.21) become:

Q = (ccafmm D Teexem Tt (4.22)

R=p[aD70, N (4.23)
where

o _ k ,. 1 2(k+1) 1 2(k+1)

jH(+1 = (—1) dlag{( ;\? ) 9 e ey ( )\g]) ) }

Using equations (4.20) and (4.21) above for Q and R, different
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combinations of Q and R values have been selected and system simulations
for different cases were investigated based on data from the '"Wimpey
Sealab". These cases were summarised in the next section in which

full simulation of the low-frequency part of the ship and calculation

of the optimal feedback gain matrix were considered.

4.4 Simulations and Results

4.4.1 Case (a)

In this test, the control signal for the first input (sway motion) is

1.5 times faster than that of the second input (yaw motion), i.e.,

AT = 1.5 X? , assume unity eigenvectors (N = I,), and
oC [o o]
A, =1 , then, Xl = 1.5
o . 1 1 »
A, = diag {( = )¢, ()%}
A3 Ao
= diag{0.08792, 1.0}
0.08779 0.0
0
R=yA, =7
0.0 1.0
0.0 0.0 0.0 0.0 0.0 0.0 ]
0.0 1.7597 0.0  -0.17555 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
Q=
0.0  =0.17555 0.0 0.0487 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
| 0.0 0.0 0.0 0.0 0.0 0.0 _

R- matrix for system simulations varies as f takes the following values

for best response to be chosen.
4 -3

p={t0",10 ,1, 10, 103 , 10%}

System responses of the low-frequency dyaamics of the "Wimpey Sealab"
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) ] -3

are shown 1n Figures 4.3a - d for £ = 10 and in Figure 4.4a - d for
f = 1.0. Both system responses were presented here as the best
responses of case (a) for a step input of 0.02 p.u. into sway. The

optimal feedback gain matrices for both systems have been calculated,

2
)

for P = 10 , as:

ol -26.87 =-63.67 -4.39 -10.48 -5.18 -0.024

-23.81 -37.46 -3.95 6.24 -0.002 -3.22

and for p = 1.0,

ey |"2-87  -2.05  -0.44  -0.32  -1.20  -0.024

=2.54 -1.17 0.41 0.19 -0.002 -0.66

4.4.2 Case (b)

Throughout this test, the two inputs are non-interactive and required to

be at the same speed. Hence choose AT = Xj = 1.0. Let N = I, and the

Q-matrix remains unchanged as from case (a).

R, = diag {1.0, 1.0}
1.0 0.0

Rl =
0.0 1.0

R = PR,

The systems of the "Wimpey Sealab" have been simulated for different

values of p,

-5 -l

p ={107%, 1077, 107, 107°, 1.0, 10}

and the responses for a step input of 0.02 p.u. into sway are presented
here in Figures 4.5a - d for the case when f = 1.0. The optimal feedback

. 2 . .
gain matrix K¢" for this case is:
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KCQ _

-2.54 -1.18

4.4.3 Case (c)

[-1.30 -0.59

-0.21 -0.097 -0.67 -0.005

0.41 0.19 -0.005 -0.67

In this case (see Grimble [§§]),

26.36797 -12.47397 7]
R, =
-42.47397 6.59232
R = PR,
while:
Q=c.c
0.0 7
1.0 0.0
0.0
Q=
1.0
0.0 0.0
i 0.0 _

and P takes values of the following range:

P ={10"°, 1.0, 10.0}

Based on the above selected values of Q and R, system responses of the

"Wimpey Sealab" for 0.02 p.u. step input into sway are presented in

Figures 4.6a-d for the selected case when f = 1.0 with the following

feedback gain matrix:

-1.28 -0.58
KCK _

-2.57 -1.19

-0.26 -0.13 -0.74 0.038

0.30 0.13 -0.17 -0.59
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4.5 Concluding Remarks

Values of the weighting matrices Q and R were selected using the new
technique by Grimble [ééj which showed that these weightings depend on
the choice of the eigenvalues (XT) and the eigenvectors (v?). The
chosen values of Q, R have been used in solving the matrix Riccati
equation to obtain the optimal feedback gain and hence to simulate the
system. The dynamics of the "Wimpey Sealab" have been simulated over a
range of Q and R values (cases (a) to (e)), in which R-matrix took
multiple values for a range of P values. Some selected tests were
presented and the system responses for sway and yaw input-output vectors
were considered. The test of the simulation, including case (d) and
case (e) was documented in a separate report by the author [Z]. Among
the presented responses, case (b) with £ = 1.0 has been selected for
the control loop and its application to the dynamic ship positioning
problem. It has been selected, since it has given a good system
response and since it represents a test for a non-interactive, same
speed input, which is the case of the dynamic positioming problem., After
Q and R are specified there remain the procedures of solving the
Riccati equation and calculating the feedback gain matrix thereafter,
and for any specified system. Solution of the Riccati equation is the
process of obtaining the steady state P-matrix. For systems based on
data from the "Wimpey Sealab" vessel (Section 3.2.3), the P-matrix was

found to be:

8.40  4.61 -0.82 -0.46 0.84  1.67
4.61  4.07 -0.45 -0.40  0.38  0.77
-0.82 -0.45  0.22  0.12  0.13 -0.27
-0.46 -0.40  0.12  0.11  0.063 -0.12

0.84 0.38 0.13 0.063 0.43 0.003

1.67 0.77 -0.27 -0.12 0.003 0.43
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and hence the corresponding optimal gain matrix is:

-1.30 -0.59 -0.21 -0.097 -0.67 -0.005

-2.54 -1.18 0.41 0.19 -0.005 -0.67

The calculation of the optimal feedback control using the above
selected values of Q and R for a system based on data from the "Star
Hercules" vessel of Section 3.2.4 was performed, and the optimal

feedback gain matrix found as:

-1.40 -0.44 0.0 0.0 -0.51 0.0

0.0 0.0 -0.09 ~0.03 0.0 -0.53

The above calculated feedback gain matrices for both the "Wimpey
Sealab" and the '"Star Hercules'" will be used for closed loop control
for different applications of the dynamic positioning problem
considered throughout this work. At this stage, the low-frequency
part of the "Wimpey Sealab" and the "Star Hercules" have been
simulated using their corresponding values of the feedback gain and
for a step input of 0.02 p.u. into yaw rather than sway. These
responses are shown in Figures 4.7a - d for the "Wimpey Sealab" and

in Figures 4.8a - d for the "Star Hercules' dynamics.
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CHAPTER (5)



CHAPTER 5

LINEAR FILTERING/KALMAN FILTERING PROBLEM

5.1 Introduction

Dynamic ship positioning control systems require filters to remove the
large high-frequency wave motion signals [9§]. This ensures that the
thrusters do not respond to the high-frequency wave motion and,
consequently, reduces energy loss and wear on the thrusters. Some
dynamic positioning systems employ Notch filters [Eﬂ,[57]. Yowever,

Kalman filtering technicues have been used throughout this work.

Kalman filtering is a technique which produces an optimum estimate of

the state of a system, from a succession of measurements. A knowledge

of the dynamic behaviour and error characteristics of the system is an
essential pre-requisite. The Kalman filter includes a model of the system
dynamics and. can therefore provide separate low and high frequency state
estimates. The Kalman estimator is shown in Figure 5.1 and is defined

by the following state and output equatioms:

AX + K(z - y) + Bu R G I B

[ >
I

~

i=Cx ceeraanae ceeee. (5.2)

where

A = filter system matrix

K = filter gain matrix
z = observations

A L.

y = filter output

X = state estimates

B, C = filter input and output matrices

The Kalman gain matrix K(t) of equation (5.1) above can be partitioned
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into low and high frequency gain matrices as:

K(t) = |——==——- (5.3)

This matrix can be evaluated for a given noise information (Appendix 3-
Kalman algorithm). The process noise covariance matrix related to ran-
—dom forces, is defined on the basis of common practice, while the
measurement noise covariance matrix can be defined with acceptable
accuracy from a knowledge of the measuring system. The evaluated
time-varying Kalman gain matrix elements settle to a constant value
after approximately 20 seconds (Section 5.3), and thus these gains can
be pre—computed off-line in some cases and stored (Section 6.3). By
using a constant or semi-constant gain Kalman filter, the overall cost

of the control system can be reduced by saving some computing time.

5.2 Kalman Algorithm

Kalman filter theory is well known]ﬁ8],[}0],[}8]. A step by step
application to the dynamic ship positioning systems can be summarised
as follows:
(i) Develop a system model in order to formulate a state vector (%)
which describes the system at any given time.
(ii) Determine the state of the input (u) and the dynamic relationship
between (u) and (x).
(iii) Assess the likely process noise (w) and its covariance matrix
Q).
(iv) Determine the measurements to be made (y), and the associated
output matrix (C) relating the vector (y) to the state vector (X).
(v) Assess the likely error or noise in the measurements (v) and its

covariance matrix (R).

84



(vi) Finally determine the initial state estimate and its error
covariance matrix (P).
The Kalman filter can be implemented using the continuous—time
differential equations of the system represented in state-space form,
but the simulations using digital computer have been performed in
discrete-time form. In actual practice, a Kalman filtering scheme
involves digital computations on an on~line process control by computer,
and hence the discrete-time form of the system deséription is more

appropriate for implementation and can be written as:

x(k + 1) = dx(k) + Au(k) + Tw(k) Ceseeaarnaaae (5.4)

z(k) = Hx(k) + v(k) eeeeeeeeeaan (5.5)
where:

® = state transition matrix

A

input driving matrix
' = noise driving matrix

H = output matrix

Having fed the filter with the necessary information, the next
operational stages will be as follows:

(i) Store the previous best estimate (the initial values at the
start) of the state (29 and its covariance matrix (P) at time instant
(t).

(ii) The system represented by the usual differential equation and in

the discrete form (Figure 5.2a) will be:

x(k + 1) =¢§(k) + Au(k) + Tw(k) ceseciessann (5.6)

z (k) = Hx(k) + v (k) S (5.7)

(iii) The prediction (Figure 5.2b). The problem is to obtain

x(k + 1[k), i.e. to estimate the value of (x) at (k + 1) instant, given
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Figure (5.2) (a): The System in Discrete Form Representation

Rk + 1]k)
z(k + 1]k)

u(t)

Figure (5.2) (b):Oven Loop Prediction (the filter)




all the measurements up to instant (k). The previous estimate Q(klk)

1s known:

Rk + 1]k) = 8R&|k) + Au) (5.8)

2k +1B = HR(k + 1]k)

(iv) The correction. There will be an error between the measured and

the predicted output:
z(k + 1K) = z(k + 1) - 3(k + 1]k
To compensate for such differences:
Xk + 1k + 1) = %(k + 1]k) + K§<k + 1]k)

which defines the Kalman filter, where:

is the Kalman gain matrix, with Kz(k) and Kh(k) as the low and high
frequency parts of the gain matrix respectively.

(v) The estimation. For a given instant (k + 1),
@ + 1fk + 1) = (I - KH) (0x(k|k) + Bu(k)) + Kz(k + 1) ..... (5.12)

where_i(k|k) is the previous estimate, and z(k + 1) is the current

measurement.

As mentioned above, Kalman filter basically involves a model of the
system and is therefore particularly appropriate for separating the low
and high frequency motions of the vessel. The filtering problem is

thus one of estimating the low-frequency motion of the vessel so that

control can be applied. The Kalman filter will be shown to be suitable

87



for obtaining the estimates of the low-frequency states. The Kalman
algorithm is illustrated in Appendix 3, while the schematic diagram of

the Kalman filter applied to the dynamic ship positioning problem is

shown in Figure 5.3.

5.3 Implementations and Simulation Results

5.3.1 Software Descriptions

The application of Kalman filtering technique to the dynamic positioning
problem is a complicated process of estimation and control, and hence,
the availability of a high-speed, digital computer is- the

prime contributing factor to the success of such applications.

The full Kalman filter together with ship dynamics and the related
control were simulated on an ICL 1906S digital computer using the
FORTRAN4 computer language and GEORGE4 operating system. The computer
program has been written in a form suitable for making changes for
different practical investigations of using the reduced-order Kalman
filter, semi-constant gain filter, etc. Calculations of the optimal
feedback control matrix have been performed and fed into the main

data block. Subroutines for generating the uncorrelated measurement
and process noise signals have been written by Patton [5{} and used here
[753. Two different subroutines were used for simulating the filter
and the ship and basically called FILTER and DYN. The initial part of
the program sets up the ship and filter parameters. Subroutine
PHIDELTA is used to compute the state transition matrix ®k and the
driving matrix Ak for the simulations. Subroutine DYN is used to
advance the state variables of the ship model by one step interval
using the transition equation. The control input signals are also

calculated in this subroutine. The Kalman filter gain, state estimates

88



68

measurements

Store the available
previous best
estimate §(k|k) and
the related error
covariance

Predict the state
estimate at (k + 1)

instant, equation
e

£5.8). Calculate
z(k +1k) from
equation (5.9)

Calculate the pred-
iction error for
compensations,
equation (5.10)

Calculate the corres—~

ponding error covariance
matrix p(k+1lk+l)

Current estimate;n§(k + llk + 1)

Calculate the state
estimate at instant

(k + 1), equation [

(5.12)

Figure (5.3): Schematic diagram of the process of the

implementations of Kalman filter estimates




and the associated error covariance matrix are calculated by a
successive call to subroutine FILTER using the filter algorithm given
in Section 5.2. The basic computer flow chart for the whole system

simulations using the full Kalman filter algorithm is shown in Figure

5.4, [1]

5.3.2 Filter and Control Implementations for Wimpey Sealab' Vessel

Dynamic positioning control for "Wimpey Sealab'" ship has been performed
using the linear Kalman filter and the stochastic optimal state

estimate feedback control. The Kalman filter is time-varyving although
the filter gain matrix becomes constant after about twenty seconds.

Full Kalman filter algorithms for this application have been

implemented using results from Section 5.2. The low—-frequency part of
the ship and filter dynamics are independent of the weather conditions
variations and have been assumed linear for closed loop feedback control.
Hence, the optimal control gain matrix assumed constant which were

calculated off-line and stored.

As the weather conditions vary, different parameters of the sea-wave
simulator change (Appendix 2). Different tests were performed, and
results for Beaufort number 8 conditions will be presented here. The
ship is assumed to be subjected to disturbance forces of 4 x 10
per-unit force for sway and 9 x 107 ° per—unit turning moment for yaw.
Computer plots shown in Figures 5.5 to 5.15 inclusive illustrate the
system behaviour together with the filter estimates  (shown by a dotted
curve) for a step input of 0.02 per—unit into sway motions. These
responses represent full low and high frequency parts of the ship
dynamics using Kalman éstimator with the following definitions:

State (1): low—frequency sway velocity
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]
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Figure (5.4) : Computer Flow Chart of Kalman Filtering and Control
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State (2): 1low-frequency sway position

State (3): low-frequency yaw angular velocity

State (4): low-frequency yaw angle

State (9): high-frequency sway position

State (13): high-frequency yaw angle

Figures 5.16 and 5.17 display the control signals into sway and yaw
motions respectively for the system simulations with some saturation
on the thrusters (such saturations and other non-linearities within the
thruster devices will be considered in detail in Chapter 7). Figure
5.18 illustrates the effect of the control signal saturation on the

speed of the system responses in sway motion.

5.3.3 Filter and Control Implementations for''Star Hercules' Vessel

The same software structure was used here for the implementation of
Kalman filter algorithms and dynamic positioning control for the vessel

"Star Hercules'" as that of Section 5.3.2 of the vessel "Wimpey Sealab'.

Computer plots of Figures 5.19 to 5.29 demonstrate the system responses
with the corresponding filter estimates (shown by a dotted curve) of
"Star Hercules" motions under dynamic positioning control and for a
step input of 0.02 per—unit into sway motion. These responses show the
system behaviour when the ship is subjected to a disturbance force of

4 x 10'_6 per-unit force for sway and 9 x 107" per-unit turning moment

for yaw.

Results displayed in this section were based on the 'Star Hercules"
dynamics of Section 3.2.4 and the corresponding optimal control obtained

from Section 4.5.
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5.4 Concluding Remarks

In this chapter, dynamic ship positioning control has been implemented
successfully using Kalman filtering techniques and optimal stochastic
control. This scheme has been implemented based on models of the

vessels "Wimpey Sealab" and "Star Hercules". System responses show good
estimation and control. The saturation on the thrusters, illustrated

by Figures 5.16 gnd 5.17, has a damping effect demonstrated by the slow
sway position response of Figure 5.18. Saturation in the thrusters 1s an
inherent feature of the actual system implementation. The Kalman filter is
a time-varying filter, and hencé the filter gain matrix has been

computed at each sampling instant. Typical values of the filter gain

for both "Wimpey Sealab'" and '"Star Hercules'" will be listed below,

corresponding to the constant filter gain region:

(1) Filter gain (Wimpey Sealab) = 0.0618 0.0125—l
0.2235 0.0234
0.0383 0.1390
0.0658 0.3460
0.0013 0.0026
0.0000 0.0000

-3.0208 0.0837
-1.0127 -0.0465
0.4034 -0.0216
0.9550 0.0035
0.2312 -1.8244
-0.1203 -1.0832
-0.0584 0.2267
_0.0118 0.7270-
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(ii) Filter gain (Star Hercules) = | 0.0443 0.0005 ]
0.1544 0.0014
0.0047 0.0440
0.0062 0.1418
0.0012 0.0000
0.0000 0.0000

-1.3888 0.0019

-0.5104 -0.0038
0.2515 -0.0010
0.3689 0.0006
0.0193 -0.9929

-0.0071 ~0.3887
-0.0046 0.2006

| 0.0011 0.2459

These filter gains represent a sample from the constant region of the

gain matrix shown in Figures 5.12, 13, 26 and 27. The system responses are
acceptable from the practical point of view; however, tle response

speed can be varied by tuning the controller and its related weightings

(Chapter 4).
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CHAPTER 6

PRACTICAL INVESTIGATION INTO THE USE OF KALMAN FILTERING FOR DYNAMIC

POSITIONING

6.1 Introduction

Kalman filtering techniques have been found suitable for many industrial
applications in recent years. They have been implemented successfully
for a nuclear reactor control problem,for a marine navigation system ESjJ
and in the metal industry [}4]. The filtering scheme has shown to be
very reliable and practical in its applications to the dynamic ship
positioning problem. However, inaccuracies in the system model and
incorrect filter dynamics representation, especially with the required
approximations and necessary linearisations could frequemntly cause a loss
of system reliability. Theoretically, the Kalman filter is a statistical
technique which produces the optimum estimates of the state vectors of
the linear/linearised dynamic system from a succession of noisy measure-
ments. A knowledge of the dynamical behaviour and error characteristics
of the system is an essential pre-requisite. In practice, the necessary
information required to construct the Kalman filter is only approximately
known. Hence, one of the objectives of this chapter is to investigate

the quality of the system representation in the filter structure.

The Kalman filter scheme has been widely used to solve the linear/
non-linear estimation problem because of its practicability and

robustness. However, this solution adds some complexity and also the

large number of dimensions in the augmented state is a severe

computational disadvantage for large multivariable systems[?6]. Contribution

will be made here to reducing such filtering and control computational
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cost by two different ways as applied to our specific ship positioning
scheme [93] R [97] :
(i) Semi-constant gain Kalman filter (Section 6.3).

(11) Reduced-order Kalman filter (Section 6.2)

Dynamic ship positioning using the Kalman filtering techniques gives a
system performance substantially better than can be obtained by systems
employing conventional filtering networks [9{]. In previous chapters,
a fundamental implementation of the Kalman filter and optimal stochastic
control were established and applied to the two vessels under
consideration (Chapter 3). However, to evaluate the goodness of any
scheme, the following steps should be noticed and investigated:
(i) Cost.

(11) Reliability and robustness.

(iii) Accuracy.
Hence, the above factors will be considered and investigated in this
chapter since adequate filter models, enough initial condition
information and realistic noise statistics can be difficult to achieve

in practice.

6.2 Reduced-Order Kalman Filter

It is normally assumed that none of the states may be measured directly
and in this case, the Kalman filter has the same dimension as that of
the plant. In dynamic positioning problems, Kalman filter estimates
the low-frequency states for state feedback control [3]. Part of

the low—-frequency states are associated with the actuators output,
which may be measured without contamination by noise [6] [37. It follows
that a reduction in the dimension of Kalman filter may be achieved,
equal to the number of the measurable states [80]. In such cases, the

feedback control scheme will consist of direct state-feedback combined

110



with state-estimate-feedback.

The use of direct state-feedback from the measurable states, and the
consequent reduction in size of the filter has several indirect
advantages [éé]. Direct state~feedback improves the transient response
of the system, since this feedback loop would otherwise contain a filter
which degrades performance. The reduction in the dimension of the
filter also reduces modelling errors, since only part of the plant is
represented in the filter for state estimation. The actuators are
non-linear elements, and hence assuming their states as measurable
variables will reduce the effect of the non-linearities within the

modelled plant.

In applying the above simplification to the dynamic positioning problem
using Kalman filtering techniques and considered for sway and yaw
motions only, two states can be measured corresponding to the states of
the two sway and yaw thrusters [éi]. Hence, the dimension of the
Kalman filter will be reduced from 14 states down to 12 states. The
reduction in size of the Kalman filter is particularly valuable in
dynamic ship positioning econtrol systems since the size of on-board

computer is limited.

The following analysis will illustrate the application of the combined
state and state estimate control to the dynamic ship positioning control

systems [3i]' The ship dynamics can be represented by the usual linear

state equation as:

X, Ay Ap X, 0 W,y
fumey + u+ ® ¢ e 000 s 000 a0 (6-1)
52 0 Ayy =2 B, Wa

teeeeeeaees (6.2)

I
1l
™
@]
o
L
M

_z_=|:C1 O]§+X ceeeceenae. (6.3)
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where the system has been partitioned into a measurable part x,

which includes the thrusters, and the remaining state variables X, .
u is the thrusters control signals and Yy is the total position of the

vessel from some reference point.

Wy, W, and v are white noise signals with covariance matrices Ql, Q,
and R respectively. Aci1= 0, since the thruster states do not depend

upon the other state variables in most industrial problems. The system

is illustrated in Figure 6.1,

Since some of the states are assumed to be measurable (the thruster
states), the size of Kalman filter algorithm and the related filter
model structure used in Chapter 5 for simulation will be reduced in
proportion to those measurable states. The structure of the ship
model will remain unchanged.

The system responses based on the above proposed reduced-order Kalman
filter for estimation are illustrated in Figures 6.2 to 6.6. These
simulations have been carried out using data from "Wimpey Sealab"
vessel of Section 3.2.3. States (7) and (11) and their estimates of
Figures 6.5 and 6.6 are the high—frequency sway position and yaw
heading respectively which correspond to states (9) and (13) and their

estimates in the full Kalman filter of Chapter 5.

6.3 Semi-Constant Gain Kalman Filter

The implementation of Kalman or éxtended Kalman filters for estimation
and control is a straightforward process copied from the actual plant
dynamics to be controlled. This nature of the filter dynamics gives

it the practicability for on-line estimation. However, the computation
time required to implement the filter could exceed the usual practical

limit for real-time applications. This difficulty can be clearly
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realised when a limited space only is available for on-board computers
and processing equipment especially for ship positioning or space
applications. Basically, the high computational burden encountered by
using Kalman algorithms for estimation is mainly concerned with the
re—computations of the error covariance matrix by solving the Riccati
equation and with the calculations of the related Kalman gain matrix,
and hence a great saving in computing time can be obtained by
pre—computing and storing the filter gain matrix. In the linear case,
the system simulation results for both "Wimpey Sealéb" and "Star
Hercules" vessels of Chapter 5 have shown that elements of Kalman gain
matrix settle to a constant value after approximately twenty seconds
from the initial condition. This fact could give the possibility of
applying a partitioning process on the gain calculations in which the

gain matrix can be assumed constant and need not be computed on-line

after twenty seconds. [57] , [24-_] , [56] .

In this section, full simulation of the ship using Kalman filter for
estimation and based on data from "Wimpey Sealab" were performed on the
basis of the above partitioning procedure of the filter gain calculations.
To ensure the stability of the system behaviour and to reduce the effect
of using constant Kalman gain for system implementation, the filter

gain has been assumed constant after 28 seconds rather than after 20
seconds. System responses for the ship low-frequency controlled position
and heading together with the total 1ow and high frequency ship
trajectory are shown in Figures 6.7, 6.8 and 6.9 respectively, and are
for step input of 0.02 per-unit into sway with the ship hull subjected
to the same disturbance forces described in Section 5.3.2. These
responses show no loss of accuracy with the advantage of reduced

computing time. Selected elements of the Kalman gain matrix have also

been shown in Figures 6.10 and 6.11.
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6.4 Filter Mismatching

Before an effective control strategy can be implemented, there must be
available an adequate model of the dynamics éf the controlled plant,
so that simulation settings may be chosen in more realistic fashion.
The applications of Kalman filtering theory developed to date assume
that system dynamics are completely known and are precisely modelled
in the filter. Clearly, this will never be true in practice since for
a highly complex system, there is often a lack of knowledge of part of
the plant behaviour. Although the Kalman filtering scheme has proved
to be practically useful in a variety of industrial applications, it
has become apparent that insufficient care in constructing the filter
can easily lead to entirely unacceptable system.responses[?9][55][92ﬂ.Such
mismatch between the filter and the plant models can cause sensitivity
problems and even divergence of a Kalman filter [26] [‘39] [180] [86] . Such
modelling errors can arise when the nominal parameters used to construct
Kalman filter are different from the parameters used to construct the
actual plant. Mismodelling may arise from individual or combined
effects of errors in:

(1) the actual mathematical formulation of the system dynamics,

(ii) measurement signal processing,

(iii) noise and environmental statistical considerations.

For the purpose of this study, a Xalman filter has been implemented for
dynamic positioning control and constructed to consist of low and high
frequency subsystems. The high-frequency dynamics are to represent the
simulated sea waveform (Section 3.3). Tests were obtained for different
sea conditions and vary from Beaufort number 5 for a calm sea state to

the worst sea condition of Beaufort number 9. Throughout the design and
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implementation of Kalman filtering for the dynamic ship positioning

under consideration; the high-frequency dynamics were developed on the
basis of data for Beaufort number 8 sea conditions. These system
developments of the high-frequency dynamics for Beaufort number 8 sea
conditions were copied into the filter, and hence, the filter structure

will represent a model of the actual ship dynamics (the high-frequency

part).

The purpose of this section is to investigate the mismatching effect

on system behaviour by using the filter model of Beaufort number 5 data,
but using information for the ship dynamics derived from Beaufort number
8 conditions. The actual changes in the system and filter dynamics can

be noticed from the system and filter sub-matrices of the sway

high-frequency motion.

—

Ship sway high-frequency sub-matrix = 0.0 2.728 0.0 0.0
0.0 0.0 2.728 0.0
0.0 0.0 0.0 2.728
|1=0.22 ~-0.662 -1.572 =2.455 |
Filter sway high-frequency sub-matrix = 0.0 2.728 .0 0.0
0.0 0.0 2,728 0.0
0.0 0.0 0.0 2.728
-1.292 =-2.626 -3.853 =4.037]

The above data and full system simulations were based on "Star Hercules"
dynamics. Selected system responses are shown in Figure 6.12 to 6.16

and titled as appropriate.
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6.5 Reliability Tests

Ship dynamics and filter structure are traditionally determined from

the formulation of a set of mathematical equations representing the

ship motions together with the hydrodynamic forces acting on the hull.
These are usually obtained from tests on scaled models on the basis

of a reasonably good knowledge of the environmental and measurement
noise statistics. Estimation of the system state vectors for control
from noisy observations is the prime principle of Kalman filtering
operations. Kalman algorithms for dynamic positioning applications
provide the conditional mean of the state estimates. This widely

known algorithm assumes exact knowledge of the system dynamics, of

the initial error and state statistics, and of both system and
measurement noise statistics. In practice, however, the stochastic
environmental forces represented by the appropriate noise streams are not
necessarily constant, and their characteristics are not always certain.
The purpose of this section is to investigate the effect of a
misidentified noise on the system response and filter estimations. Hence,
Kalman algorithm reliability and robustness can be assessed by examining
its applicability when the noise factor of the dynamics information is
subject to uncertainty. This is carried out by increasing the plant and
measurement noise included in the simulation of the plant itself, whilst

the filter algorithm operates with the old usual noise conditions.

System simulations were investigated using the full Kalman filter
algorithm with the ship observation noise covariance being increased,
keeping the filter with the usual noise information. Figures6.1l7 to
6.20 show the low-frequency and high-frequency of the ship trajectories
together with the filter estimates of these trajectories (the dotted

curves) for both sway and yaw motions. These computer plots show the
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system responses under dynamic positioning control for the case when

the observation noise covariance within the system has been increased
100 times. Data from "Wimpey Sealab" of Sections 3.2.3 and 3.3 were

employed in here for the above simulations and used for Kalman

implementations of Chapter 5.

6.6 Concluding Remarks

The main remarks which can be made here will outline the robustness and
practicability of using the Kalman filtering technique for estimation
within the proposed dynamic positioning control loop. Such remarks

can be assessed by a straightforward examination of the system
behaviour for the different tests and investigations carried out
throughout this chapter. These concluding remarks can be summarised
now and listed as follows:

(1) Measuring the thruster output reduces the size of the system and
hence reduces the uncertainty throughout the linearisations and
approximations in developing the system dynamics.

(ii) The time-varying Kalman gain matrix settles to a constant value
after twenty seconds, and hence, using a constant gain matrix at this
pointyand for the rest of the operations will produce
significant savingsin computation, cost and storage.

(iii) Deviations of the filter estimations from the actual system
state output is very clear when operating under dynamic positioning
control with the ship model represented by Beaufort number 8 sea
conditions keeping the filter model represented by Beaufort number 5
sea conditions (calm sea state).

(iv) Finally, system responses are presented for the case when system
observation noise was increased by 100 times the usual noise statistics
used within the filter. Many tests were carried out to show that the

results represent the limit for reliable filter performance.
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CHAPTER 7

NON-LINEAR FILTERING/EXTENDED KALMAN FILTER

7.1 Introduction

An obvious extension of the technique of employing Kalman filtering
scheme to the dynamic ship positioning (Chapter 5), is the consideration
of the non-linearity of the dynamics of the system (low and high
frequency parts of the ship dynamics), and hence the required
filtering and control strategy. As shown in Chapter 3, the system
dynamics can be represented by a set of non-linear differential
equations. These equations were obtained from a set of tests carried
out on a scaled model, Section 3.2. However, Chapter 3 outlined a
reasonable scaling and linearisation of the non-linear dynamics, as
well as an approximation to the formulation of the high-frequency part
of the dynamics. Thence, a straightforward application of Kalman
filtering and state estimate feedback control, Chapter 5, proved
efficient and produced improved system response. In practice, the
low-frequency part of the system dynamics needs to be simulated using
the actual stochastic non-linear based differential euqations. Hence,

an extended form of Kalman filter must be used.

The proposed extended Kalman filter can be used for both state and
parameter estimation [ﬁQJ[ﬁ9]. Such an extended Kalman filter for the high
frequency non-linear system model was first proposed by Grimble and
Patton (Section 7.3) [ﬁé] based upon a linearisation of the system
function of non-linearity about the most recect update of the estimate

of the state vector (g(t)) at time (t). The dynamics of the filter are

thus locally linear. The linearisation and discretisation process at
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each step should be repeated, and the Kalman gain matrix must be

re—computed.

The actual non-linear low-frequency part of the system dynamics can be

represented by the following differential state equation:

S x(0) = £,k (D), ©) + Do (8) + Byu(t) e, (7.1)

with the measurement equation:
E&(t) = H%E(t) + X&(t) Cecaceanens (7.2)

where.gz(t) and X&(t) are the process and measurement noise vectors
respectively [101]. The above proposed scheme of extended Kalman filter for
high-frequency non-linearities and parameter estimation can be applied
here for the low-frequency dynamics of the system of equation (7.1).

The linearisation of f2§§£(t), t) above and the updating of the filter
dynamics will be based on the same strategy as that of the high—~frequency
case. In addition, the system matrix of the LF dynamics needs the

same linearisations and system updating processes for control

calculations (Section 7.2).

7.2 Non-Linear Filtering and Control

This section extends the discussion of optimal estimation and control

for linear systems to the more general case described by the non-linear
stochastic differential equation of (7.1). The non-linearities within

the low-frequency dynamics will be considered here. The main part of
these non-linearities 1s the non-linearities of the thruster devices,

and hence, will be considered in detail[94]. The main goal of this section
is to provide insight into the applications of non-linear estimationm,

hence optimal feedback control can be applied. The extended Kalman
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filter system can be combined with optimal feedback control and applied
to the low-frequency part of the dynamics by analogy with the separation
principle [21] of linear stochastic control theory. The extended
Kalman filter dynamics will be assumed locally linear about some
operating point, and hence, the filter gain matrix and the estimation
process would be followed as from the linear filtering rules. It is
postulated that the optimal control gain matrix can be calculated using
a similar philosophy to that used for calculating the filter gain

matrix [48],[%] Figure 7.1.

7.2.1 System Description including Thrusters Non-Linearities

To indicate the non-linear control problem, the thruster devices
(Section 2.2 and Figure 2.3) and their associated non-linearities are to
be considered. The type of thrusters fitted on'Wimpey Sealab'vessel

is considered in here with its related data (Figure 2.5). The thruster
has both dead zone and saturation characteristics (the dead zone for
"Wimpey Sealab' is approximately 1-2 per cent of the rated value of the

thrust) (Figure 7.2).

The non-linear continous time low-frequency model may be represented

by the following non-linear stochastic differential equation:

() = £,0ey(0), ©) + Dy (£) *+ Bpuy(6) oo (7.3)
where{gi(t) is a Wiener process with incremental covariance of Q,dt.

The state vector‘§&(t) contains the sway and yaw velocities and positions
as well 2s the thruster states for sway and yaw (x5 and Xg respectively).
Now, consider the thruster devices non-linearities of Figure 7.2,
system state space representation of the low-frequency model including

the proposed non-linearities can be written as:
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X1 = a;;X; * apsxs + BY N (xg)xg + B1Y N2 (26) %4
X, T X,

X3 = a3;X; +* ag;x, + BZYJ‘(l(is)E‘_s + BZYJ‘{z(Ee)zs

X, = X3
X= by xg + by,
_}.56= —bz_)fs + bzl“.z et e e seee (7.4)

where.}ﬂ(zs) and‘N;(zs) are non—linear functions of the thruster devices
in sway and yaw respectively. The thruster non-linearities have been

approximated and assumed to be of the following exponential form:

-Faxs

Ni(xs) = (sign (x).F. (1 - e ) e . (7.5)
= (ci =Fyxe
No(xg) = (sign (x¢)).F,.(1 - e = 2X6) N )
h F,. = 0.02 d F -1 F d F 1 h i
where F, = 0. and F, = 557 - , and F, values have been approximated
to an exponential function with some saturation. This gross

~ approximation of the low-frequency dynamics is better than the linear

approximation normally employed.

Now, the next step will be considered, in which the linearisation of
the system and filter matrices can proceed. To obtain these linearised
matrices for filter gain and optimal feedback gain calculations, some

partial differentiations must be performed (Appendix 4).

d
= (V)
must be defined for the following two separate regions of each state:

0 < x;, < and -® < X, < 0
0 < X < © and -« < X, < 0

Thences for
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0 -F
X - 0, '535(N3(§s)) = F,F, MERY
and
d FZ(lXSI)
Xs < 0, —ags(}(l(_;gs)) = FF, =S50 e (7.7)
Similarly, for
) -
xo > 0, = (Ny(x,)) = F,F ElxeD
X X X
and
0
_}EG < O, —3;60\(2(5-6)) = Flee FZ(IE_G]) .................. (7.8)

aj;s, 215, a3s and a3 of the system matrix of equation (7.4) can be
formulated in terms of the current system state estimate using the
non-linear equations (7.5), (7.6) for the actual system simulations,
and updated using the linearised equations (7.7) and (7.8) for filter

gain and control gain calculations.

7.2.2 The Filtering Algorithm

Consider the general case of a non-linear system described by the

following stochastic differential equation:

£(£) = £(x(t), t) + Bu(t) + Dw(t)  eeeeeeeeann (7.9)
with the output equation:

y(t) = Cx(t) e (7.10)
and observations of:

z(t) = Cx(t) +v(t) e (7.11)

where f is a non-linear function of the state vector, and B, D and C
are the input, noise and output matrices respectively. The process

noise @) and the measurement noise (v) are both Gaussian zero mean
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signals with covariances of Qf and Rf respectively, and with the

following expectations:

E{w(k)} =0
E{v(k)} =0
E{o(x) w ()} = Q6 ;
Bly() v (1)} = RS, .

E{u(k) v(§)} = 0

for all k and j since all the noise sequences are independent, with

Kronecker delta function of:

S, . =0, for all k # j

O
|

=1, for all k = j

System states for the purpose of this study (Chapter 3) can be

expressed as:

in which.§£(t) here will refer to the non-linear low—frequency part

of the system dynamics.

The discrete-time Kalman filter scheme for the above non-linear system
of equations (7.9) and (7.11) [}Q]J}]i}é] has the problem of getting the

required state estimate to be used for closed loop control.

A step-by-step implementations of the filter scheme as it has been
used within the system simulations can be summarised as follows:

(1) The predicted state at (k + 1) instant is,

2+ 1K) = £GxE]) + A u(®) e (7.12)
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since the system input has been fed into the filter as well as into

the plant (Figure 7.1).

(ii) Based on (i), the state estimates at (k + 1) can now be

calculated.

R+ 1k + 1) = 2@k + 1]k) + K(k + Dy(k + 1) - Cx(k + 1]k)]

where K(k + 1) is the Kalman gain matrix which has been calculated

from the linearised filter dynamics.

(iii) The linearisation and updating processes of the filter system
matrkfs(Ak) and'(Af) can now begin. The filter matrix (Af) will be used
for actual filter simulations thereafter, while the linearised (Ak)

matrix will be used for Kalman gain matrix calculations:

Ak(linearised)=-§§ Af (x, (k + 1)) I (7.14)
- X=X
(iv) Now Kalman gain matrix K(k + 1) can be obtained, first by

calculating the predicted error covariance matrix,

P + 1K) = 9 (k + 11k)P(k]k)®E(k + 1) + T (k + 1]0)

Qlpk + 10 (7.15)

where

P(klk) = ['0.0ljlu is the initial error covariance matrix.
Therefore

K@k + 1) = P(k + 1K) cT[ cp(k + 1/x)c’ + R, ]'1 Cereeaen (7.16)

where Rf and Qf are the measurement and process covarlance matrices
respectively.

(v) Finally, the error covariance matrix 1s:

T
P(k + 1]k + 1) = (I - K(k + 1)C)P(k + 1]k) (T - K(k + 1)C)

+ Kk + DR, Ki(k + 1) e (7.17)
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(vi) Given the expected values of the initial state, error covariance
matrices and filter dynamics, one can use the above equation
iteratively to obtain the state estimates at any future sampling

instant (k + 1).

7.2.3 The Control Algorithm

In the dynamic positioning problem under consideration, the control
problem is one of using the filter low-frequency estimates for a closed
feedback loop. These estimates will be assumed to fepresent the true
system states for the control purpose. The next step in here is to
calculate the feedback control gain matrix on the basis of optimal

stochastic control theory.

In the linear stochastic optimal control problem (Chapter 4),
determination of the optimal feedback control requires the solution of
the matrix Riccati equation [102]. The optimal control philosophy for the
non-linear stochastic system under consideration can be explained as
follows:

(i) Linearise the system locally around the most recent state
estimates using the extended Kalman filter philosophy.

(ii) Estimate the step ahead conditional mean of the state vector
(Chapter 5).
(iii) In here, linearisation and updating of the system matrix can be
carried out in analogy to the process in Section 7.2.2 (iii). The
A-matrix is to include the actual non-linearities for system simulationms,

while the A,-matrix is to represent the linearised structure of the system

matrix for control gain calculatioms.

A1 (linearised) = é% Alx, (k + 1)) ceeeeees (7.18)

~
X =X
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(iv) The process of calculating the control gain matrix (Kc) can now
begin to control the non-linear system of equation (7.1). This process
will involve the iterative solution of the following steady-state

Riccati equation over the specific sampling instant [84][86]:

T _ -7
0 =A P +PA, -PBR BL%+ Q e, (7.19)

and it is such that the performance criterion,
T
T T
J=[ &) x(t) +u(t) Ru(t) d&e ..., (7.20)
o

is minimised, where Ajg is the locaily-linearised low-frequency part of
the system matrix for control calculations. Bg is the low-frequency
part of the input matrix. RC and QC are the control weighting matrices.
These matrices were chosen optimally [39],[2], (Section 4.3).

(v) Finally, once solution to the Riccati equation PC of equation
(7.19) is obtained, the control gain matrix at that specific instant can

be calculated as:

7.2.4 Simulation Results

Simulation results will be presented in here to illustrate the idea of
non—-linear control of the above section (7.2). These simulations are
based on data from the vessel "Wimpey Sealab'" (Chapter 3), with control
weightings of Chapter 4 and filter specifications of Chapter 5.
Non-linearities within the low-frequency part of the system will be
considered in here with the high-frequency dynamics assumed constant and
the canonical state-space form for both sway and yaw motions have been

used as from Chapter 3.

Full system simulations combining both low and high frequency dynamics
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using extended Kalman filter for control can now be summarised. The

system responses for a step input of 0.02 per—unit into the sway
direction are shown in Figures 7.3 to 7.7 inclusive, where Figures 7.3
and 7.4 show the non-linear behaviour of the low-frequency vessel
position and heading respectively, while Figures 7.5 and 7.6 show the
corresponding high-frequency vessel position and heading respectively.
Figure 7.7 shows the combined low and high frequency trajectories.
Throughout these simulations, the ship and filter matrices were updated
and linearised every two intervals of the simulations. However,
linearising every five intervals (Figures 7.8 to 7.10) for sway and yaw
low-frequency position and heading as well as the ship total position

shows no- loss of accuracy and a significant saving in system simulation

cost. Filter estimates are again shown by dotted curves.

7.3 Parameter Estimations

Kalman filtering for estimating the state veetors of system under
dynamic positioning control has been widely applied because of the
reliability of the filter performance. Such performance depends

mainly on the availability of the required information to construct the
Kalman filter. Most of this information is approximately known with
some parameter uncertainties within the main body of the plant model.
Such uncertainties could cause the requirement for non-linear estimations
using the extended Kalman filter as state and parameter estimator,
Hence, the problem of doing accurate estimation when some of the ship
and filter models parameters are not precisely known involve parameter
estimations with all the consequences of increased system dimensions and

undesirable complexity in implementing the filter algorithm [64].

The problem of parameter estimation in a noisy stochastic dynamic

system using extended Kalman filter for state and parameter estimation
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has received considerable attention [61:] ,[67:],[79],[83:] because of 1its
importance in system model building and control. Basically, the

unknown parameters to be estimated must be represented dynamically
within the whole system structure and estimated in a similar way to

that of the state estimation procedure. Hence, the filter dimension
will be increased by the number of the unknown parameters to be
estimated. Kalman theory cannot be applied in here directly and a form
of extended Kalman filter is required with all the necessary applications

of the linearisation and updating procedures.

Previous chapters outlined the step by step implementations of Kalman
filtering techniques for dynamic positioning applications. The system
was assumed to consist of low-frequency and high-frequency parts and
so the filter model. Non-linearities within the low-frequency part of
the system dynamics have been considered in Section 7.2 using extended

Kalman filter to estimate the system states vectors for control.

In this section, work done by Balchen [12] and Grimble and Patton [4?]

will be summarised, which has been mainly involved with the investigation
of the non-linearities within the high-frequency part of the system
dynamics and the related state and parameter estimations using extended
Kalman filter. J G Balchen (1976) has proposed an extended Kalman

filter for dynamic ship positioning problem in which the high-frequency
subsystems have been modelled by harmonic oscillators. The frequency of
the oscillators is assumed equal for both sway and yaw motions and needs

to be estimated as an unknown parameter using an additional state variable.
Hence, the system matrix for sway motion which is identical to the yaw

motion will be:
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with system state vectors of:
h +
X1

h
X2

h
X3

h .
where X} Trepresents the high-frequency sway velocity, xg represents
. .. h .
the high-frequency sway position, and x3 represents the dominant

angular wave frequency to be estimated.

Disadvantages with using Balchen's method led to the use of the
alternative technique proposed by Grimble and Patton [}é]. This
alternative approach uses an extended Kalman filter which is based on

a more accurate model of the sea wave energy spectrum (Section 3.3). An
assumption for am approximate non-linear sea spectrum was made in
Section 3.3 to develop and implement the high-frequency part of the svstem
dynamics. The state space representation of the system high-frequency
model were developed in companion canonical form for different Beaufort
numbers and sea conditions and assumed identical for both sway and yaw.

The system matrix for sway motion can be presented as:

0 Tb 0 0
s _ 0 o) Tb 0
0O O 0 Tb

-0y -3 -0 -ay

where Tb is the per-unit system time constant, and o1, 02, 03 and

are constant parameters for a specific Beaufort number and vary 1in
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proportion to the weather conditions. The main purpose of the proposed
extended Kalman filter in here in addition to estimating the system
state vectors is to include a subsystem for estimating the above four
parameters (a;, 02, 03 and ay) for different weather conditions,

together with the rest of the system states. Thence, the new filter

high-frequency system matrix for both sway and yaw will have the

following structure:

Ay = A
0 AE_J

in which AE is a (4 x 4) matrix corresponding to the unknown four
parameters to be estimated. In this case, the discrete-time Kalman

filter for the dynamic positioning problem may be defined as:

Z(t + 1) = £(Z, u(®) + KO [y®) - k)]  eerren.. (7.22)
where

. x(t)

z(t) = |—===—=

- B (t)

and ;(t) are the original low and high frequency system state estimates
while 6(t) are the parameter estimates. K(t) is the Kalman gain matrix,

and can be partitioned as:

K(e) = | K (6)

where Kg(t) and Kh(t) are the filter low and high frequency gain matrices

respectively while Ke(t) is the parameter estimator gain. The filter
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gain matrix should be computed at each sampling instant and

linearisations and system updating should be performed in a similar

manner to those of Section 7.2.

7.4 Concluding Remarks

Work in this chapter has shown that the structure of the extended
Kalman filtering scheme can be used for control. The use of such an
approach to control system design has been shown to produce more realistic
system responses. For the purpose of studying the non-linear control of
the low-frequency part of the ship under dynamic positioning control,
the thrust-producing devices and their related non-linearities were
considered. Figure 7.8 shows the sway position for a step input of 0.02
into sway motion which indicates good estimation but with slow overall
system response. Control weighting matrices were adjusted but with
little improvement on the speed of the system responses. Such slowness
of response is mainly caused by the non-linearities considered and the
extended Kalman filter applications with all the related linearisations
performed. The basic philosophy of non-linear filtering and control
throughout this work was based on the processes of linearising and
updating the system in terms of the filter estimates at each sampling
instant. This will impose a high computational burden. Simulations
shown in Figure 7.7 and Figure 7.10 are the ship trajectoriles based on
linearising and updating the system every two intervals and five

intervals respectively, with a cost saving and no loss of accuracy.

Parameter estimation for the dynamic positioning problen is an essential
technique by which the uncertainties within the system dynamics can be
overcome. Grimble and Patton [;é} did a substantial amount of work 1in

this field and hence it has been summarised here for its relationship to the

idea of non-linear control (Section 7.2).
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CHAPTER (8)



CHAPTER 8

OVERALL CONCLUSIONS

The major aims of the work in this case study was achieved successfully
and reported in this thesis. From the basic design considerations and
the related practical investigations, it has been shown that the Kalman
filtering technique is suitable for the dynamic ship positioning problem
under consideration. It uses the actual available information on

the dynamical behaviour of the process generating the measurements as
part of the filter structure. Although information about the model is
included in the filter, model inaccuracies within the ship dynamics are

a dominant limiting factor in the Kalman filter performance.

System dynamics were provided by GEC Electrical Projects from
experiments on a model of the ship using a set of tank and wind

tunnel tests for the three degrees of freedom. Some interaction
between swaV and yaw motions was considered and the whole system
design for filter and control was carried out successfully for both
motions simultaneously. Basic equations used to build the Kalman
filter were based on the ship dynamics obtained from the above-mentioned
experimental tests. The system measurements were the only source of
information available for the filter from the outside world during its
operation. A back-up taut-wire source of measurement 1s employed

along with the acoustic system since water disturbances, such as fish
passing and air bubbles, can cause a loss of the pulses required by the
the set of the hydrophones to generate the desired measurements.
Grimble and Patton [51] did some comparison work on the

practicability of using Notch filters and PID controllers or the

*alternative Kalman filter and stochastic optimal control and showed
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that a better system response could be obtained by using the latter
scheme. 1In this work, a Kalman filtering scheme was implemented
successfully using stochastic optimal control theory within dynamic
positioning control for two vessels, "Wimpey Sealab" and "Star
Hercules". The proposed scheme has been installed on the latter vessel
and commissioned. The Kalman filter, while offering the most potential
improvement in estimation accuracy, is inherently linear since it
represents the linearised ship model. The required approximations

can result in system and filter modelling errors. However, more

realistic representations have been considered throughout the simulations

of the system including non-linearities.

In the early stages of this work, linearised systems have been
considered for Kalman filter implementation and a simple plant has

been modelled but there is no reason to believe that the results
obtained are not typical of what may be found using a more complex
model. Several important factors have been studied and these

impose a degree of limitation on the accuracy and ease of implementation
of the Kalman filter algorithm for the dynamic positioning problem

under consideration. These factors are:

(1) the accuracy of the filter structure as a true model of the

actual plant,

(ii) the availability and uncertainty of the different parameters of

the plant model,

(iii) the choice of process and measurement noise statistics and
their corresponding covariance matrices affect the Kalman gain

calculations and hence the elements of these matrices should be

accurately chosen and fed into the filter.
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(iv) on-board computer storage capacity to handle the complexity of
the scheme structure and the related calculations and storage

requirements.

Several investigations have been carried out to show the reliability and
robustness of using the Kalman filter for estimation within the dynamic
positioning control loop despite the above restrictions and limitations.
These can be listed as follows:

(1) Introducing the reduced-order Kalman filter reduces the size of
the filter, which has the advantage of minimising the modelling errors
since the filter does not include the model of the directly measured
thruster subsystem. An additional advantage with using this scheme
is a reduction in the computer storage requirement especially when a
high dimension filter is used for state and parameter estimations.

(i1) Full Kalman filter simulations show that the filter gain matrix
becomes constant after approximately 20 seconds. One of the
disadvantages of using the time-varying Kalman filter is the
computational burden associated with the filter gain calculations, and
hence partitioning the filter gain calculations into a time-varying
region of up to 20 seconds and a constant region for the rest of the
simulations shows a significant saving on the filtering «nd control
process.

(iii) The mismatching problem was investigated by simulating the system
with the Kalman filter using Beaufort number 5 dynamics, keeping the ship
with a worst sea condition dynamics of Beaufort number 8. The system
and filter responses showed some deviations in the filter estimates.
Hence, to ensure good estimation accuracy, the filter structure should
represent a higher Beaufort number than that expected of the real plant.

(iv) As mentioned above, noise statistics are an important factor in

shaping the filter behaviour. Tests havebeen carried out by increasing
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the measurement noise statistics of the system keeping the filter

with only the usual information. The filter gave acceptable estimates

to show its reliability up to a critical noise level (shown in Section
6.5) where the filter behaviour cannot be relied upon, corresponding

to the case when the noise covariances were increased by 100 times.

Kalman filtering models for the dynamic positioning problem have

been extended to include some of the system non-linearities. Such
investigations have shown that a form of extended Kalman filter can

be used to provide the necessary state estimates for closed loop
non—-linear control. The use of such an approach to control system
design (Chapter 7) is shown to produce more realistic system responses.
A practical algorithm for on-line estimation and control of a noisy

non-linear system has been implemented with some computational load.

Further research can be concerned with the procedure of partitioning
the non-linear system of Chapter 7. The linear constant part of the
dynamics can be dealt with separately in the usual way using a
linear Kalman filter with the advantages of reduced implementation

cost.
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APPENDIX 1

NOTES ON PER-UNIT SYSTEM OF TIME SCALING

All the equations of motion for both"Wimpey Sealab"and"Star Hercules"

vessels have been represented in per—-unit. Both time and amplitude

scaling have been applied.

Consider the following general differential equation:

d

E—E E(t) = A E(t) + B E(t) ............... (1)

which has been represented in a real time. Now suppose that time scale

change from real time (t) to per-unit time (t ), where

[

t . .
t = -— and t, 1s the base time
ty b

Then the plant differential equation will become:
d - - -~
T X(t ) =ty (Ax(t ty) + Bu(t ty)) ceteerereaeaas (2)
R (£Y) = e (ax (2™ + Bulehe)) L (3)
where x (t%) 1is the per-unit value of the state vector.
=0

In order to determine the values of the control Q and R matrices, and
hence the state feedback gain matrix, the maximum permissible deviations

in the per-unit thruster control signals are required.

The general base units for the per-unit system differes for different
kindsof vessels, which depend upon the size and the geometry of the vessel,

and can be summarised for both"Wimpey Sealab"and"Star Hercules!
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(1) "Wimpey SealaB'Vessel

Mass (m) = 5670 tonne
Length (Lpp) = 94.49 metre
Gravitational Acc. (g) = 9,81 m/sec?
Time /£;;7§ = 3.104 seconds
Velocity VE;;E_ = 30.44 m/sec
Force (mg) = 55,620 KN
Moment (mgL) = 5,256,000 KN-m
Angular Velocity /§7f. = 0.3222 rad/sec

From which:
The base time = ty = 3.104 sec
The amplitude scaling factor = 95 m
Assuming that all the thrusters acting in one direction, the maximum

force is (40) tones or (400) KN, then

) 400
per-unit sway force = ———— = 0.007 = 0.01

3
55.6 x 10

and the maximum torque is 90 m x 20 tonnes which is (1800) m tonne or

(18000 KN metres, then

18000
per—-unit torque = . = 0.003 = 0.004
5,256x 1C

The assumption has made that, the thruster time constant is to be (2)

seconds or (2/3.104 = 0.644 pu) and hence,

bl = b2 = 1/0.644 = 1.55
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kii) "Star Hercules''Vessel

Mass m = 4377 tonne
Length Lpp =173 metres
Time /f;;7§ = 2.728 seconds
Gravitatianal Acc. g = 9,81 m/sec?
Force mg = 42.940 KN
Moment mngp = 3,134,500 KN.m

From which:
The base time = 2.728
and for (2) seconds thruster's time constant, which is (2/2.728 = 0.733

pu), b, = b, = 1/0.733 = 1.364.
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APPENDIX 2

HIGH FREQUENCY MODEL PARAMETERS

By examining the high frequency part of the dynamics, the general

structure of the system A-matrix for sway or yaw is:

where T

and Oy varies in proportion to the weather conditions as indicated in
the following Table 1 for "Wimpey Sealab'vessel for Beaufort number 5

(calm sea) to Beaufort number 9 (the worst weather conditions), and the

-
0 Tb 0
0] 0 Tb
0 0 0

:(lq =03 —0O2 =0 J

, = 3.104 secs for 'Wimpey Sealab'while the parameter &, Oz, Q3

corresponding Beauforts number 5 and number 8 of Table 2 for Star

"
Hercules vessel.

Beaufort No 03] G2 O3 Oy
5 4.594 | 4.384 | 2.988 | 1.470
6 3.663 | 2.698 | 1.452 | 0.556
7 3.166 | 2.119 | 0.974 | 0,341
8 2.794 | 1.789 { 0.754 | 0.251
9 2.545 | 1.353 | 0.486 | 0.131
Table No (1)
Beaufort No o3 a2 O3 Oty
5 4.037 | 3.853 | 2.626 | 1.292
l
" 8 2.455| 1.572 | 0.662 | 0.22

Table No (2)
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APPENDIX 3

CALCULATION OF THE KALMAN GAIN MATRIX

The position measurements are not defined in continuous form but are
sampled at regular intervals. The system simulation and the Kalman
filter have both been modelled using their discrete forms. The

resulting discrete equations are as follows:

x(k + 1) = &k + Lk)x(k) + Au(k) + Tw(k) ..., . (D)

z(k) = Cx(k) + v(k) . (2)
with

E{wk)} = 0 Blutow’ (D} = Q8 e (3)

E{v(k)} = 0 Ely@y (DY = R e (4)

and where ij is the Dirac function. The matrices A and I' are related

to their continuous—time counterparts by

T1
A= fo &(T)B dt Ceeeeeae. . (5)
T
T = fo (T)D dT e (6)
and
Sk + 1, k) A O(TY) e (7)

where T, is the sampling interval.
The state estimate is given by calculating the predicted state

R + 110 = ok + 1[RXE[) +ouk) e (8)
and then calculating the estimated state at the instant (k + 1), using

Rk + 1|k + 1) =.£(k £ 1]k) + K(k + D(yk + 1) - cx(k + 1]k)).(9)
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The Kalman gain matrix K(k + 1) can be obtained, first by calculating

the predicted error covariance matrix
P(k + 1]k) = ok + 1{K)P(k|K)a" (k + 1K) + T eeen.. (10)
for some initial error covariance P(k[k), and then calculating
K(k + 1) = P(k + 1Joc [epx + 1fioct + &7 ... (11)
Finally, the error covariance’matrix is obtained using

P(k+ 1k +1) =(I = K(k + 1)C)P(k + 1K) (I - K(k + 1)C)"

+ K(k + 1)RK (k + 1)

The above equations can be used iteratively to obtain the state
estimate at any future sampling time, given the initial state and

covariance.
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APPENDIX 4

EXTENDED KALMAN FILTER/PROPAGATING THE CONDITIONAL MFAN OF THE STATE

ESTIMATE AND ITS ASSOCIATED COVARIANCE

In order to extend the problem of optimal estimation and control for
linear systems to the general case of a system with non-linearity,

consider the following non-linear stochastic differential equations of

the system dynamics:
x(6) = £(x(t), t) + w(t)
in which f_is a function of the state x(t).

The problem will be the estimation of the state x(t) using the non-linear

measurements, which is described in its discrete form as:

By = by (x(6) + 3

where Ek is a function of the state E(tk) and depends on the index k at

each sampling period.

Both wl and v; are white gaussian noise of zero mean, with E(Vk) = E(wk)
. T
= 0 where E(.) is the expected value of - and E(Vkvj ) = Rk ij,
T . . .
= . E(w,v.) =0 f 11 k, j, since all the noise
E(wkwj ) Qk 6kj and E( ka) or a j

sequences are independent, where the Kronecker delta functioms

§. =0 k #3]

k]
Given the non-linear system equation of motion and the measurement
equation, and the problem is to calculate the minimum variance estimate

of x(t). The minimum variance estimate of x(t) is the conditional mean

of the state_ﬁ(t).
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Suppose that the measurements data are given at time t

k=1 and the

conditional mean estimate o i, :
f the state vector E(tk—l) is known. Then

by integrating both sides of equation (1) from time t to t., the
k-1 k’
propagated state at instant t will be:
t t
x(t) =x(t, )+ f - E(x(T), T)dT +J o(ndt ..., (3)
Fr-1 be-1

taking the expectation, differentiation of both sides of equation (3),

taking into consideration the noise characteristics mentioned above,

produces:

Tidf E[x(t)] =E[£(_}_<_(t), t)] where by SE<E (4)

In equation (2) above, all the measurements taken up to time tk—l'

E[g(tk_lj] =_§(tk_l) is the initial condition

Refer to equation (4). Over the time interval t <t < the

k-1 < Yo

solution of equation (4) is the conditional mean of x(t) which is:
() =E[fx(), ©)] t_;<t<ey L (5)

The initial condition is the conditional mean of the state at tk—l which

is assumed known.

The estimation error covariance matrix is defined as:
A A T (6)
P(t) A E[(x(t) - x(O))(x() = x(eNT e

The differential equation for the estimation error covariance will be:
: T . T A ~T ~ ;T(t)--(“)
P(t) = E[x(t) x (£)] + E[x(t) X (£)] - X(t) x (©) - x(¢) X /

substitute for x(t) from equation (1) and for g_from equation (5) into
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equation (7):

Pe) = (s + wx v Bt + 0" - e[g &7 - 2 5[]
T n t
=e[fx] +8x£] - 2E[" - e[[]5" + 2 f Q(t) 8(t-mdr
t
k-1
pe) ~E[f x] +E[x £7] - x E[f7] - E[f] X + Q) ... (8)

Refer to equation (5), denote E[§(§, tX] as £ (x(t), t).

Now expand £(x, t) in a Tylar series about the current estimate of the
state vector, then take the expectation of both sides to compute

f(x(t), t), as follows:

substitute the first—order approximation of f(x, t) from equation (10)

into equation (5)

2(t) = £(R(0)) g SESE (11)

To find an approximate differential equation for the estimation error
. A LI ) .
covariance matrix, define matrix F(x(t), t) whose ijth element is:

3, (x(t), t)

-f'lj (}E(t)s t) é BXJ (t) _)E(t) - _}E(t)

P(t) =E[f x] +E[x £] - % E[f] - E[£]X +Q(E)  .eveennn. (12)

using equation (9):

* ~ a_f_ A~ T
P(t) = E[£(x, t)§T o (x - §)§T]+ E(x £7] -

>

x:



of

-RE[EN(E, t) + (vég (x - g))TJ - E[£] gT + Q(t)

I%>

X =

A A 8_f_ A
= £(x, )% + 5o | ELGx - 0x] +E[x £

f
[ >

X =

A TA A AT BfT
“xE & 0 -ExEx- 0] =
of ~
- = EE(E'E)(XT‘QT)]
ox A - -
—i1x=2X
T
of
e, T AT L
E - - =
+Elx - D& - 1)) o
X=X
T
of P(t) + P(t °L
- = )5; + Q(t)
X ~ — A
= |x=x x=X

- E[£]% + Q)

[ >

+ Q(t)

P(t) = F(R(t), t) P(t) + P(t) FL(R(t), t) + Q(t)

teop £t <€

Equations (11) and (13) are an approximate expression for propagating

the conditional mean of the state and the estimation error covariance

for t t <t

<
k-1 °

filter and referred to as extended Kalman filter.
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