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KALMAN FILTERING TECHNIQUES APPLIED TO THE DYNA~IC SHIP POSITIONING 
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A A G AI-Takie 

Abstract 

The dynamic ship positioning problem us~ng Kalman filtering techniques 
is considered. The main components of the system are discussed. The 
ship dynamics, based on a linearised model, are represented by state 
equations. These equations involve low and high frequency subsystems. 
A simplified design procedure for the implementation of a Kalman filter 
is described based on the linearised equations of motion. The Kalman 
filter involves a model of the system and is therefore particularly 
appropriate for separating the low and high frequency motions of the 
vessel. The filtering problem is one of estimating the low-frequency 
motions of the vessel so that control can be applied. An optimal 
feedback control system simulation based on optimal stochastic control 
theory is used. The optimal control performance criterion weighting 
matrices Q, R were pre-selected and the optimal feedback gain matrix 
was computed. This control scheme involves the low-frequency part 
of the ship model. The Kalman filter has been simulated on a digital 
computer for different modelled operating conditions. The computer 
simulation results showing the behaviour and responses of the Kalman 
filter applied to the dynamic ship positioning problem were 
investigated. The system dynamics vary as the weather conditions vary 
and can be classified from a calm sea condition (Beaufort number 5) to 
the worst condition (Beaufort number 9). Different tests involving 
systems modelling and filter mismatching have been carried out. 
Another field in which the robustness of a Kalman filter has been 
assessed involved a test in which the system observation noise 
covariance was increased keeping the filter with the usual noise 
information. Saving in both computation and computer storage 
requirement were achieved using a form of semi-constant filter gain and 
reduced-order Kalman filter respectively. 

System non-linearities have been considered and a non-linear control 
algorithm was proposed and implemented using an extended Kalman filter. 
These non-linearities involve the thruster dynamics and the associated 
low-frequency part of the system model. 

All data that have been used within this work for system implementation 
were obtained from two different models ("Wimpey Sealab" and "Star 
Hercules" vessels). Our system has been employed by GEC Electrical 
Projects Limited, Rugby, for a new vessel ("Star Hercules") and this 
has been commissioned and is currently operating successfully off 
Brazi 1. 
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CHAPTER 1 

GENERAL ASPECTS OF THE DYNAMIC POSITIONING PROBLEM 

1.1 General Introduction 

Since the end of World War II, it has been increasingly realised that 

the seabed and rock beneath are rich in mineral resources which should be 

exploited. The best known example 1S the offshore oil reserves. 

Initially, exploitation was limited to shallow water close to the shore 

but it has moved progressively into deeper water and less hospitable 

locations. Early exploration for oil production was carried out from 

fixed platforms. Inspection and maintenance work on fixed structures 

involve extensive use of diving services and lifting facilities. From 

these has arisen the need for the floating vessel with the necessary 

technique to keep it stationary with respect to some reference point. 

Recently many floating drilling r1gs and drill ships have been intro-

duced and many of these are working in the North Sea. In addition to 

drilling, offshore operations involve: 

(i) cor1ng 

(ii) . 
surveY1ng 

(iii) cable laying 

(iv) dredging 

(v) diving 

(vi) fire fighting 

The most significant limitation of using the conventional floating vessel 

is the difficulty of anchoring 1n deep water. To overcome these 

limitations, the concept of a dynamic positioning technique was intro-

duced. Dynamic ship P9sitioning is defined as the technique for main-

. taining the position of a vessel stationary over a specific preselected 
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pOint on the seabed without the use of anchoring systems. The second 

definition of dynamic positioning is that the vessel may be moving at 

controlled speed, which can be extended to include the tracking 

problem. 

The process of automatically controlling a ship or floating platform 

position and heading [13J [19J over a preselected area is concerned with 

providing the necessary thrust in appropriate quantity and direction 

to match the mean loads imposed on the vessel by environment and other 

forces. This will involve using: 

(i) a combination of thruster mechanism and propulsion 

(ii) position and heading measuring devices 

(iii) wind speed sensor 

(iv) control computer 

The design of an automatic position and heading control system for a 

vessel depends on the required criteria, which must be satisfied by 

the vessel and its control system (or computer control system) to 

perform its mission, on the environmental conditions in the area where 

the vessel will operate and on the expected behaviours of the vessel 

for changing weather. 

The control system is part of a closed loop system, schematically 

shown in Figure 1.1. The main components are: 

(i) measurement subsystem, including all devices for generating the 

information to be processed by the computer, 

(ii) the filter to attenuate the unwanted signals and to generate the 

required estimates for state feedback control, 

(iii) the controller, of which the output ~s sent to the propulsors 

(main propellers and other thrusters), 

(iv) thrust generating system to drive the vessel to the required 

2 



External disturbances 

wind wave current 

. measur1ng .. 
devices 

wind speed 
~wind direction 

"i , 

position and .. 
Controller control 

'" propulsors effective", ship position ... boo 1 
voltage dynamics heading" heading errors thrust 

w 

measuring -devices 

--

Figure (1.1): Dynamic ship positi6ningc6ntrol systems 



position. 

This control scheme should be capable of: 

(i) controlling the propulsors for maintaining a reference position 

and heading under specified weather conditions (with the ability to 

react to changing weather conditions), with a maximum allowable radial 

position error of 3 per cent of the water depth, 

(ii) avoidin& high-frequency fluctuations in the thrust demand 

(filtering problem) since this may cause unnecessary wear of the 

propulsors and waste of energy, 

(iii) controlling the propulsors for changing the position or heading 

of the ship ~n case a new reference position or heading is selected. 

Dynamic positioning systems with on-line computer control involve 

one of the following [30J: 

(i) Simplex computer control, where longer term or more accurate 

position keeping is necessary, such as for support purposes. This 

fully automatic control system is an economic scheme and it normally 

comprises: 

(a) one computer complete with monitoring unit and peripherals 

controllers 

(b) one operator console, with full set-up, control and 

display 

(c) one position measurement system 

(d) set of environmental and attitude sensors 

(ii) Duplex computer control, which is usually used for oil exploration 

drilling vessels, which is required to remain on station for long periods 

of time. A Full automatic duplex dynamic positioning system comprises of: 

(a) two computers complete with monitoring units and peripheral 

controllers 
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(b) one operator console, with full set-up, control and 

display, 

(c) two position measurement systems, 

(d) two sets of environmental and attitude sensors. 

The design of a vessel's dynamic positioning system involves a 

compromise between the two conflicting requirements of accuracy of 

position holding and the need to suppress the thrusters response to 

part of the wave motions. These external forces are assumed to consist 

of low-frequency and high-frequency forces. The thrusters response 

to the first order high-frequency wave motions is oscillatory in 

nature, and involves an extra power demand and wear and tear of the 

thrust-producing mechanisms, without any gains in counteracting vessel 

motion due to the above waves and forces. 

The accuracy of the dynamic positioning system will depend to a certain 

extent on the philosophy of the wave filter selection method and the 

corresponding controller design procedure. Thus, the amount of the 

thrusters oscillations will depend on the wave filter attenuation and 

the controller bandwidth. Filtering for the dynamic positioning 

prob1e~ can be defined as the process of operating upon the corrupted 

information (the noisy measured system output) to attempt to construct 

a signal which can be used for control purposes [18J, [22J. The control 

systems for the first dynamically positioned vessels [31J, [30J included 

Notch filters and PID controllers. Using such a scheme, the position 

measurement signal can be filtered out to obtain a comparatively good 

estimate of the low-frequency part of the vessel motions, and hence, 

control can be applied 1}3]. An introduction to Notch filter 

networks is given in Section 1.2 
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Using the above conventional Notch filter scheme with PID control can 

cause some difficulties since a compromise should be made between 

improved filtering and good control system performance. Such diffi­

culties led to the use of the alternative Kalman filtering technique 

together with modern stochastic optimal control theory. The 

Kalman-Bucy filter ~8J, [6 OJ , [4'U, [46J has assumed a role of ever 

increasing importance over recent years in the field of filtering and 

estimation of processes, and its applications in dynamic systems. 

Theoretically, the Kalman filter gives the unbiased, minimum variance 

estimation of the state vectors of a linear or linearised dynamic 

system when output measurements are provided which represent a 

linear function of the system states with some additive white nOlse. 

In practice, optimum performance will be very hard to realise Slnce 

the information required to construct the Kalman filter is only 

approximately known. Hence, to get the best filtering and estimation, 

the Kalman filter has to be provided with as much information as 

possible concerning the noise statistics and system dynamics. 

In dynamic vessel positioning the low-frequency part of the system 

states are required to be estimated by the Kalman filter so that control 

can be applied. Kalman filter dynamics, based on the separation 

theorem ~lJ, I}{] will involve a model of the actual low and high 

frequency part of the system dynamics (Figure 1.2), and hence, the 

estimated high-frequency state vectors can be ignored, while the 

estimated low-frequency states can be fed back to be used within the 

control loop. An introduction into the use of the Kalman-Bucy 

filtering scheme and its applications to the dynamic positioning 

problem for this study will b~ given in Section 1.3. 
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1.2 Notch, PIn Filtering and Control 

Notch filters [99J, [103J have been developed and used in dynamic ship 

positioning for some years with relatively good results. If the control 

system were purely analogue ,this filter would obviously be preferred. 

With digital processors available, other filter structures might yield 

additional advantages. A Kalman filter with such properties [45~, [12J 

will be introduced in the next section. A Notch filter is often used 

in dynamic positioning problems to attenuate the high-frequency wave 

motion signals from the position measurement system. The Notch filter 

must be capable of providing a constant attenuation ratio either for a 

fixed sea wave resonant frequency or for a range of resonant frequencies. 

A typical range of Notch frequencies [slJ would be 0.06 Rz to 0.12 Rz 

corresponding to Beaufort scale number 9 down to 5 (Appendix 2). To 

provide a wide band-stop characteristic it ~s necessary to use a 

cascaded system of Notch filters with each section tuned to a 

particular resonant frequency iJOJ, [13J . In this application three 

such cascaded sections are normally used. The Notch filter transfer 

function can be defined [103J by: 

s2 + bd w2 

A-
s + 

R(s) 
2d 2 

= 
s2 + b s + w2 

II - 2d 2 

............ (1.1) 

where: 

w Notch centre frequency (rad/sec) 

b the 3 dB bandwidth of the Notch (rad/sec) 

d the attenuation ratio at the Notch centre frequency 

The above parameters w, band d can be used to describe the Notch 

network. For a three cascaded section of this network the above 

transfer function R(s) can be written as [8:f]: 

H(s) = 
~=n 

II 
i=l 

G. (s) 
~ 

8 

............. (1.2) 



where: n = 'l (for three cascaded sections), and: J 

s2 
bidi 2 

+ /1 - 2dt 
s + w. 

G. (s) 
1 

= 1 bi 2 

s2 s + w. + h 2 1 - 2d· 1 

••..••••.• (1.3) 

where: 

w. the ith 
1. 

section centre frequency 

b. the ith section 3 dB bandwidth 
1. 

d. the ith section attenuation ratio 
1. 

1.3 Alternative Kalman Filtering and Stochastic Optimal Control Solution 

Considerable research has been devoted during the last twenty years to 

varlous problems in the estimation of the states of linear dynamic 

systems using system measurements corrupted by Markov 

n01se. The Kalman-Bucy filtering technique for such applications has 

been thoroughly examined in the literature. The optimal, continuous 

time filtering problem for the case of linear system dynamics, additive 

measurements and Gaussian white disturbance measurement noise was 

first solved by Kalman (1960) [sS] and Kalman and Bucy (1961) [60J. 

Specifically they considered the problem of finding the unbiased, 

minimal variance state estimate ~(t) of the system state x(t) in the 

presence of stochastic input disturbances and output measurement 

additive noise. 

The problem of state estimation of nOlsy systems uS1ng Kalman filtering 

scheme requ1res a knowledge of the system structure and its parameters ~J. 

If the system is linear or linearised and its different parameters are 

known, the solution 1S a straightforward application of Kalman 

algorithms for filtering and estimation and 1S glven by Kalman and Bucy 

(1961). In actual industrial applications, some of the plant 
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parameters may be unknown and hence it is necessary to estimate them 

together with the system states simultaneously. This parameter 

estimation problem requires the extension of the Kalman filtering 

scheme to include the system non-linearity. This will involve the 

implementation of the extended Kalman filter. This form of 

non-linear filter problem can be dealt with by constructing an 

additional linear dynamic model corresponding to the unknown parameters. 

The parameter equations are added to the system model equations and the 

combined states and parameter variables of this augmented model are to 

be estimated. Feedback control can he applied using the low-frequency 

part of the state estimates only (Figure 1.3). All the necessary 

information concerning the process and observation noise as well as 

system inputs have to be fed into the proposed filter dynamics for good 

estimation and filtering accuracy. The non-linear filtering problem 

for systems with random inputs is of great importance in control 

processes, especially in industrial situations. The Kalman filter has 

been proved to be efficient and reliable for many industrial 

applications. 

The Kalman filtering scheme and its application to the dynamic 

positioning problem has been proposed by the Norwegians (Balchen et aI, 

1976 [llJ, [1:U). Balchen r s design involves a more complicated and 

computationally inefficient form of filter ~n which some of the 

high-frequency parameters W2re estimated. An alternative solution to 

the linear and non-linear Kalman filtering problems with their 

applications to the dynamic ship positioning problem was proposed and 

used by Grimb Ie Q> lJ ' [49J • The use of the proposed al ternati ve 

solution of Kalman filtering combined with the optimal control 

theory to the dynamic positioning problem was part of a Case 

research study supported by GEC Electrical Projects Limited, Rugby 

10 
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and carried out by a team of researchers. This work on dynamic 

positioning using Kalman filtering was an extension of in depth 

study of general filtering and control problems by Grimble [35J, enJ , 
[36J. The simulations were involved 1n some high-frequency parameter 

estimations to estimate some of the unknown parameters within the 

high-frequency dynamics using an extended Kalman filter [49J. [s2J . 

These estimated parameters are to affect the high-frequency block 

of the system dynamics structure which varies in accordance with 

the weather and sea conditions (Beaufort 9 for the worst sea condition 

down to Beaufort 5 for calm sea). 

The team research provided a basic design for the dynamic ship 

positioning problem using Kalman filtering techniques based on data 

available from the "l<1impey Sealab" vessel. The author produced a 

complete design for the implementation of Kalman filtering and 

optimal stochastic control with its applications to the dynamic 

positioning problem based on data from the new "Star Hercules" 

vessel. This vessel has already been commissioned by GEC Electrical 

Projects Limited, Rugby. The author has also contributed to an 

original idea in which a special form of extended Kalman filter has 

been used employing the optimal control loop within the low-frequency 

part of the vessel dynamics. This form of non-linear control 

caters for the non-linearities within the low-frequency dynamics and 

deals specifically in detail with the non-linearity of the thruster 

devices which form part ,of the low-frequency dynamic structure 

(Chapter 7). 
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1.4 Thesis Layout 

In the previous sections of Chapter 1, the overall dynamic vessel 

positioning problem has been introduced and its usefulness for 

exploitation processes and other industrial applications were outlined. 

An introduction for the use of Notch or Kalman filtering techniques 

within the dynamic positioning control loop were finally drawn in 

Sections 1.2 and 1.3 respectively. 

Chapter 2 contains a brief description of the ma~n basic parts of the 

dynamic positioning systems. This will include the overall system 

structure, the systems for measuring the position of the vessels the 

thrust producing devices (for both "Wimpey Sealab" and "Star Hercules" 

vessels) and finally, the general statistics of both the process and 

observation noise. 

Chapter 3 includes the basic linearised mathematical equations 

representing both the low and high frequency motions of the vessel. 

These differential equations have been formulated on the basis of data 

obtained from a set of "tank-tunnel-tests" and carried out by GEC 

Electrical Projects Limited, Rugby. These data were provided for both 

"Wimpey Sealab" and "Star Hercules" vessels. Finally, system matrices 

were summarised for control and system simulations. 

In Chapter 4, Grimble's approach for the selection of the Q and R 

control weighting matrices has been implemented and used within the 

problem of the dynamic ship positioning. A form of the separation 

theorem has been used and the matrix Riccati equation was solved to 

calculate the optimal feedback gain matrix. Finally, the low-frequency 

dynamics for both "Wimpey Sealab" and "Star Hercules" vessels were 

. simulated for the selection of the optimal Q and R matrices, and hence 

13 



the selection of the optimal ga~n matrix for future design (Chapters 

5, 6). 

Chapter 5 contains the maln design results for a complete implementation 

and installation of the dynamic positioning system on both "Wimpey 

Sealab" and "Star Hercules" vessels using linear Kalman filtering and 

stochastic optimal control techniques. This chapter has been extended 

to include tests and investigations into the reliability and 

robustness of the Kalman filter algorithm and its application to the 

dynamic ship positioning problem. 

In Chapter 6 the reliability and goodness of the Kalman filter and its 

application to the dynamic ship positioning are to be investigated 

and several tests to be carried out to examine the scheme robustness. 

Chapter 7 deals mainly with the case of non-linear filtering and control. 

Non-linearities ln both the high-frequency and low-frequency dynamics 

of the system were studied and an extended Kalman filter has been used. 

Finally, in Chapter 8, all the design procedures and results were 

concluded, together with some future work recommendations. 

14 
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CHAPTER 2 

MAIN PARTS OF THE DYNAMIC SHIP POSITIONING SYSTE~S 

2.1 Introduction 

The design of on-line computer control of a vessel position and 

heading under dynamic positioning control depends on certain criteria. 

These must be satisfied by the vessel and its control system in order 

to perform its mission (drilling, diving, fire fighting, etc), in the 

environmental conditions in the area where the vessel will operate 

and on the expected behaviour of the vessel under these environmental 

conditions. In dynamic positioning only the vessel motion in the 

horizontal plane (surge, sway and yaw) are controlled, where the ship 

will be regarded as a rigid body. The vessel motions induced by the 

waves are oscillatory motions with frequencies equal to the wave 

frequencies. At the same time the vessel drift from its original 

position is due to forces induced by the wind and the current. The 

vessel motion is assumed to consist of a low-frequency component and a 

high-frequency component. To keep the vessel motions, induced by the 

external forces, within the required allowable limits, the vessel lS 

fitted with a set of thrusters (Section 2.2). Considering the 

requirements and environmental conditions, it may be stated that the 

control system should be designed to accept the relatively high-frequency 

motions without any counter-act measures, while the low-frequency 

motions should be reduced and controlled on the basis of the required 

accuracy for the different applications within the dynamic positioning 

technique (Table No 2.1). 

As it has been defined,dynamic positioning lS the technique for 

15 
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maintaining the position of a vessel above a reference point on the 

seabed without the use of anchors. This is to be achieved by 

employing a set of active thrusters controlled by a computer. The 

error within the position can be monitored using different kinds of 

measurement techniques. These measurements could be corrupted by noise. 

The main components in the dynamic positioning systems are the thrusters, 

the measurement systems, filter and the computer control (Figures 2.1, 

2.2). System input signals from wind sensor, gyro compass and position 

measurements are fed into the control system and its associated computer 

to produce a command signal to the thrusters for appropriate action. 

This computer control system should be capable of: 

(i) controlling the propulsors for maintaining a reference 

position and heading under specified adverse weather conditions, with 

a maximum allowable radial position error of 3 per cent of water depth 

or 7 metres (whichever is the smaller in case of drilling), or 

controlling the propulsors to maintain the vessel at a constant speed, 

(ii) avoiding high-frequency fluctuations in the thrust demand since 

this may cause unnecessary wear of the propulsors and power consumption, 

(iii) controlling the propulsors for changing the position or heading 

of the ship in case a new reference position or heading is selected. 

In this chapter the thrusters, the measurement systems and the 

associated noise will be considered in detail, while the control system 

and the related filtering are due to be considered later. 

2.2 Thruster Devices 

2.2.1 Introduction 

The dynamic ship positioning system has been defined as the process of 

automatically controlling a ship, or floating platform position and 

heading above a pre-selected fixed position on the seabed by using a 
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set of thrust-producing devices. In a dynamically positioned system 

the forces required to overcome the effects of wind, waves and currents 

are provided by propellers, and the vessel pre-selected position 

can be maintained by the use of a combination of thrusters and the ma~n 

propulsion unit. Numerous types of thrusters are used for the dynamic 

ship positioning problem including plain propellers, ducted propellers 

and cycloidal propellers [73J, (Figure 2.3). When thrusters or 

propellers are operated on a dynamic positioning vessel, the force and 

moment produced on the hull are not only due to the thrust devices 

since interactions arise due to pressure changes on the hull, and these 

should be taken into consideration in some cases. 

The principal types of thrust-producing units are: 

(i) screw propellers or thrusters, 

(ii) cycloidal propellers (Voith Schneider units), 

(iii) pump type thrusters, 

(iv) transverse tunnel thrusters, and 

(v) steerable thrusters. 

Figure (2.3) shows the most common configuration being used. The 

thrusters have both dead zone and saturation characteristics (the dead 

zone for "Wimpey Sealab" is approximately 1-2% of the rated value of 

the thrusters [4~). The size of thrusters required is determined by 

the largest magnitude of the steady drift forces and moments. To avoid 

the unnecessary wear and tear on the thrusters the control system should 

not attempt to compensate for the high cyclic vessel motions. 

2.2.2 Thrusters used on "Wimpey Sealab" vessel 

George wimpey and Company Limited have been involved in offshore 

drilling for many years. The dynamic positioning system, Figure 2.2, 

has been developed and included in the "Wimpey Sealab" vessel in 
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November 1972. The vessel (Figure 2.4) was the first British owned 

dynamically positioned drillship, and it has been used for site 

investigation in addition to the drilling activities. "Wimpey Sealab" 

employs retractable a.c. motor driven thrusters with variable pitch 

propellers (Figure 2.5). The vessel has two rotatable bow and two 

o rotatable stern thrusters (capable of 360 rotation and each rated at 

12.5 tonnes). The basic configurations of the thrusters are fully 

rotatable outboard propellers. Data from "Wimpey Sealab" were used 

as the basic information for the implementation of the dynamic 

positionin~ technique throughout this work (Chapter 3). 

2.2.3 Thrusters used on "Star Hercules" vessel 

"Star Hercules" vessel (Figure 2.6) ~s the other vessel to be 

considered in this work. Data from the "Star Hercules" have been 

obtained and used for design and simulation implementations. 

The control thrust for the "Star Hercules" is provided by the ma~n 

eng~ne and by two forward and one aft tunnel thrusters. Thruster 

locations used on "Star Hercules" are shown in Figure 2.7 and have the 

following specifications: 

The thrust Maximum thrust Thruster lever arms relative 
producing device (tonne force) to centre of gravity 

Main Engine 28 (FWD) -
19 (REV) -

FWD. FWD Thrusters 5.1 31.03 metres 

AFT. FWD Thrusters 9.1 28.62 metres 

AFT. Thrusters 5.1 28.62 metres 
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2.2.4 Thrusters applied forces 

The fore and aft thrusters on "Wimpey Sealab" act at angles CPl and ¢2 

relative to the vessels coordinates respectively (Figure 2.5). Let the 

thrusters forces be fl and f2 respectively for the fore and aft 

thrusters. Then the thrusters force in the surge direction is: 

f 1 cos ¢ 1 + f 2 cos ¢ 2 • . . • . • • . . • • . • •• (2. n 

the total force in the sway direction ~s: 

fl sin CPl + f2 s~n ¢2 .•..•••...•.••• (2.2) 

and the total force ~n the yaw direction ~s: 

where .Q,1 = .Q,2 = 10 metres ("Wimpey Sealab"). Hence, the per-unit 

equations in a matrix form (Appendix 1) will be: 

surge force cos ¢1 cos ¢2 

I f~ J sway force = sin CPl s~n ¢2 ........ 
L f~ .Q,1 .Q,2 

yaw force 
9,b 

Sl.n ¢l - ~ sin ¢2 

where: 

f~, f; are the per-unit values of f
1

, f2 respectively • 

.Q, is the per-unit base length = 30 metres 
b 

.Q, .Q, 2 .Q, 1 .Q, 2 1 
o < .Q,~ < 1, 0 < .Q,b < 1 and ~ = ~ = 3 

(2.4) 

The matrix ln equation (2.4) can be written ~n appropriate notation as: 

Yll Y 12 cos ¢1 cos ¢2 

Y Y21 Y22 s~n ¢l s~n ¢2 ............ (2.5) = -

Y31 Y 32 
.Q,1 

<PI -~ sin¢ 
9,b 

s~n Q
b 

2 
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2.3 Position and Heading Measurement Systems 

Dynamic positioning system ~s basically the technique in which control 

signals can be applied to propellers and thrusters for specific action 

based on information concerning position and heading deviations from 

the pre-determined limits. In recent years the need for dynamic 

positioning has been increased by the problems associated with oil 

exploration and production. With these applications, accuracy will be 

one of the main requirements. Accuracy within dynamic positioning 

systems depends to some extent upon the reliability and availability 

of the information regarding position, heading and different wind and 

environmental forces as measured and fed into the system. 

System inputs (Figure 2.2) could come from: 

(i) wind sensor, measuring the wind speed and diF~ction, 

(ii) gyro compass, for heading measurements, 

(iii) position measurements, which could be provided by one or more 

of the following techniques: 

(a) hydroacoustic systems (with 122-305 m ideal depth of operation) 

(b) radionavigation systems, and 

(c) taut wire systems. 

Due to the demand for accuracy within the dynamic positioning systems, 

the most commonly used technique for measuring the position (Figure 

2.8) is based on an acoustic system where a beacon is deployed on the 

seabed and designed to transmit signals at a frequency around 20 KHz 

[15J at specific time intervals. The pulses transmitted by the beacon 

are received at an array of hydrophones fitted at the hull underneath 

the vessel, and the position of the vessel relative to the beacon is 

computed from the time differences in receiving the signal. These 
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position calculations are carried out by the on-board computer on the 

basis of the following formula: 

y = D tan (sin- 1 vct) ~ 
d 

where: 

Dvot 
d 

y the displacement of the vessel 

............. (2.6) 

ot the difference in the time of arrival of the pulses 

at two of the hydrophones set 

v the velocity of sound in water 

D the water depth 

d the separation between the two hydrophones 

The great disadvantage with this technique in providing position 

reference deviations are the sensitivity to acoustic noise and air 

bubbles in the signal transmission line [16J. In addition to the accuracy 

requirement of the measurements, reliability and repeatability are also 

required. With the hydroacoustic system in operation alone, blocking 

of measurements in 20-40 per cent of the operation time may occur. To 

avoid the loss of the measurement signal, and to 1mprove the 

reliability of the measurement systems, various back up systems can be 

used. The most commonly used system is the taut W1re system shown in 

Figure 2.9, which consists of a sinker weight, wire, tensioning winch 

and inclinometer. The wire is maintained in tension by means of the 

constant-tension winch, which is also used to raise and lower the sinker' 

weight when required. The measurement inaccuracy within the taut W1re 

system may arise from the effect of the sea currents and the catenary 

effect on the wire due to its weight. Measurement systems developed by 

GEe and installed on "Wimpey Sealab" are to consist of one beacon and 

two sets of hydrophones using the computer to calculate the vessel 

position. These acoustic position measurement systems are backed by the 
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taut w1re measur1ng system shown 1n Figure 2.10. The vessel heading 

measurements are obtained by the ship gyro compass. 

As to the applications of dynamic ship positioning, considered 1n this 

work, the vessel position accuracy is about ±3 per cent of the water 

depth of 200 metres and ±2 per cent in 500 metres of water depth. The 

vessel positional accuracy can be defined by the following expreSS10n: 

Radial Error = el.d + W/2 + e2 . . . . . . . . .. (2. 7) 

where: 

e 1 1S the per unit error of the position measurement system 

d 1S the water depth 

W 1S the peak to peak wave motion 

e 2 1S the accuracy of the control loop 

2.4 Process and Measurement Noise Analysis 

The vessel motions under dynamic positioning control are assumed to 

consist of low and high frequency components. Our main concern in 

this section is the low-frequency part of the motions, which are 

assumed to be due to the current, wind and the second order wave 

forces (Section 3.2). The mean wind forcing level and the sea current 

speed and direction are all normally assumed constant over a period of 

time and up to several hours [74J. Like all environmental phenomena, 

wind has a stochastic nature which greatly depends on time and location. 

To compensate for such uncertain forces, the low-frequency part of the 

system dynamic is excited by random variables. These random variables 

are modelled as stationary zero mean and Gaussian white n01se sequences. 

Stationarity of these sequences [87J can be pictured as the absence of 

any drift in the ensemble of realisations as time proceeds. 
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Mathematically, this means that the probability distribution and 

density functions are unchanged over some specific period of 

time. 

The wind forces are often the most important disturbance acting on the 

vessel. Wind feedforward control is often used to counteract the 

effect of steady wind (Figure 1.1) and hence, it will be assumed that 

the vessel positioning will be affected by a white component of \vind 

only. The noise analysis can be extended to include the study of both 

process and observation noise, which in turn affect the system 

estimation for them causing the plant uncertainties. 

2.4.1 The Process Noise 

The process nOlse will be considered here in terms of their covarlance 

matrices. The continuous or discrete time nOlse covarlance matrices 

are related by the step length of the system simulations time interval 

(6t), and hence the discrete process covariance matrix will be: 

= Q 
At ................ (2.8) 

where 6t is the step length time interval = 0.1 and QD is the discrete 

form of Q. The process covarlance matrix (Q) is assumed to consist of 

a Q submatrix corresponding to the low-frequency part of the system 
~ 

dynamics, and a Qh submatrix corresponding to the high-frequency part 

of the dynamics. 

The high-frequency submatrix in Q is determined by the least squares 

fitting procedure [34J and assumed to be unity (i.e. Qh = I). 

The low-frequency part of the system dynamics has a Q£ matrix 

determined by the mean wind forcing level (in per-unit, see Appendix 1). 

33 



Hence, per-unit sway force = 126.8/55620 = 0.00228, and per-unit yaw 

torque = 1636/(55620 x 94.5) = 0.00031. Thus, for two degrees of 

freedom in sway and yaw, the low-frequency part of Q-matrix will be: 

= [(0.00228)2 

0.0 

0.0 J 
(0.00031)2 

2.4.2 The Observation Noise 

The observation or measurement nOlse and their related covariances 

will be exa~ned here. The position measuring systems are always 

contaminated by superimposed noise and assumed to have a standard 

deviation cr = 1/3 metre. The per-unit position measurement noise 

covariance (Appendix 1) therefore will become: 

0' (sway) = 0.0033 and (0')2 
-4 

= 0.1 x 10 

The yaw angle standard deviation is assumed to be one degree, and 

hence 

-4 
~ ... and ( ~ .... ) 2 4 10 o~ (yaw) = 0.02 radlans ln per-unlt u = X 

34 



CHAPTER (3) 



CHAPTER 3 

THE SHIP MOTION 

3.1 Introduction 

The motion of a ship induced by the waves ~s an oscillatory motion with 

frequencies equal to the wave frequencies ~8J. At the same time the 

ship drifts off from its original position ~n the wave direction. 

Drift of the ship is also induced by the external environmental 

forces of wind and current. The current speed and direction may be 

constant over some period of time. Current speed and direction changes 

could occur but these changes are slow compared with fluctuations of 

wind speed and direction. The wind may be treated as a random Gaussian 

process (white Gaussian noise throughout the modelling and simulation). 

The ship motion is also induced by the wave forces which consist of a 

small drift second-order component and a very large first-order 

oscillatory component. 

Depending on the type of the external acting forces the ship motion [3J 

is assumed to consist of a low-frequency component and a high-frequency 

component. The combined motion of the vessel due to both low and high 

frequency components [12J is indicated in Figure 3.1. The low-frequency 

motion in the range of 0.0 

assumed to be induced by: 

0.04 Hz (which is 0.0 - 0.251 rad/sec) is 

(i) forces generated by the thrusters and propellers, 

(ii) hydrodynamic and interaction forces due to the ship motion 

relative to the water [25J, 

(iii) wind forces, 

(iv) induced second-order wave forces. 
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The low-frequency motion will be the combination of the applied forces 

due to the thrust devices and due to the wind and waves. So that for 

one degree of freedom: 

Total force = fa + fb ............... (3.1) 

where: 

fa represents the applied forces due to (i), (iii) and (iv) above. 

fb represents the hydrodynamic forces in (ii) above. 

The high-frequency motions in the range 0.05 - 0.25 Hz (equivalent to 

0.314 - 1.57 rad/sec depending on the actual sea spectrum) are assumed 

to be due to the first-order wave motions. These motions are of a very 

large level and cause the oscillatory Motions of the vessel. These 

motions cannot be effectively counteracted because of the limited thrust 

of the propulsors. The basic assumption for the development of models 

of the vessel to correspond to the high-frequency motion is that the 

sea state is known and can be described by a spectral density function. 

The high-frequency wave motions are normally modelled using the 

Pierson-Moskowitz sea spectrum [5lJ. 

In the worst case the vessel motions are simply the pierson-Moskm.,itz 

excitation since the vessel dynamics filter the sea wave spectrum. 

In dynamic positioning,only the vessel motions ln the horizontal plane 

(surge, sway and yaw) are controlled. Heave, roll and pitch motions 

(Figure 3. 2a) are neglected. All motions will be referred to the body 

axes of the vessel (Figure 3.2b). 

Surge motion has only a minor effect upon the directional stability of 

the ship. Sway motion mainly occurs due to the imbalance of 'vind and 

tidal forces acting upon the vessel. Yawing is induced by or.bital 
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motions of the water 1n the wave [73J. There 1S differential static 

pressure on the hull because of the shape and the gyroscopic couple due 

to the imposition of rolling motion on the pitching ship. Sway and yaw 

motions are normally associated with each other. To simplify the 

situation, the equations of motion of the vessel 1n sway and yaw only 

will be considered. This is possible because the linearised equations 

of motion indicate that surge motion can be assumed decoupled from the 

sway and yaw motions, and hence it can be considered and controlled 

separately. 

3.2 Low-Frequency Dynamics 

3.2.1 Introduction 

A study of the dynamic positioning control of a vessel at sea requires 

the formulation of a set of equations which describe its dynamic 

behaviour under the forces imposed on it by the environment of wind, 

waves and current flow as well as by its own thrust producing devices 

G0{J[7]. These equations of motion which represent the vessel dynamics 

are assumed to involve a complex multiplicity of coefficients for 

reasonable accuracy and good modelling to be achieved. Such equations 

will be regarded as the basis of the whole mode1ling and simulation 

involving the position control scheme of the vessel. However, the need 

is apparent for a simplification of the set of equations which glve a 

more realistic feel of the vessel dynamics. 

For an efficient control scheme uS1ng Kalman filterin~a good 

mathematical model of the vessel dynamic 1S required. The reason for 

this is that the Kalman filter uses the model dynamics, together with 

some knowledge of the noise statistics, to generate the unbiased 

estimates of the system states. This assumption will introduce the need 

for some reasonable means of linearisation based on common practice, 
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and at the same time provide reasonable representation, good accuracy 

and simplicity. 

The low-frequency part of the vessel dynamics should describe: 

(i) the wind and wave forces, 

(ii) the part of the vessel dynamic to be controlled, 

(iii) the thruster dynamics, and 

(iv) the interaction between the thrusters devices and the vessel 

dynamics. 

The dynamic ship positioning system controls the low-frequency part of 

the ship motion In surge, sway and yaw. Treating the ship as a rigid 

body [104J having freedom of movement In surge, sway and yaw, but 

restricted In heave, pitch and roll. These movements are taken with 

respect to the body axes (Figure 3.2b). The vessel dynamics are 

represented by a set of non-linear differential equations, then 

linearisation procedure has to be applied to these equations for control 

purpose. The linearised form of the ship equations have the following 

differential state equation form: 

.......... (3.2) 

where: 

x£,(t) E: R9 are the system state vectors 

u£,(t) E: R3 are the control inputs to the thrusters 

w£,(t) E: R3 are white noise signals representing the random 

forces applied to the vessel 

n£,(t) E: R3 are the wind disturbance forces 

A£, 1.S the system matrix 

B£, 
. the input matrix 1.S 

D£, and E£, are the n01.se matrices. 
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Different parameters and coefficients of equation (3.2) above have been 

obtained from a set of tank and wind tunnel tests, carried out by the 

National Physical Laboratory on two different models, namely "Wimpey 

Sealab" and "Star Hercules". The obtained non-linear set of equations 

have to be linearised, time-scaled and converted into per-unit form, 

before it can be used in the control loop. Originally, these dynamic 

equations were provided by GEe Electrical Projects Limited, Rugby, and 

derived from first principles of ~ewton's laws of motion. 

3.2.2 Derivation of the Low-Frequency Dynamics 

The body axes are chosen to be the principle axes of the vessel for 

the derivation of the dynamic equations with its origin located at the 

centre of gravity (Figure 3.2b). For the position control of a vessel, 

interest is directly concerned with the motions in the horizontal plane 

of surge, sway and yaw (Figure 3.2a). 

Regarding the vessel as a rigid body having freedom in surge, sway and 

yaw, but restricted in heave, roll and pitch, the equations of motion 

can simply; be represented by [104J : 

x = m(u - rv) · ......... (3.3) 

Y = m(v + ru) · ......... (3.4) 

N = Izzr · ......... (3.5) 

The forces and moment acting on the vessel in equations (3.3) to (3.5), 

x, Y and N respectively can be considered as a sum of two components as 

shown in the following equations: 

XA + XH = m(u - rv) · ......... (3.6) 

YA + YH = m(v + ru) · ......... (3.7) 

NH I • (3.8) 
NA + = r · ......... 

zz 
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where XA, YA and NA represent the applied forces and moment due to 

the thrust-producing devices, and to the environment of wind and 

second-order wave drifts. 

XH, YH and NH represent the hydrodynamic forces and moment due to 

relative motion between the vessel and the water. To determine the 

equations of motion, expressions for XH, YH and NH are required, 

appropriate to a vessel making small movements about a fixed reference 

position. 

XH, YH and NH are assumed to be a function of the velocities and 

accelerations (u, v, r, U, v and r). It is assumed that the velocity 

and acceleration dependent forces can be separated. Acceleration 

dependent forces, referred to as added masses and added irtertia are 

X., Y. and N., which depend on the nature of the body motion and flow 
u v r 

pattern. 

m mass of the vessel. 

I : radius of gyration. 
zz 

The above equations in (3.6) to (3.8) can now be written as: 

XA + X. · Y.rv + ~(u,v,r) = m(u rv) (3.9) u - · . . . . . . . . 
u v 

YA 
+ Y. · + X.ru + YH(u,v,r) = m(v + ru) (3.10) v · ....... 

v u 

· + NH(u,v,r) I 
. (3.11) 

NA + N. r = r · ....... 
r zz 

Equations (3.9) to (3.11) can be rearranged into the following form: 

(m X. )u (m Y. )rv = XA + ~(u,v,r) · . . . . . . . (3.12) 
u v 

(m y.)v + (m X. )ru = YA 
+ YH(u,v,r) · ....... (3.13) 

v u 

(Izz 
- N.)i- = NA + NH(u,v,r) · ....... (3.14) 

r 

These non-linear equations can be dimensioned uSing the appropriate base 

units, based on the specifications and dimension of the vessel under 
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consideration. The per-unit variables are shown by using a primed 

symbol, and are obtained using the following base units: 

... u u = 
ILppg 

. .... u u = g 
, 

r= X 
mg , 

t' = ~=t== 
App/g 

, 

where: 

... v v = 
Ii Ppg 

. .... v v = 
g 

y'" =:£. 
mg 

K'" 
zz 

, 

... r r = 
Ig/Lpp 

. .... r r = 
g/Lpp 

N'" N = mgL pp 

Lpp ~s the length between the perpendiculars 

g is the gravitational acceleration (= 9.81 m/sec 2 ) 

Kzz is the radius of gyration in yaw (= 0.243) 

The above per-unit system formulas are valid for a vessel with small 

fixed displacement, which is the case of the dynamic positioning 

problem. 

Ii " 
3.2.3 Low-Frequency Equations for Wimpey Sealab Vessel 

There are a variety of methods by which an estimation of the different 

coefficients in equations (3.12) to (3.14) can be achieved~ These 

methods are mainly based on experimental results on a model of the 

vessel in tank tests, or on a theoretical basis using prev~ous 

experimental evidence. An estimation of the coefficients for the drill 

ship "Wimpey Sealab" is obtained by a combination of results from tank 

tests and theory, performed at the National Physical Laboratory~04J. 

After reference to the base unit details of "Wimpey Sealab" in Appendix 

1, the set of non-linear equations (3.12) to (3.14) can be expressed as: 
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(1 + 0.044)u' - (1 + 0.84)r'v' = 

- 0.138u'" U ... 

(1 + 0.84)v'" + (1 + 0.044)r"'u' = y~ - 2.58v"'U' 

- 1.84(v"')3/U'" + 0.068r'lr'l 

«K~Z)2 + 0.0431)i' = N~ - 0.764u'v' + 0.258v'U' 

. ........... (3.15) 

............ (3.16 ) 

- 0.162r'lr'l ( •........... 3.17) 

where: 

u' - modulus of the vessel velocity (surge and sway) = l(u')2 + (v i. 

The prlme lS used to denote the per-unit variable. Equations (3.15) to 

(3.17) above represent the vessel motions in surge, sway and yaw with 

respect to the vessel axes. 

For the dynamic ship positioning system, the vessel deviations from its 

reference position are assumed relatively small, and hence a reasonable 

1inearisation process can be applied to get a form of linear state 

equations for simulation and control. Previous experience with Notch 

filter designs [5lJ, [99J suggests that a linear low-frequency model 

can be good enough for the design and control of the dynamic ship 

positioning system uslng a Kalman filtering scheme. The linear state 

equations can be obtained using Taylor expansions [65J and some useful 

approximation to the non-linear dynamics [104J. However, a number of 

1inearised models could be obtained for different sea current and state 

of environment. The following linearised dynamics have been used which 

cor~espond to a Beaufort number 8 sea state with a mean wind velocity 

of 19 m/sec: 

1.044u' = X~ - 0.01593u' 

1.84v' = y' - 0.1004v' + 0.00298lr' 
A 

0.1022f' = N~ - 0.007l01r' + 0.005859v' 
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As a result of the little interaction between the surge and the sway 

and yaw motions within the above equations, simulation and control will 

be applied initially using the sway and yaw motions only and described 

by equations (3.19) and (3.20). Surge motion then can be simulated 

separately. 

The low-frequency model for sway and yaw motions 1S to include the 

velocity, position and heading of the sway and yaw, as well as to 

represent the thruster dynamics. The thrusters have been modelled by 

simple first order lag terms with two seconds time constant real 

time. Referring to Section 2.2, Section 2.4 and Figure 3.3, the overall 

low-frequency dynamics for "Wimpey Sealab" can be represented by the 

following state space equation and its related details: 

........•. (3.21) 

where: 

xQ,(t) E: R6 1S the system state vectors 1n which, 

Xl(t) - sway velocity 

X2(t) - sway position --

X3 (t) - angular velocity 

X4(t) - yaw heading --

X5(t), X6(t) = thruster outputs 

~Q,(t) E: R2 are the control inputs 

( ) E: R2 and n (t) E: R2 are process and disturbance nOlse. WQ, t _Q, 
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With: 

a 11 0.0 a 13 0.0 YI BI Y2 B
l 

0.0 0.0 

1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

a 31 

A~ = 
0.0 

0.0 a33 0.0 Y3 B2 Y ItB2 0.0 0.0 
B,Q, = 

0.0 1.0 0.0 0.0 0.0 
, 

0.0 0.0 

0.0 0.0 0.0 0.0 -b 1 0.0 bl 0.0 

0.0 0.0 0.0 0.0 0.0 -b 
2 0.0 b2 

DT [ 8, = ,Q, 
0.0 

0.0 0.0 0.0 I 
0.0 ....J 

0.0 0.0 

0.0 0.0 0.0 

0.0 0.0 0.0 ] 

0.0 

0.0 

0.0 0.0 0.0 

The low-frequency components of the position and heading ~s given by: 

y,Q, = [:: ] = C~,Q, 0.22) ........... 

where: 

= [0.0 1.0 0.0 0.0 0.0 0.0 J 
C,Q, 

0.0 0.0 0.0 1.0 0.0 0.0 

Substituting for the above different variables ~n terms of the respective 

approximated and calculated values, the following system matrices can be 

obtained: 

-0.0546 0.0 0.0016 0.0 0.5435 0.272 

1.0 0.0 0.0 0.0 . 0.0 0.0 

0.0573 0.0 -0.0695 0.0 3.268 -1.634 

A~ = ... (3.23) 
0.0 0.0 1.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 -1.55 0.0 

0.0 0.0 0.0 0.0 0.0 -1.55 
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[ 0.0 0.0 0.0 0.0 1.55 0.0 ] B£ = (3.24) · .... 
0.0 0.0 0.0 0.0 0.0 1.55 

[ 0.5435 0.0 0.0 0.0 0.0 0.0 ] D£ = (3.25 ) · .... 
0.0 0.0 9.785 0.0 0.0 0.0 

[ 0.384 0.0 0.0 0.0 0.0 0.0 ] E£ = (3.26 ) · .... 
0.0 0.0 6.92 0.0 0.0 0.0 

The above linearised equations have been time-scaled wi th 3. 104 as the 

time normalisation factor for "Wimpey Sealab" vessel (Appendix ]). 

3.2.4 Low-Frequency Dynamics of "Star Hercules" Vessel 

Using the step by step procedures outlined in Section 3.2.3 above, the 

linearised equations of motion for the three degrees of freedom, 

(surge, sway and yaw), based on per-unit data from the "Star Hercules" 

(Appendix 1) are: 

1.033u' X' - 0.01088u 
, 

(3.27) = · .......... 
A 

1.709v-' y' - 0.03307v 
, 

+ 0.0022lr 
, (3.28) = · .......... 

A 

0.1042r' = N' - 0.003272r 
, 

+ 0.004344v 
, (3.29) 

A 
· .......... 

Taking a time normalisation factor of 2.728 and considering sway and 

yaw motions for simulation and control, different elements of the system 

matrix will be: 

a 11 = -0.03307/1. 709 = -0.01935 per-unit 

al3 = 0.002210/1. 709 = 0.00129 

alS = 1.0/1. 709 = 0.585 

a 31 = 0.004344/0.1042 =0.04168 

a 3 3 = -0.003272/0.1042 = -0.0314 

a36 = 1.0/0.1042 = 9.596 
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ass = a 66 = -1.364 

Therefore the A-B-C matrices building up the low-frequency dynamics 

for "Star Hercules" will be: 

-0.01935 0.0 0.00129 0.0 0.585 0.0 

1.0 0.0 0.0 0.0 0.0 0.0 

0.04168 0.0 -0.0314 0.0 0.0 9.596 
A~ = (3.30) 

0.0 · .. 
0.0 1.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 -1. 364 0.0 

0.0 0.0 0.0 0.0 0.0 -1. 364 

BT [ 0.0 0.0 0.0 0.0 1. 364 
0.0 J = (3.31) ~ · .. 

0.0 0.0 0.0 0.0 0.0 1.364 

[ 0.0 1.0 0.0 0.0 0.0 0.0 ] C~ = (3.32) · .. 
0.0 0.0 0.0 1.0 0.0 0.0 

3.3 High-Frequency Dynamics 

3.3.1 Introduction 

Section 3.1 outlined a brief introduction to the high-frequency motion 

of the vessel. The high-frequency motions are the linear wave induced 

ship motions, which take place at the wave frequency. A mathematical 

model of the vessel for automatic control system implementation can 

only be made if the characteristics of all its components are known. 

Therefore, the high-frequency motions of the vessel have to be 

determined and fed into the system together with the low-fre~uency part 

of the vessel dynamics. 

The automatic control system must be capable of avoiding high-frequency 

fluctuations since this may cause unnecessary wear of the thruster 

devices. Ba1chen, J G [12J, [llJ modelled the high-frequency part of the 
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~U.l.p UyIIC1m.iCs US.l.ug separate harmonic oscillators ~n each degree of 

freedom (surge, sway and yaw). 

Since the frequency of the wave motion ~s time-variant and unknown, the 

dominant oscillator frequency must be estimated as a parameter in the 

state space equations [49J. For simplicity, all oscillators are assumed 

to be running with the same frequency and that will reduce the cost of 

simulation. The oscillator frequency can be estimated individually 

using an extended Kalman filter. 

As an alternative to the above approach by Balchen, Grimble adopted a 

fundamental assumption for the development of models for the 

high-frequency motion of a vessel, in which the sea state is regarded 

as known and can be described by a spectral density function. An 

internationally accepted sea spectrum is similar to the Pierson-

Moskowitz sea spectrum. The vessel dynamics act as a filter on the 

sea spectrum for different Beaufort sea states [17J. The worst case 

high-frequency motion of the vessel ~s determined by the Pierson-

Moskowitz spectrum alone. Grimble's approach for estimating the 

unknown parameters within the high-frequency dynamics using extended 

Kalman filters will be considered in Chapter 7. 

3.3.2 Development of the High-Frequency Model 

The internationally accepted sea wave spectrum, which is similar to the 

Pierson-Moskowitz spectrum for a stationary wave system can be defined 

by the following sea spectrum: 

where 

a 
S(w) = w 

-b/ 4 
W 

e m~sec 

w is the frequency ~n rad/sec 
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a = 4.894 

hl/3 is the significant wave height in metres, which is defined by 

taking 99 waves, choosing the 33 largest waves and then calculating 

the mean of one third of the peak to peak magnitude of these waves. 

The above sea spectrum can be obtained by pass~ng a white no~se source 

into a rational transfer function [49J. Therefore, to fit the sea 

spectrum Sew) above, consider: 

~n which A ~s the white nOlse amplitude. 
o 

For a unit magnitude white no~se, 

where: 

KS2 
G(s) = ---------------------------------

(s2 + GIs + W~)(S2 + 0
2

S + 

.................. (3.34) 

................... (3.35) 

................. (3.36) 

In which 01' 02' WI' W2 and K are constants for a given sea spectruM, and 

given ~n Appendix 2. These constants can be determined by minimising 

the integral of the squared error criterion: 

(S(w) - S (W))2 dw 
o .....•........... (3.37) 

over a range of frequency from zero to wm. The worst case 

high-frequency dynamic of a vessel can be represented by a white nOlse 

source input to the above transfer function G(s) in each degree of 

freedom. The state space representation of the high-frequency dynamic 

of the vessel in sway and yaw motions can be expressed in a companion 

. form as: 
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.-...t. 

. 
~=t\~+D~ 

where: 

~(t) S R~ for each degree of freedom, 

_ [~W 
t\ - 0.0 

0.0 ] 

~a 

0.0 ] 

D
ya 
h 

•...••..••••• (3.38) 

........ ..... (3.39) 

The above sub-matrl.·ces ~sw and AYa 1n -n -n sway and yaw directions have the 

same structure of: 

where Tb = 3.104 sec for the "Wimpey Sealab" and = 2.728 for the 

"Star Hercules". The parameters ctl' ct 2 ' ct3 and ct 4 are constant for a 

given weather condition and a specific vessel as indicated in Appendix 

2 for both the "Wimpey Sealab" and the "Star Hercules" vessels. The 

values displayed in both tables are to correspond to Beaufort number 5 

(calm sea) to Beaufort number 9 (the worst ,.,eather condition) for 

• the "lV'impey Sealab" and the corresponding Beaufort number 5 and nUI'lber 
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8 for the "Star Hercules" vessel. 

The high-frequency component of the position of the vessel ~s g~ven by 

the following output equation: 

............. (3.41) 

where: 

= [0.0 Ch 0.0 

0.0 1.0 0.0 0.0 0.0 0.0 
0.0 J 

•.•• (3.42) 
0.0 0.0 0.0 0.0 0.0 0.0 1.0 
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C HAP T E R (4) 



CHAPTER 4 

THE STOCHASTIC OPTIMAL CONTROL PROBLEM 

4.1 Introduction 

Optimal control prob1em,have attracted and received a great deal of 

attention during recent years owing to an increasing demand for systems 

of high performance especially for industrial applications. A solution 

to the stochastic control problem [40J, [42J ,[lOJ, [27] is the next step 1n 

applying the optimal control theory to the multi variable industrial 

systems with noisy observations [43J ,[63J ,[90J , [95] . 

The essential components of a control system are: 

(i) the system dynamics of the plant to be controlled, 

(ii) measurement systems, and 

(iii) the controller, which 1S the heart of the control system, which 

compares the measured values to their desired values and adjusts the 

input variables to the plant. 

There are two traditions in control, which may be classified as, 

classical, which is based on a transfer function representation of the 

system, and modern control theor;7 which deals directly with the differential 

equations, representing the system dynamics and often uses optimisation 

theory. Throughout this work the state space differential equations 

procedure will be adopted to implement the controllers. One basic 

difficulty with these optimal controllers is that they are often 

impractical, if not physically impossible to imple~ent. Typically, the 

feedback portion of the optimal control system is a function of all the 

states of the system [85J. This wou]d be satisfactory provided that all the 

. states were accessible [63J, [8J or available for measurerrents. In this case 
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a straightforward solution to the optimal stochastic control problem 

using the system states for direct feedba~control would be extremely 

difficul t. However, [2lJ,[51J,[59J ' since the system is linear or linearised 

(non-linear systems control will be considered in Chapter 7), and the 

measurements are directly or indirectly available then a special form 

of the separation theorem can be used and the optimal stochastic 

controller calculations can be separated (Figure 4.1) into: 

(i) a filter (Kalman filter in our case) to generate the conditional 

mean of the system states, and 

(ii) a solution to the linear optimal control problem us~ng the 

estimated states 1n (i) as true states of the system. 

Hence, the separation theorem as applied to this specific problem can 

be defined as follows: "In linear/linearised systems with quadratic 

error criterion and subjected to Gaussian inputs, the optimal stochastic 

controller is synthesised by combining an optimal estimation (Kalman 

estimator) with a deterministic optimal control". 

In the dynamic ship positioning problem the system is assumed to 

consist of a low-frequency part to be controlled and a high-frequency 

part to be attenuated using the filtering scheme. The dynamic 

positioning control systems use the state estimates corresponding to the 

low-frequency model in the Kalman filter for closed loop feedback control. 

If the filter is working efficiently the control system will only respond 

to the low-frequency position error signal and thus the thruster 

modulation will be minimised. Hence, the purpose of the on-board 

computer [104J is to input error signals of the ship position and ooerate 

on them to output thrust magnitude and direction commands to the thrusters, 

so that ship position and heading are maintained at their fixed 

reference values against the environmental disturbance. Thus, the 
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control system is mainly required to: 

(i) maintain the vessel within the radial position error tolerance 

band (Table 2.1), 

(ii) control the h~ading of the vessel (specially 1n the worst 

weather conditions), and 

(iii) minimise thruster modulation and the consequence of energy 

losses. 

In general, there are some difficulties in applying optimal control to 

multivariable industrial systems. Two problems are of relative 

importance to this work and were investigated in some detail. The first 

is concerned with the implementation of the optimal control algorithms 

(Section 4.2) and the second arises in the selection of the performance 

criterion weighting matrices Q and R (Section 4.3). 

4.2 Control Algorithm 

An optimal control algorithm for the stochastic multi variable system of 

the dynamic positioning problem is summarised in this section. The 

plant linearised state equations may be derived as: 

x(t) = Ax(t) + Bu(t) + Dw(t) 

z(t) = Cx(t) + v(t) 

where: 

.......... (4.1) 

.......... (4.2) 

x(t) £ Rn (n = 6 as system low-frequency states 1n sway and yaw) 

~(t) e: R
m 

(m = 2) 

z(t)£Rr (r = 2) 1S the observations 

v(t), w(t) are the uncorrelated additive measurement and process 

n01se respectively. 

. 1 t emploY1"ng Kalman estimator can be assumed The stochast1c contro stra egy -

• to include two procedures: 
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(i) Obtain the condi tional mean es tim8.te of the low-frequency part 

of the dynamics to be controlled, uS1ng a Kalman filter, and assume the 

estimates as truely representative of the system states for the state 

feedback loop. 

(ii) Calculate the feedback control ga1n matrix by solving the 

deterministic control law [14J, [28J ' [32J, [41J ,"[66J . 

The above assumptions in (i) and (ii) are often feferred to as the 

separation theorem [21J, which involves two separate problems of 

estimation and control (Figure 4.2) to solve the optimal stochastic 

control (Section 4.1). 

In solving the above optimal control problem, some rules or measures 

need to be specified subj ect to certain 'constraints in order to minimise 

the deviations of the system behaviour from the ideal pre-selected ones. 

Such measures are usually provided by the optimisation of the performance 

criterion (index). The performance criterion is important because, to 

a large degree it determines the nature of the resulting optimal control 

through its cost weighting matrices Q, R. Details of the selection 

procedure of both Q and R are considered in Section (4.3). 

The steady state performance criterion to be minimised may be defined as: 

J(u) = limit 
T-+oo 

1 
2T 

T T T 
E {J x (t).Q.x(t) + u (t).R.u(t)dt} .... (4.3) 

-T 

where Q ~ 0 and R > 0 are the positive semi-definite and positive 

definite weighting matrices respectively, while xT(t) is the transpose 

of x(t). From the above separation principle, the optimal control 

signal can be found as: 

c-" = -K x(t) .•.•..... (4.4) 

. where x(t) are the best current conditional mean estimates of the system 
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c 
states x(t), and K ~s the optimal feedback gain matrix. 

In dynamic ship positioning,control is not needed for the high-frequency 

subsystem, and hence the overall gain matrix of the feedback control 

loop will have the following form: 

oJ 

and the corresponding control signal will be: 

o J r XQ, (t) J 
l ~ (t) 

.............. (4.5) 

.............. (4.6) 

where ~(t) are the high-frequency system state estimates. The ga~n 
. cQ, 

matr~x K may now be calculated by solving the steady state Riccati 

equation [70J: 

.............. (4.7) 

and 

.............. (4.8) 

Subscript (Q,) ~s used to refer to the low-frequency subsystem, while 

subscript (00) denotes the steady state solution of the matrix Riccati 

equation. AQ, and BQ, o'f equation (4.7) are the low-frequency plant 

system and input matrices respectively. PQ,oo is the steady state 

solution of the matrix Riccati equation corresponding to the 

low-frequency part of the system dynamics to be controlled. 

The solution of the above Riccati equation can be obtained by a number 

of methods [14),[62J,[77J,[81J. The solution to the stead;' state or al':?;ebraic 

matrix Riccati equation used throughout this work is an extension to the 

work done by Grimble and Patton [49J and it has been using the 

eigenvector method of MacFarlane (1963) [70J. The method used ~s to 
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form the 2n x 2n matrix of: 

•.•.••.•... (4.9) 

where n = 6 (the system dimension of the low-frequency part of the ship 

dynamics for sway and yaw motions). Now, compute eigenvalues and 

eigenvectors of the above matrix (W). The eigenvalues of this matrix 

are symmetrically disposed in the complex plane, and if the eigenvectors 

corresponding to the most stable eigenvalues with negative real parts 

are found, then the following (2n x n) eigenvectors matrix can be 

written as: 

then the Ptoo - matrix can be found as: 

-1 

Pioo = -U2.Ul 

•••••••••••. (4.10) 

••••.••••..• (4.11) 

where Ptoo is the solution of the steady state matrix Riccati equation. 

Th f db k · . (c £) b d' . e ee ac ga~n matr~x K can now e compute us~ng equat~on 

(4.8) • 

4.3 Selection of the Performance Criterion Weighting Matrices 

One of the ma~n criticisms ~n dealing with the design of optimal 

controllers for industrial applications is concerned with the selection 

of the performance criterion weighting matrices Q and R. For some time 

there has been no neat method of selecting a suitable value for the Q 

and R weighting matrices and thus the designer must resort to trial and 

error procedures to achieve reasonable values of Q, R for improved 

performance of the system responses. An investigation and simulation 

work have been carried out [2J to help with the selec.tion of the 
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weighting matrices Q, R for the control loop as applied to the dynamic 

ship positioning problem. These investigations were based on recent 

techniques developed by Grimble [39], [38J on the design of an optimal 

controller using multivariable root loci. The author contributed to 

the computer implementation of the technique and the applications of 

the technique to the dynamic ship positioning problem. Expressions 

are obtained below from which the performance criterion weighting 

matrices Q and R may be calculated. 

Consider the optimal output regulating problem [39J,[7ZJ as applied to the 

following linear multi variable system: 

x(t) = Ax(t) + Bu(t) ................ (4.12) 

yet) = Cx(t) ................ (4.13) 

with 

x(t) E Rn 

u(t) E RID 

yet) E Rm 

and the system (A,B,C) is assumed to be square, S1nce additional plant 

outputs may be defined 1n (4.13) to square up the system. This action 

only affects the following performance criterion: 

....... ..... (4.14) 

for zero cross-products matrix (i.e. no interaction between the input 

and t e output 0 t e sys em • h f h t) Qy and Ry are the weighting matrices 

for the output regulator control loop [68J. Nm~ a straightforward conversion 

can be performed on equation (4.14) to obtain the energy weighting Q, R 

for the state (estimated state) feedback control as applied to our 

dynamic positioning problem (R values will be as those of Ry). 
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yet) = Cx(t) ................ (4.15) 

Substitute (4.15) in (4.14) with yT(t) = CTxT(t) and derive the weighting 

Q-matrix for the state feedback control case as: 

T 
Q = C QyC .............. .. (4.16) 

Hence the values of Q and R matrices can be selected on the same 

principle as in Grimble [39J, with the necessary above conversion for 

the state feedback loop. 

Q = «CBN)T)-l(CBN)-1 ................ (4.17) 

R = (N T ) - 1 11.00 N - 1 
(4.18) ................ 

where: 

N = [v7 ' v~ , .... ~ ] 

and 00 00 the set of the system eigenvectors. ~1' v 2' ... are 

11.
00 

11 diag{( ~)2 ( ~ )2 ( ~ )2 } - Al 
, 

A~ 
, ... , 

and A. (i = 1, 
~ 

2, ••• , m) are the system eigenvalues. 

The above express~ons of equations (4.17) and (4.18) were derived for 

the case when CB is full rank, i.e., 

rank (CB) = m or .......... ........ (4.19) 

The case when CB is not full rank will be considered now as applied to 

the example of the dynamic positioning problem using the dynamics of the 

"Wimpey Sealab" vessel [3J, [2J. In applying the above technique to this 

example (Section 3.2.3), the following have to be noted. The first Markov 

parameter (CiBi ) is not full rank, the second Markov parameter (CiA£Bi ) 

~s not full rank either, but the third Markov parameter (C£A~B£) is full 
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rank, and thence 

= [0.84243 

5.0654 

0.42l6J 

-2.5327 

where At, Bt , Ct are the low-frequency part of the ship system, input 

and output matrices based on data from the "Wimpey Sealab" vessel 

(Section 3.2.3). 

Expressions for Q and R from equations (4.17) and (4.18) can be 

repeated to obtain: 

2 T -1 2 -1 
Q = «CtAtBtN)) (CtAtB£N) 

R = P [(NT) - 1 .1\:. N - IJ 
(4.20) 

(4.21) 

where f is a positive real scalar which affects the values of the control 

energy R-weighting matrix to shape the system responses. 

- diag{~oo 6, ___ 1 __ 6' 
(AI) (Ae;) 

... , 1 
(A:) 6 } 

In a more general case where the first (k) Markov parameters are zero 

I 
k-l I k (ICBI= 0, ICABI = 0, .•• , CA B =0), and (CA B) is full rank, the 

expresslons of equations (4.20) and (4.21) become: 

............ 

where 

AOO = (_l)k diag{( ~ )2(k+l), 
-K+l Al 

( ..l ) 2 (k+ 1) } ... , A: 
Using equations (4.20) and (4.21) above for Q and R, different 
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combinations of Q and R values have been selected and system simulations 

for different cases were investigated based on data from the "Wimpey 

Sealab". These cases were summarised in the next section ~n which 

full simulation of the low-frequency part of the ship and calculation 

of the optimal feedback gain matrix were considered. 

4.4 Simulations and Results 

4.4.1 Case (a) 

In this test, the control signal for the first input (sway motion) ~s 

1.5 times faster than that of the second input (yaw motion), ~.e., 

00 00 

(N I 2), Al = 1.5 1..2 assume unity eigenvectors = and , 
oc cc 

1..2 = 1 , then, A = 1.5 
1 

00 

{( 1 
) 6 , ( J:... )6} 11.3 = diag 

1..
00 A~ 1 

= diag{0.08799, 1.0} 

[ 0.08779 0.0 ] 00 

R = fA = f 
3 

0.0 -1.0 

0.0 0.0 0.0 0.0 0.0 0.0 

0.0 1.7597 0.0 -0.17555 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 

Q = 
0.0 -0.17555 0.0 0.0487 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 

R- matrix for system simulations var~es as f takes the following values 

for best response to be chosen. 

-4 -3 3 6} f ={10 , 10 , 1 , 10 ,10 ,10 

System responses of the low-frequency dynamics of the "Wimpey Sealab" 
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-3 
are shown ~n Figures 4.3a - d for f = 10 and ~n figure 4.4a - d for 

f = 1.0. Both system responses were presented here as the best 

responses of case (a) for a step input of 0.02 p.u. into sway. The 

optimal feedback gain matrices for both systems have been calculated, 

for J = 10-
3

, as: 

K
ct t26

•
87 -63.67 -4.39 -10.48 -5.18 -0.024 ] 

= 
-23.81 -37.46 -3.95 6.24 -0.002 -3.22 

and for J = 1.0, 

ct- [-2.87 -2.05 -0.44 -0.32 -1.20 -0.024 ] 
K = 

-2.54 -1.17 0.41 0.19 -0.002 -0.66 

4.4.2 Case (b) 

Throughout this test, the two inputs are non-interactive and required to 

be at the same speed. 
00 00 

Hence choose Al = A2 = 1.0. Let N = 12 and the 

Q-matrix remains unchanged as from case (a). 

RI = diag {1.0 , 1.0} 

= [1.0 RI 
0.0 

O.OJ 
1.0 

R = fR I 

The systems of the "Wimpey Sealab" have been simulated for different 

values of J, 

{ 
- 6 - 5 - II - 3 } Y = 10 ,10 ,10 ,10 ,1.0, 10 

and the responses for a step input of 0.02 p. u. into sway are presented 

here ~n Figures 4.5a - d for the case when p = 1.0. The optimal feedback 

ga1n matrix KC £ for this case ~s: 
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r: 1. 30 

- ~2.54 

4.4.3 Case (c) 

-0.59 -0.21 

-1.18 0.41 

In this case (see Grimble [39J), 

~ 26.36797 -12.47397l 
Rl = J -42.47397 6.59232 

R = .fRl 

while: 

Q = CT . C 

0.0 

1.0 0.0 

0.0 
Q = 

1.0 

0.0 0.0 

-0.097 

0.19 

0.0 

andY takes values of the following range: 

-3 
f ={10 ,1.0, 10.0} 

-0.005J 

-0.67 

-0.67 

-0.005 

Based on the above selected values of Q and R, system responses of the 

"Wimpey Sealab" for 0.02 p.u. step input into sway are presented in 

Figures 4.6a-d for the selected case when f = 1.0 with the following 

feedback gain matrix: 

KC.Q, = 1-1.28 

~2.57 

-0.58 

-1.19 

-0.26 

0.30 
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-0.13 

0.13 

-0.74 

-0.17 

0.038J 

-0.59 
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4.5 Concluding Remarks 

Values of the weighting matrices Q and R were selected us~ng the new 

technique by Grimble [39J which showed that these weightings depend on 

the choice of the eigenvalues (A~) and the eigenvectors (v~). The 
~ ~ 

chosen values of Q, R have been used in solving the matrix Riccati 

equation to obtain the optimal feedback gain and hence to simulate the 

system. The dynamics of the "Wimpey Sealab" have been simulated over a 

range of Q and R values (cases (a) to (e)), in which R-matrix took 

mUltiple values for a range of Y values. Some selected tests were 

presented and the system responses for sway and yaw input-output vectors 

were considered. The test of the simulation, including case (d) and 

case (e) was documented ~n a separate report by the author [2J. Among 

the presented responses, case (b) with J = 1.0 has been selected for 

the control loop and its application to the dynamic ship positioning 

problem. It has been selected, since it has given a good system 

response and s~nce it represents a test for a non-interactive, same 

speed input, which ~s the case of the dynamic positiomng problem. After 

Q and R are specified there rema1n the procedures of solving the 

Riccati equation and calculating the feedback gain matrix thereafter, 

and for any specified system. Solution of the Riccati equation is the 

process of obtaining the steady state P-matrix. For systems based on 

data from the "Wimpey Sealab" vessel (Section 3.2.3), the P-matrix was 

found to be: 

P = 
00 

8.40 

4.61 

-0.82 

-0.46 

0.84 

1.67 

4.61 

4.07 

-0.45 

-0.40 

0.38 

0.77 

-0.82 -0.46 0.84 1.67 

-0.45 -0.40 0.38 0.77 

0.22 0.12 0.13 -0.27 

0.12 0.11 0.063 -0.12 

0.13 0.063 0.43 0.003 

-0.27 -0.12 0.003 0.43 
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and hence the corresponding optimal ga~n matrix ~s: 

f-1. 30 

L-2.54 

-0.59 

-1.1S 

-0.21 -0.097 

0.41 0.19 -0.005 

-0.005 J 
-0.67 

-0.67 

The calculation of the optimal feedback control us~ng the above 

selected values of Q and R for a system based on data from the "Star 

Hercules" vessel of Section 3.2.4 was performed, and the optimal 

feedback gain matrix found as: 

-1.40 -0.44 0.0 0.0 -0.51 0.0 

0.0 0.0 -0.09 -0.03 0.0 -0.53 

The above calculated feedback gal.n matrices for both the "Wimpey 

Sealab" and the "Star Hi?-rcules" will be used for closed loop control 

for different applications of the dynamic positioniug problem 

considered throughout this work. At this stage, the low-frequency 

part of the "Wimpey Sealab" and the "Star Hercules" have been 

simulated using their corresponding values of the feedback gain and 

for a step input of 0.02 p.u. into yaw rather than sway. These 

responses are shown in Figures 4.7a - d for the "Wimpey Sealab" and 

in Figures 4.Sa - d for the "Star Hercules" dynamics. 
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C HAP T E R (5) 



CHAPTER 5 

LINEAR FILTERING/KALMAN FILTERING PROBLEM 

5.1 Introduction 

Dynamic ship positioning control systems requ~re filters to remove the 

large high-frequency wave motion signals [99J. This ensures that the 

thrusters do not respond to the high-frequency wave motion and, 

consequently, reduces energy loss and wear on the thrusters. Some 

dynamic positioning systems employ Notch filters [13J,[57J. However, 

Kalman filtering techni~ues have been used throughout this work. 

Kalman filtering is a technique which produces an optimum estimate of 

the state of a system, from a success~on of measurements. A knowledge 

of the dynamic behaviour and error characteristics of the system is an 

essential pre-requisite. The Krumanfilter includes a model of the system 

dynamics and. can therefore provide separate low and high frequency state 

estimates. The Kalman estimator is shown in Figure 5.1 and is defined 

by the following state and output equations: 

. 
A A A 

X = Ax + K(~ - y) + Bu ............... (5.1) 

A A 

Y = Cx ............... (5.2) 

where 

A = filter system matrix -

K = filter ga~n matrix -

z - observations 
~ 

~ - filter output y --

A estimates x = state -

B, C = filter input and output matrices 

The Kalman gain matrix K(t) of equation (5.1) above can be. partitioned 
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into low and high frequency ga~n matrices as: 

............ (5.3) 

This matrix can be evaluated for a g~ven no~se information (Appendix 3-

Kalman algorithm). The process noise covariance matrix related to ran­

-dom forces, is defined on the basis of common practice, while the 

measurement noise covariance matrix can be defined with acceptable 

accuracy from a knowledge of the measuring syste~. The evaluated 

time-varying Kalman gain matrix elements settle to a constant value 

after approximately 20 seconds (Section 5.3), and thus these gains can 

be pre-computed off-line in some cases and stored (Section 6.3). By 

using a constant or semi-constant gain Kalman filter, the overall cost 

of the control system can be reduced by saving some computing time. 

5.2 Kalman Algorithm 

Kalman filter theory is well known [58J, [60J, [98J. A step by step 

application to the dynamic ship positioning systems can be summarised 

as follows: 

(i) Develop a system model ~n order to formulate a state vector (x) 

which describes the system at any g~ven time. 

(ii) Determine the state of the input (u) and the dynamic relationship 

between (~) and (x). 

(iii) Assess the likely process no~se (w) and its covariance matrix 

(Q) • 

(iv) Determine the measurements to be made (y)~ and the associated 

output matrix (C) relating the vector (y) to the state vector (x). 

(v) Assess the likely error or noise in the measurements (v) and its 

covariance matrix (R). 
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(vi) Finally determine the initial state estimate and its error 

covariance matrix (P). 

The Kalman filter can be implemented uS1ng the continuous-time 

differential equations of the system represented in state-space form, 

but the simulations uS1ng digital computer have been performed in 

discrete-time form. In actual practice, a Kalman filterin~ scheme 

involves digital computations on an on-line process control by computer, 

and hence the discrete-time form of the system description 1S more 

appropriate for implementation and can be written as: 

x(k + 1) = ~x(k) + ~u(k) + rw(k) ............. (5.4) 

z(k) Hx(k) + v(k) ............. (5.5) 

where: 

~ - state transition matrix --

~ = input driving matrix -

r - driving matrix - nOl.se -

H = output matrix -

Having fed the filter with the necessary information, the next 

operational stages will be as follows: 

(i) Store the previous best estimate (the initial values at the 

start) of the state (x) and its covariance matrix (P) at time instant 

(t) • 

(ii) The system represented by the usual differential equation and 1n 

the discrete form (Figure 5.2a) will be: 

x(k + 1) = ~ x(k) + ~u (k) + rw(k) - --
. . . . . . . . . . . . (5.6) 

z(k) = Hx(k) + v(k) ............ (5. 7) 

(iii) The prediction (Figure 5.2b). The problem is to obtain 

x(k + 11k), i.e. to estimate the value of (x) at (k + 1) instant, gl.ven 
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all the measurements up to instant (k). The previous estimate ~(klk) 

is known: 

x(k + 11k) = ~x(klk) + ~u(k) 

Z (k + lilt) = Hx (k + 11 k) 

.............. (5.8) 

.............. (5.9) 

(iv) The correction. There will be an error between the measured and 

the predicted output: 

.... 
z(k + 11k) = ~(k + 1) - ~(k + 11k) ~ ••..•..•....• (5.10) 

To compensate for such differences: 

•........... (5.11) 

which defines the Kalman filter, where: 

is the Kalman gain matrix, with K~(k) and ~(k) as the low and high 

frequency parts of the ga1n matrix respectively. 

(v) The estimation. For a given instant (k + 1), 

~(k + 1tk + 1) = (I - KH)(~~(klk) + ~u(k» + Kz(k + 1) ....• (5.12) 

where ~(klk) 1S the previous estimate, and z(k + 1) 1S the current 

measurement. 

As mentioned above, Kalman filter basically involves a model of the 

system and is therefore particularly appropriate for separating the low 

and high frequency motions of the vessel. The filtering problem 1S 

thus one of estimating the low-frequency motion of the vessel so that 

control can be applied. The Kalman filter will be shown to be suitable 
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for obtaining the estimates of the low-frequency states. The Kalman 

algorithm is illustrated in Appendix 3, while the schematic diagram of 

the Kalman filter applied to the dynamic ship positioning problem is 

shown in Figure 5.3. 

5.3 Implementations and Simulation Results 

5.3.1 Software Descriptions 

The application of Kalman filtering technique to the dynamic positioning 

problem is a complicated process of estimation and control, and hence, 

the availability of a high-speed, digital computer is the 

prime contributing factor to the success of such applications. 

The full Kalman filter together with ship dynamics and the related 

control were simulated on an ICL 1906S digital computer using the 

FORTRAN4 computer language and GEORGE4 operating system. The computer 

program has been written In a form suitable for making changes for 

different practical investigations of uSlng the reduced-order Kalman 

filter, semi-constant galn filter, etc. Calculations of the optimal 

feedba.ck control matrix have been performed and fed into the maln 

data block. Subroutines for generating the uncorrelated measurement 

and process noise signals have been written by Patton [5~ and used here 

[75J. Two different subroutines were used for simulating the filter 

and the ship and basically called FILTER and DYN. The initial part of 

the program sets up the ship and filter parameters. Subroutine 

PHIDELTA is used to compute the state transition matrix ~k and the 

driving matrix ~k for the simulations. Subroutine DYN is used to 

advance the state variables of the ship model by one step interval 

using the transition equation. The control input signals are also 

calculated in this subroutine. The Kalman filter gain, state estimates 
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Figure (5.3): Schematic diagram of the process of the 

implementations of Kalman filter estimates 
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and the associated error covarlance matrix are calculated by a 

succeSSlve call to subroutine FILTER using the filter algorithm glven 

in Section 5.2. The basic computer flow chart for the whole system 

simulations using the full Kalman filter algorithPl is shown in Figure 

5.4,[lJ. 

5.3.2 Filter and Control Implementations for ''wimpey Sealab" Vessel 

Dynamic positioning control for "Wimpey Sealab" ship has been performed 

us~ng the linear Kalman filter and the stochastic optimal state 

estimate feedback control. The Kalman filter is time-varying although 

the filter gain matrix hecomes constant after about twenty seconds. 

Full Kalman filter algorithms for this application have been 

implemented using results from Section 5.2. The low-frequency part of 

the ship and filter dynamics are independent of the weather conditions 

variations and have been assumed linear for closed loop feedback control. 

Hence, the optimal control gain matrix assumed constant which were 

calculated off-line and stored. 

As the weather conditions vary, different parameters of the sea-wave 

simulator change (Appendix 2). Different tests were performed, and 

results for Beaufort number 8 conditions will be presented here. The 

ship 1.S assumed to be subjected to disturbance forces of 4 x 10 
-6 

per-unit force for sway and 9 x 10 
-8 

per-unit turning moment for yaw. 

Computer plots Sl10wn in Figures 5.5 to 5.15 inclusive illustrate the 

system behaviour together with the filter estimates (sho~~ by a dotted 

curve) for a step input of 0.02 per-unit into sway motions. These 

responses represent full low and high frequency parts of the ship 

dynamics using Kalman estimator with the following definitions: 

State (1): low-frequency sway velocity 
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Figure (5.4) 

START 

Parameter Settings 

Read Control Gain & 
Noise Statistics 

Generate Measurement 
& Process Noise 

Call PHIDELTA for 
Filter and Ship 

Set Iterative FLAG 

Call DYN for Ship 
Simulation 

Call FILTER for 
Filter Calculations 

Graph Plot 

END/STOP 

Computer Flow Chart of Kalman Filtering and Control 
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State (2) : low-frequency sway position 

State (3) : low-frequency yaw angular velocity 

State (4) : low-frequency yaw angle 

State (9) : high-frequency sway position 

State (13): high-frequency yaw angle 

Figures 5.16 and 5.17 display the control signals into sway and yaw 

motions respectively for the system simulations with some saturation 

on the thrusters (such saturations and other non-linearities within the 

thruster devices will be considered in detail in Chapter 7). Figure 

5.18 illustrates the effect of the control signal saturation on the 

speed of the system responses in sway motion. 

5.3.3 Filter and Control Implementations for"Star Hercules"Vessel 

The same software structure was used here for the iffiplementation of 

Kalman filter algorithms and dynamic positioning control for the vessel 

"Star Hercules" as that of Section 5.3.2 of the vessel "Wimpey Sealab". 

Computer plots of Figures 5.19 to 5.29 demonstrate the system responses 

with the corresponding filter estimates (shown by a dotted curve) of 

"Star Hercules" motions under dynamic positioning control and for a 

step input of 0.02 per-unit into sway motion. These responses show the 

system behaviour when the ship is subjected to a disturbance force of 

-6 -8 
4 x 10 per-unit force for sway and 9 x 10 per-unit turning moment 

for yaw. 

Resul ts displayed in this section were based on the "Star Hercules" 

dynamics of Section 3.2.4 and the corresponding optimal control obtained 

from Section 4.5. 
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5.4 Concluding Remarks 

In this chapter, dynamic ship positioning control has been implemented 

successfully using Kalman filtering techniques and optimal stochastic 

control. This scheme has been implemented based on models of the 

vessels "Wimpey Sealab" and "Star Hercules". System responses show good 

estimation and control. The saturation on the thrusters, illustrated 

by Figures 5.16 and 5.17, has a damping effect demonstrated by the slow 

sway position response of Figure 5.18. Saturation ln the thrusters is an 

inherent feature of the actual system implementation. The Kalrean filter is 

a time-varying filter, and hence the filter gain matrix has been 

computed at each sampling instant. Typical values of the filter galn 

for both "WimpeySealab" and "Star Hercules" will be listed below, 

corresponding to the constant filter gain region: 

(i) Filter gain (Wimpey Sea1ab) = 0.0618 0.0125 

0.2235 0.0234 

0.0383 0.1390 

0.0658 0.3460 

0.0013 0.0026 

0.0000 0.0000 

-3.0208 0.0837 

-1.0127 -0.0465 

0.4034 -0.0216 

0.9550 0.0035 

0.2312 -1. 8244 

-0.1203 -1. 0832 

-0.0584 0.2267 

0.0118 0.7270 
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(ii) Filter ga~n (Star Hercules) = 0.0443 0.0005 

0.1544 0.0014 

0.0047 0.0440 

0.0062 0.1418 

0.0012 0.0000 

0.0000 0.0000 

-1. 3888 0.0019 

-0.5104 -0.0038 

0.2515 -0.0010 

0.3689 0.0006 

0.0193 -0.9929 

-0.0071 -0.3887 

-0.0046 0.2006 

0.0011 0.2459 

These filter ga~ns represent a sample from the constant region of the 

gain matrix shown in Figures 5.12, 13, 26 and 27. The systeTI responses are 

acceptable from the practical point of view; however, treresponse 

speed can be varied by tuning the controller and its related weightings 

(Chapter 4). 
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CHAPTER 6 

PRACTICAL INVESTIGATION INTO THE USE OF KALMAN FILTERING FOR DYNAMIC 

POSITIONING 

6.1 Introduction 

Kalman filtering techniques have been found suitable for many industrial 

applications in recent years. They have been implemented successfully 

for a nuclear reactor control problem,for a marine navigation system [53J 

and in the metal industry [44]. The filtering scheme has shown to be 

very reliable and practical in its applications to the dynamic ship 

positioning problem. However, inaccuracies in the system model and 

incorrect filter dynamics representation, especially with the required 

approximations and necessary linearisations could freque~y cause a loss 

of system reliability. Theoretically, the Kalman filter is a statistical 

technique which produces the optimum estimates of the state vectors of 

the 1inear/linearised dynamic system from a succession of noisy measure­

ments. A knowledge of the dynamical behaviour and error characteristics 

of the system is an essential pre-requisite. In practice, the necessary 

information required to construct the Kalman filter is only approximately 

known. Hence, one of the objectives of this chapter is to investigate 

the quality of the system representation in the filter structure. 

The Kalman filter scheme has been widely used to solve the 1inear/ 

non-linear estimation problem because of its practicability and 

robustness. However, this solution adds some complexity and also the 

large number of dimensions in the augmented state is a severe 

computational disadvantage for large multi variable systems D6J. Contribution 

will be made here to reducing such filtering and control computational 
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cost by two different ways as applied to our specific ship positioning 

scheme [93J, [97J : 

(i) Semi-constant gain Kalman filter (Section 6.3). 

(ii) Reduced-order Kalman filter (Section 6.2) 

Dynamic ship positioning us~ng the Kalman filtering techniques g~ves a 

system performance substantially better than can be obtained by systems 

employing conventional filtering networks [9lJ. In prev~ous chapters, 

a fundamental implementation of the Kalman filter and optimal stochastic 

control were established and applied to the two vessels under 

consideration (Chapter 3). However, to evaluate the goodness of any 

scheme, the following steps should be noticed and investigated: 

(i) Cost. 

(ii) Reliability and robustness. 

(iii) Accuracy. 

Hence, the above factors will be considered and investigated in this 

chapter since adequate filter models, enough initial condition 

information and realistic noise statistics can be difficult to achieve 

in practice. 

6.2 Reduced-Order Kalman Filter 

It is normally assumed that none of the states may be measured directly 

and in this case, the Kalman filter has the same dimension as that of 

the plant. In dynamic positioning problems, Kalman filter estimates 

the low-frequency states· for state feedback control [3J. Part of 

the low-frequency states are associated with the actuators output, 

which may be measured without contamination by noise [6J [3~. It follows 

that a reduction in the dimension of Kalman filter may be achieved, 

equal to the number of the measurable states [80J. In such cases, the 

feedback control scheme will consist of direct state-feedback combined 
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with state-estimate-feedback. 

The use of direct state-feedback from the measurable states, and the 

consequent reduction in size of the filter has several indirect 

advantages [96J. Direct state-feedback improves the transient response 

of the system, since this feedback loop would otherwise contain a filter 

which degrades performance. The reduction in the dimension of the 

filter also reduces modelling errors, since only part of the plant is 

represented in the filter for state estimation. The actuators are 

non-linear elements, and hence assuming their states as measurable 

variables will reduce the effect of the nQn-linearities within the 

modelled plant. 

In applying the above simplification to the dynamic positioning problem 

uS1ng Kalman filtering techniques and considered for sway and yaw 

motions only, two states can be measured corresponding to the states of 

the two sway and yaw thrusters [3i]. Hence, the dimension of the 

Kalman filter will be reduced from 14 states down to 12 states. The 

reduction in size of the Kalman filter is particularly valuable in 

dynamic ship positioning eontrol sys~ems since the size of on-board 

computer is limited. 

The following analysis will illustrate the application of the combined 

state and state estimate control to the dynamic ship positioning control 

systems [3'U. The ship dynamics can be represented by the usual linear 

state equation as: 

[X.I] __ [All AI2J[X1J + [OJu + [WI] ........... (6.1) 

x 2 0 A22 x 2 B2 w2 

y = [ C I OJx ........... (6.2) 

z = [ C1 OJ~ + v ........... (6.3) -
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where the system has been partitioned into a measurable part x 2 

which includes the thrusters, and the remaining state variables xl 

u is the thrusters control signals and y is the total position of the 

vessel from some reference point. 

w wand v are white nOl.·se -1' -2 signals with covarl.ance matrices Q Q 
I' 2 

and R respectively. A21= 0, since the thruster states do not depend 

upon the other state variables in most industrial problems. The system 

is illustrated in Figure 6.1. 

since some of the states are assumed to be measurable (the thruster 

states), the size of Kalman filter algorithm and the related filter 

model structure used in Chapter 5 for simulation will be reduced in 

proportion to those measurable states. The structure of the ship 

model will remain unchanged. 

The system responses based on the above proposed reduced-order Kalman 

filter for estimation are illustrated in Figures 6.2 to 6.6. These 

simulations have been carried out using data from "Wimpey Sealab" 

vessel of Section 3.2.3. States (7) and ~1) and their estimates of 

Figures 6.5 and 6.6 are the high-frequency sway position and yaw 

heading respectively which co·rresIJond to states (9) and (13) and their 

estimates in the full Kalman filter of Chapter 5. 

6.3 Semi-Constant Gain Kalman Filter 

The implementation of Kalman or extended Kalman filters for estimation 

and control is a straightforward process copied from the actual plant 

dynamics to be controlled. This nature of the filter dynamics gives 

it the practicability for on-line estimation. However, the computation 

time required to implement the filter could exceed the usual practical 

limit for real-time applications. This difficulty can be clearly 
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realised when a limited space only is available for on-board computers 

and processing equipment especially for ship positioning or space 

applications. Basically, the high computational burden encountered by 

using Kalman algorithms for estimation is mainly concerned with the 

re-computations of the error covariance matrix by solving the Riccati 

equation and ':-Tith the calculations of the related Kalman gain matrix, 

and hence a great sav~ng in computing time can be obtained by 

pre-computing and storing the filter gain matrix. In the linear case, 

the system simulation results for both "Wimpey Sealab" and "Star 

Hercules" vessels of Chapter 5 have shown that elements of Kalman ga1.n 

matrix settle to a constant value after approximately twenty seconds 

from the initial condition. This fact could give the possibility of 

applying a partitioning process on the gain calculations in which the 

gain matrix can be assumed constant'and need not be computed on-liJe 

after twenty seconds. [57J ' [24J , [56J . 

In this section, full simulation of the ship using Kalman filter for 

estimation and based on data from "Wimpey Sealab" were performed on the 

basis of the above partitioning procedure of the filter gain calculations. 

To ensure the stability of the system behaviour and to reduce the effect 

of using constant Kalman gain for system implementation, the filter 

gain has been assumed constant after 28 seconds rather than after 20 

seconds. System responses for the ship low-frequency controlled position 

and heading together with the total low and high frequency ship 

trajectory are shown in Figures 6.7, 6.8 and 6.9 respectively, and are 

for step input of 0.02 per-unit into sway with the ship hull subjected 

to the same disturbance forces described in Section 5.3.2. These 

responses show no loss of accuracy with the advantage of reduced 

computing time. Selected elements of the Kalman gain matrix have also 

been shown in Figures 6.10 and 6.11. 
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6.4 Filter Mismatching 

Before an effective control strategy can be implemented, there must be 

available an adequate model of the dynamics of the controlled plant, 

so that simulation settings may be chosen in more realistic fashion. 

The applications of Kalman filtering theory developed to date assume 

that system dynamics are completely known and are precisely modelled 

in the filter. Clearly, this will never be true in practice since for 

a highly complex system, there is often a lack of knowledge of part of 

the plant behaviour. Although the Kalman filtering scheme has proved 

to be practically useful in a variety of industrial applications, it 

has become apparent that insufficient care in constructing the filter 

can easily lead to entirely unacceptable system responses [29J [55J [92J Such 

mismatch between the filter and the plant models can cause sensitivity 

problems and even divergence of a Kalman filter [26J [89J [ICO] [86J. Such 

modelling errors can arise when the nominal parameters used to construct 

Kalman filter are different from the parameters used to construct the 

actual plant. Mismodelling may ar~se from individual or combined 

effects of errors ~n: 

(i) the actual mathematical formulation of the system dynamics, 

(ii) measurement signal processing, 

(iii) noise and environmental statistical considerations. 

For the purpose of this study, a Kalman filter has been implemented for 

dynamic positioning control and constructed to consist of low and high 

frequency subsystems. The high-frequency dynamics are to represent the 

simulated sea waveform (Section 3.3). Tests were obtained for different 

sea conditions and vary from Beaufort number 5 for a calm sea state to 

the worst sea condition of Beaufort number 9. Throughout the design and 
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implementation of Kalman filtering for the dynamic ship positioning 

under consideration, the high-frequency dynamics were developed on the 

basis of data for Beaufort number 8 sea conditions. These system 

developments of the high-frequency dynamics for Beaufort number 8 sea 

conditions were copied into the filter, and hence, the filter structure 

will represent a model of the actual ship dynamics (the high-frequency 

part) . 

The purpose of this section 1S to investigate the mismatching effect 

on system behaviour by using the filter model of Beaufort number 5 data, 

but using information for the ship dynamics derived from Beaufort number 

8 conditions. The actual changes in the system and filter dynamics can 

be noticed from the system and filter sub-matrices of the sway 

high-frequency motion. 

Ship sway high-frequency sub-matrix = 

Filter sway high-frequency sub-matrix = 

0.0 2.728 

0.0 0.0 

0.0 0.0 

-0.22 -0.662 

0.0 

0.0 

0.0 

0.0 0.0 

2.728 0.0 

0.0 2.728 

-1.572 -2.455 

2.728 

0.0 

0.0 

0.0 

2.728 

0.0 

-1. 292 -2.626 -3.853 

0.0 

0.0 

2.728 

-4.037 

The above data and full system simulations were based on "Star Hercules" 

dynamics. Selected system responses are shown in Figure 6.12 to 6.16 

and titled as appropriate. 
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6.5 Reliability Tests 

Ship dynamics and filter structure are traditionally determined from 

the formulation of a set of mathematical equations representing the 

ship motions together with the hydrodynamic forces acting on the hull. 

These are usually obtained from tests on scaled models on the basis 

of a reasonably good knowledge of the environmental and measurement 

noise statistics. Estimation of the system state vectors for control 

from noisy observations is the pr1me principle of Kalman filtering 

operations. Kalman algorithms for dynamic positioning applications 

provide the conditional mean of the state estimates. This widely 

known algorithm assumes exact knowledge of the system dynamics, of 

the initial error and state statistics, and of both system and 

measurement n01se statistics. In practice, however, the stochastic 

environmental forces represented by the appropriate noise streams are not 

necessarily constant, and their characteristics are not always ce~tain. 

The purpose of this section 1S to investigate the effect of a 

misidentified n01se on the system response and filter estimations. Hence, 

Kalman algorithm reliability and robustness can be assessed by exam1n1ng 

its applicability when the n01se factor of the dynamics information is 

subject to uncertainty. This is carried out by increasing the plant and 

measurement noise included 1n the simulation of the plant itself, whilst 

the filter algorithm operates with the old usual n01se conditions. 

System simulations were investigated using the full Kalman filter 

algorithm with the ship observation noise covariance being increased, 

keeping the filter with the usual noise information. Figur65 6.17 to 

6.20 show the low-frequency and high-frequency of the ship trajectories 

together with the filter estimates of these trajectories (the dotted 

curves) for both sway and yaw motions. These computer plots show the 
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system responses under dynamic positioning control for the case when 

the observation no~se covariance within the system has been increased 

100 times. Data from "Wimpey Sealab" of Sections 3.2.3 and 3.3 were 

employed in here for the above simulations and used for Kalman 

implementations of Chapter 5. 

6.6 Concluding Remarks 

The maln remarks which can be made here will outline the robustness and 

practicability of using the Kalman filtering technique for estimation 

within the proposed dynamic positioning control loop. Such remarks 

can be assessed by a straightforward examination of the system 

behaviour for the different tests and investigations carried out 

throughout this chapter. These concluding remarks can be summarised 

now and listed as follows: 

(i) Measuring the thruster output reduces the Slze of the system and 

hence reduces the uncertainty throughout the linearisations and 

approximations in developing the system dynamics. 

(ii) The time-varying Kalman galn matrix settles to a constant value 

after twenty seconds, and hence, using a constant gain matrix at this 

point, and for the rest of the operations will produce 

significant savings in. computation, cost and storage. 

(iii) Deviations of the filter estimations from the actual system 

state output is very clear when operating under dynamic positioning 

control with the ship model represented by Beaufort number 8 sea 

conditions keeping the filter model represented by Beaufort number 5 

sea conditions (calm sea state). 

(iv) Finally, system responses are presented for the case when system 

observation noise was increased by 100 times the usual nOlse statistics 

used within the filter. Many tests were carried out to show that the 

results represent the limit for reliable filter performance. 
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C HAP T E R (7) 



CHAPTER 7 

NON-LINEAR FILTERING/EXTENDED KALMAN FILTER 

7.1 Introduction 

An obvious extension of the technique of employing Kalman filtering 

scheme to the dynamic ship positioning (Chapter 5), is the consideration 

of the non-linearity of the dynamics of the system (low and high 

frequency parts of the ship dynamics), and hence the required 

filtering and control strategy. As shown in Chapter 3, the system 

dynamics can be represented by a set of non-linear differential 

equations. These equations were obtained from a set of tests carried 

out on a scaled model, Section 3.2. However, Chapter 3 outlined a 

reasonable scaling and linearisation of the non-linear dynamics, as 

well as an approximation to the formulation of the high-frequency part 

of the dynamics. Thence, a straightforward application of Kalman 

filtering and state estimate feedback control, Chapter 5, proved 

efficient and produced improved system response. In practice, the 

low-frequency part of the system dynamics needs to be simulated uSlng 

the actual stochastic non-linear based differential euqations. Hence, 

an extended form of Kalman filter must be used. 

The proposed extended Kalman filter can be used for both state and 

parameter estimation [49J [69J. Such an extended Kalman filter for the high 

frequency non-linear system model was first proposed by Grimble and 

Pa.tton (Section 7.3) [49J based upon a linearisation of the system 

function of non-linearity about the most rece~t update of the estimate 

of the state vector (~(t)) at time (t). The dynamics of the filter are 

thus locally linear. The linearisation and discretisation process at 
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each step should be repeated, and the Kalman ga~n matrix must be 

re-computed. 

The actual non-linear low-frequency part of the system dynamics can be 

represented by the following differential state equation: 

........... (7.1) 

with the measurement equation: 

........... (7.2) 

where w~(t) and v~(t) are the process and measurement no~se vectors 

respecti vely [lOlJ. The above proposed scheme of extended KalITIan filter for 

high-frequency non-linearities and parameter estimation can be applied 

here for the low-frequency dynamics of the system of equation (7.1). 

The linearisation of f~(x~(t), t) above and the updating of the filter 

dynamics will be based on the same strategy as that of the high-frequency 

case. In addition, the system matrix of the LF dynamics needs the 

same linearisations and system updating processes for control 

calculations (Section 7.2). 

7.2 Non-Linear Filtering and Control 

This section extends the discussion of optimal estimation and control 

for linear systems to the more general case described by the non-linear 

stochastic differential equation of (7.1). The non-linearities within 

the low-frequency dynamics will be considered here. The main part of 

these non-linearities is the non-linearities of the thruster devices, 

and hence, will be considered in detail [94J. The main goal of this section 

is to provide insight into the applications of non-linear estimation, 

hence optimal feedback control can be applied. The extended Kalman 
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filter system can be combined with optimal feedback control and applied 

to the low-frequency part of the dynamics by analogy with the separation 

principle [2iJ of linear stochastic control theory. The extended 

Kalman filter dynamics will be assumed locally linear about some 

operating point, and hence, the filter gain matrix and the estimation 

process would be followed as from the linear filtering rules. It is 

postulated that the optimal control gain matrix can be calculated uSing 

a similar philosophy to that used for calculating the filter gain 

matrix [48J, [4J Figure 7.1. 

7.2.1 System Description including Thrusters Non-Linearities 

To indicate the non-linear control problem, the thruster devices 

(Section 2.2 and Figure 2.3) and their associated non-linearities are to 

be considered. The type of thrusters fitted on'~impey SealaH'vessel 

1S considered in here with its related data (Figure 2.5). The thruster 

has both dead zone and saturation characteristics (the dead zone for 

"Wimpey Sealab" 1S approximately 1-2 per cent of the rated value of the 

thrust) (Figure 7.2). 

The non-linear continous time low-frequency model may be represented 

by the following non-linear stochastic differential equation: 

............. (7.3) 

where wt(t) is a Wiener process with incremental covar1ance of Q£dt. 

The state vector xt(t) contains the sway and yaw velocities an~ positions 

as well 2S the thruster states for sway and yaw (xs and X6 respectively). 

Now, consider the thruster devices non-linearities of Figure 7.2, 

system state space representation of the low-frequency model including 

the proposed non-linearities can he written as: 
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· + B1 y IJ11 (xs)x s 81 Y lJfl (X 6)X 6 Xl = a 11 x 1 a 1 3!.3 + + 

· !.2 = !.1 

· 8 l Y ;/1 (X s) X S S2Y Jf2 (X6)~6 X3 = a 31 Xl + a 33x 3 + + 

· Xl+ = X3 

· -b + b u X = X .::s l-S 1-1 

· X = .::s -b 2x
6 + b2~l ............ (7.4) 

where Jfl(x S ) and ;{2(x 6 ) are non-linear functions of the thruster devices 

in sway and yaw respectively. The thruster non-linearities have been 

approximated and assumed to be of the follO\~ing exponential form: 

11 (X s) 

~ (X 6 ) = 

........... 

........... 
(7.5) 

(7.6) 

1 
where Fl = 0.02 and Fl = 0.02' Fl and F2 values have been approximated 

to an exponential function with some saturation. This gross 

approximation of the low-frequency dynamics is better than the linear 

approximation normally employed. 

Now, the next step will be cons<idered, in which the linearisation of 

the system and filter matrices can proceed. To obtain these linearised 

matrices for filter gain and optimal feedback gain calculations, some 

partial differentiations must be performed (Appendix 4). 

must be defined for the following two separate reg~ons of each state: 

o < Xs < 00 

o < X _6 

Thence, for 

< 00 

and 

and 

_00 < X < 
-s 

-00 < X < 
-6 

o 

o 
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" FIF2e-F2C1Xsl) x > 0, dXS (ffl (xs» = 
-5 

and 

a F F e F2 (lx 5 1) Xs < 0, ax (Jf 1 (x 5 » = 1 2 
-s 

. . . . . . . . . . . . . . . .. (7. 7) 

Similarly, for 

a F F e -F2( 1~6 P X6 > 0, ax (J/z (~6) ) = 1 2 _6 

and 

d 
F

1
F

2
e FzC IX6 P x6 < 0, 3x

6 
(Jfz (~6) ) = .................. (7.8) 

alS' a16' a 3S and a36 of the system matrix of equation (7.4) can be 

formulated 1n terms of the current system state estimate using the 

non-linear equations (7.5), (7.6) for the actual system simulations, 

and updated using the linearised equations (7.7) and (7.8) for filter 

gain and control gain calculations. 

7.2.2 The Filtering Algorithm 

Consider the general case of a non-linear system described by the 

following stochastic differential equation: 

• x(t) = f(x(t), t) + Bu(t) + Dw(t) ........... (7.9) 

with the output equation: 

y (t) = Cx(t) ..•..•....• (7.10) 

and observations of: 

z(t) = Cx(t) + vet) ............ (7.11) 

where f 1S a non-linear function of the state vector, and B, D and C 

are the input, noise and output matrices respectively. The process 

nOlse (w) and the measurement noise (v) are both Gaussian zero mean 
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signals with covar~ances of Qf and R
f 

respectively, and with the 

following expectations: 

E{w(k)} = 0 

E{v(k)} = 0 

E{W(k)"wT(j)} = QfOkj 

E{2:.(k) vT (j) } = RfOkj 

E{w(k) " (j) } = 0 

for all k and j s~nce all the no~se sequences are independent, with 

Kronecker delta function of: 

0kj = 0, 

0kj = 1, 

for all k =1= J 

for all k = J 

System states for the purpose of this study (Chapter 3) can be 

expressed as: 

~n which x£(t) here will refer to the non-linear low~frequency part 

of the system dynamics. 

The discrete-time Kalman filter scheme for the above non-linear system 

of equations (7.9) and (7.11) [49J,[3J,[48J has the problem of ge tting the 

required state estimate to be used for closed loop control. 

A step-by-step implementations of the filter scheme as it has been 

used within the system simulations can be summarised as follows: 

(i) The predicted state at (k + 1) instant is, 

" " 
x(k + 11k) = f(~(klk)) + /:,f u(k) .•......• 0.12) 
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s1nce the system input has been fed into the filter as well as into 

the plant (Figure 7.1). 

(ii) Based on (i), the state estimates at (k + 1) can now be 

calculated. 

~(k + 11k + 1) = ~(k + 11k) + K(k + l)[y(k + 1) - C~(k + llk~ 

..•... 0.13) 

where K(k + 1) is the Kalman ga1n matrix which has been calculated 

from the linearised filter dynamics. 

(iii) The linearisation and updating processes of the filter system 

matrkes(~) and (Af) can now begin. The filter matrix (Af) will be used 

for actual filter simulations thereafter, while the linearised (~) 

matrix will be used for Kalman gain matrix calculations: 

~(1inearised)~ a: Af (x, (k + 1» Ix ~ ; .......... 0.14) 

(iv) Now Kalman gain matrix K(k + 1) can be obtained, first by 

calculating the predicted error covar1ance matrix, 

P(k + 11k) = ~k(k + flk)p(klk)<P~(k + 11k) + rk(k + 11k) 

Qfr~(k + 11k) ........... 0.15) 

where 

p(klk) 

Therefore 

= [0.0 J 1S the initial error covar1ance matrix. 
14 

T[ T J- 1 

K(k + 1) = P(k + 11k) C CP(k + llk)C + Rf 
•.•.•.•.. (7.16) 

where R
f 

and Qf are the measurement and process covariance matrices 

respectively. 

(v) Finally, the error covar1ance matrix is: 

P(k + 11k + 1) = (I - K(k + l)C)P(k + llk)(1 - K(k + l)C)T 

+ K(k + l)Rf KT(k + 1) ......... (7.17) 
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(vi) Given the expected values of the initial state, errorcovariance 

matrices and filter dynamics, one can use the above equation 

iteratively to obtain the state estimates at any future sampling 

instant (k + i). 

7.2.3 The Control Algorithm 

In the dynamic positioning problem under consideration, the control 

problem is one of using the filter low-frequency estimates for a closed 

feedback loop. These estimates will be assumed to represent the true 

system states for the control purpose. The next step in here is to 

calculate the feedback control gain matrix on the basis of optimal 

stochastic control theory. 

In the linear stochastic optimal control problem (Chapter 4), 

determination of the optimal feedback control requires the solution of 

the matrix Riccati equation [102J. The optimal control philosophy for the 

non-linear stochastic system under consideration can be explained as 

follows: 

(i) Linearise the system loca.lly around the most recent state 

estimates using the extended Kalman filter philosophy. 

(ii) Estimate the step ahead conditional mean of the state vector 

(Chapter 5). 

(iii) In here, linearisation and updating of the system matrix can be 

carried out in analogy to the process in Section 7.2.2 (iii). The 

A-matrix is to include the actual non-linearities for system simulations, 

while the AI-~atrix is to represent the linearised structure of the system 

matrix for control gain calculations. 

Al (linearised) 
d = dX A(x, (k + 1)) 
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(iv) The process of calculating the control ga1n matrix (K ) can now 
c 

begin to control the non-linear system of equation (7.1). This process 

will involve the iterative solution of the following steady-state 

Riccati equation over the specific sampling instant [84J [88J : 

0 
T 

+ P A - -IT = A1£P c P B£R BP+ Qc c 1£ c C!C .......... (7.19) 

and it 1S such that the performance criterion, 

T 
(xT (t) J = f Q x(t) + uT(t) R u(t) dt c- c-o 

.......... (7.20) 

1S minimised, where Al£ is the locally-linearised low-frequency part of 

the system matrix for control calculations. B£ is the low-frequency 

part of the input matrix. Rand Q are the control weighting matrices. c c 

These matrices were chosen optimally [39], [2J, (Section 4.3). 

(v) Finally, once solution to the Riccati equation P of equation 
c 

(7.19) is obtained, the control ga1n matrix at that specific instant can 

be calculated as: 

...•...... 0.21) 

7.2.4 Simulation Results 

Simulation results will be presented in here to illustrate the idea of 

non-linear control of the above section (7.2). These simulations are 

based on data from the vessel "Wimpey Sealab" (Chapter 3), with control 

weightings of Chapter 4 and filter specifications of Chapter 5. 

Non-linearities within the low-frequency part of the system will be 

considered in here with the high-frequency dynamics assumed constant and 

the canonical state-space form for both sway and yaw motions have been 

used as from Chapter 3. 

Full system simulations combining both low and high frequency dynamics 
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uSlng extended Kalman filter for control can now be summarised. The 

system responses for a step input of 0.02 per-unit into the sway 

direction are shown in Figures 7.3 to 7.7 inclusive, where Figures 7.3 

and 7.4 show the non-linear behaviour of the low-frequency vessel 

position and heading respectively, while Figures 7.5 and 7.6 show the 

corresponding high-frequency vessel position and heading respectively. 

Figure 7.7 shows the combined low and high frequency trajectories. 

Throughout these simulations, the ship and filter matrices were updated 

and linearised every two intervals of the simulations. However, 

linearising every five intervals (Figures 7.8 to 7.10) for sway and yaw 

low-frequency position and heading as well as the ship total position 

shows no loss of accuracy and a significant saving in system simulation 

cost. Filter estimates are again shown by dotted curves. 

7.3 Parameter Estimations 

Kalman filtering for estimating the state veetors of system under 

dynamic positioning control has been widely applied because of the 

reliability of the filter performance. Such performance depends 

mainly on the availability of the required information to construct the 

Kalman filter. Most of this information is approximately known with 

some parameter uncertainties within the main body of the plant model. 

Such uncertainties could cause the requirement for non-linear estimations 

using the extended Kalman filter as state and parameter estimator. 

Hence, the problem of doing accurate estimation when some of the ship 

and filter models parameters are not precisely known involve parameter 

estimations with all the consequences of increased system dimensions and 

undesirable complexity in implementing the filter algorithM [64J. 

The problem of parameter estimation ln a nOlSY stochastic dynamic 

system using extended Kalman filter for state and parameter estimation 
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Figure (7.8): Sway low-frequpncy true and estimated position (S steps linearisation) 
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has received considerable attention [61], [6f) , [79J, [83J because of its 

importance in system model building and control. Basically, the 

unknown parameters to be estimated must be represented dynamically 

within the whole system structure and estimated in a similar way to 

that of the state estimation procedure. Hence, the filter dimension. 

will be increased by the number of the unknown parameters to be 

estimated. Kalman theory cannot be applied in here directly and a form 

of extended Kalman filter is required with all the necessary applications 

of the linearisation and updating procedures. 

Previous chapters outlined the step by step implementations of Kalman 

filtering techniques for dynamic positioning applications. The system 

was assumed to consist of low-frequency and high-frequency parts and 

so the filter model. Non-linearities within the low-frequency part of 

the system dynamics have been considered in Section 7.2 using extended 

Kalman filter to estimate the system states vectors for control. 

In this section, work done by Balchen [12J arid Grimble and Patton [49J 

will be summarised, which has been mainly involved with the investigation 

of the non-linearities within the high-frequency part of the system 

dynamics and the related state and parameter estimations using extended 

Kalman filter. J G Balchen (1976) has proposed an extended Kalman 

filter for dynamic ship positioning problem in which the high-frequency 

subsystems have been modelled by harmonic oscillators. The frequency of 

the oscillators is assumed equal for both sway and yaw motions and needs 

to be estimated as an unknown parameter using an additional state variable. 

Hence, the system matrix for sway motion which is identical to the yaw 

motion will be: 
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o o o 

with system state vectors of: 

where x~ represents the high-frequency sway velocity, x~ represents 

the high-frequency sway position, and x~ represents the dominant 

angular wave frequency to be estimated. 

Disadvantages with uS1ng Balchen's method led to the use of the 

alternative technique proposed by Grimble and Patton [49J. This 

alternative approach uses an extended Kalman filter which is based on 

a more accurate model of the sea wave energy spectrum (Section 3.3). An 

assumption for an approximate non-linear sea spectrum was made in 

Section 3.3 to develop and implement the high-frequency part of the system 

dynamics. The state space representation of the system high-frequency 

model were developed in companion canonical form for different Beaufort 

numbers and sea conditions and assumed identical for both sway and yaw. 

The system matrix for sway motion can be presented as: 

0 Tb 0 0 

0 0 Tb 0 
~w = 

0 0 0 Tb 

-a4 -a3 -a2 -al 

where Tb 1S the per-unit system time constant, and aI, a2, a3 and ~4 

are constant parameters for a specific Beaufort number and vary In 
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proportion to the weather conditions. The ma~n purpose of the proposed 

extended Kalman filter in here in addition to estimating the system 

state vectors is to include a subsystem for estimating the above four 

parameters (aI, U2, a3 and a4) for different weather conditions, 

together with the rest of the system states. The~ce, the new filter 

high-frequency system matrix for both sway and yaw will have the 

following structure: 

A~ 0 

~n which ~ is a (4 x 4) matrix corresponding to the unknown four 

parameters to be estimated. In this case, the discrete-time Kalman 

filter for the dynamic positioning problem may be defined as: 

~ (t + 1) = f (;, u(t)) + K(t) fy (t) - C~(t)J ••••.••.. (7.22) 

where 

and ~(t) are the original low and high frequency system state estimates 

while Set) are the parameter estimates. K(t) is the Kalman gain matrix, 

and can be partitioned as: 

K(t) = ~ (t) 

where K£(t) and ~(t) are the filter low and high frequency ga~n matrices 

respectively while Ke(t) is the parameter estimator gain. The filter 
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ga1n matrix should be computed at each sampling instant and 

linearisations and system updating should be performed in a similar 

manner to those of Section 7.2. 

7.4 Concluding Remarks 

Work in this chapter has shown that the structure of the extended 

Kalman filtering scheme can be used for control. The use of such an 

approach to control system deagn has been shown to produce more realistic 

system responses. For the purpose of studying the non-linear control of 

the low-frequency part of the ship under dynamic positioning control, 

the thrust-producing devices and their related non-linearities were 

considered. Figure 7.8 shows the sway position for a step input of 0.02 

into sway motion which indicates good estimation but with slow overall 

system response. Control weighting matrices were adjusted but with 

little improvement on the speed of the system responses. Such slowness 

of response is mainly caused by the non-linearities considered and the 

extended Kalman filter applications with all the related linearisations 

performed. The basic philosophy of non-linear filtering and control 

throughout this work was based on the processes of linearising and 

updating the system in terms of the filter estimates at each sampling 

instant. This will impose a high computational burden. Simulations 

shown in Figure 7.7 and Figure 7.10 are the ship trajectories based on 

linearising and updating the system every two intervals and five 

intervals respectively, with a cost saving and no loss of accuracy. 

Parameter estimation for the dynamic po'sitioning problen is an essential 

techniq11e by which the uncertainties within the system dynamics can be 

overcome. Grimble and Patton [!.9] did a substantial amount of work 1n 

this field and hence it has been summarised here for its relationship to the 

idea of non-linear control (Section 7.2). 
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C HAP T E R (8) 



CHAPTER 8 

OVERALL CONCLUSIONS 

The major aims of the work in this case study was achieved successfully 

and reported in this thesis. From the basic design considerations and 

the related practical investigations, it has been shown that the Kalman 

filtering technique is suitable for the dynamic ship positioning problem 

under consideration. It uses the actual available information on 

the dynamical behaviour of the process generating the measurements as 

part of the filter structure. Although information about the model ~s 

included in the filter, model inaccuracies within the ship dynamics are 

a dominant limiting factor in the Kalman filter performance. 

System dynamics were provided by GEC Electrical Projects from 

experiments on a model of the ship us~ng a set of tank and wind 

tunnel tests for the three degrees of freedom. Some interaction 

between swav and yaw motions was considered and the whole system 

design for filter and control was carried out successfully for both 

motions simultaneously. Basic equations used to build the Kalman 

filter were based on the ship dynamics obtained from the above-mentioned 

experimental tests. The system measurements were the only source of 

information available for the filter from the outside world during its 

operation. A back-up taut-wire source of measurement ~s employed 

along with the acoustic system s~nce water disturbances, such as fish 

passing and air bubbles, can cause a loss of the pulses required by the 

the set of the hydrophones to generate the desired measurements. 

Grimble and Patton ~lJ did some comparison work on the 

practicability of using Notch filters and PID controllers or the 

'alternative Kalman filter and stochastic optimal control and showed 
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that a better system response could be obtained by uSlng the latter 

scheme. In this work, a Kalman filtering scheme was implemented 

successfully using stochastic optimal control theory within dynamic 

positioning control for two vessels, "Wirnpey Sealab" and "Star 

Hercules". The proposed scheme has been installed on the latter vessel 

and commissioned. The Kalman filter, while offering the most potential 

improvement in estimation accuracy, is inherently linear since it 

represents the linearised ship model. The required approximations 

can result ln system and filter modelling errors. However, more 

realistic representations have been considered throughout the simulations 

of the system including non-linearities. 

In the early stages of this work, linearised systems have been 

considered for Kalman filter implementation and a simple plant has 

been modelled but there is no reason to believe that the results 

obtained are not typical of what may be found using a more complex 

model. Several important factors have been studied and these 

lmpose a degree of limitation on the accuracy and ease of implementation 

of the Kalman filter algorithm for the dynamic positioning problem 

under consideration. These factors are: 

(i) the accuracy of the filter structure as a true model of the 

actual plant, 

(ii) the availability and uncertainty of the different parameters of 

the plant model, 

(iii) the choice of process and measurement nOlse statistics and 

their corresponding covariance matrices affect the Kalman gain 

1 f th matrices should be calculations and hence the e ements 0 ese 

accurately chosen and fed into the filter. 
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(iv) on-board computer storage capacity to handle the complexity of 

the scheme structure and the related calculations and storage 

requirements. 

Several investigations have been carried out to show the reliability and 

robustness of using the Kalman filter for estimation within the dynamic 

positioning control loop des~ite the above restrictions and limitations. 

These can be listed as follows: 

(i) Introducing the reduced-order Kalman filter reduces the s~ze of 

the filter, which has the advantage of minimising the modelling errors 

since the filter does not include the model of the directly measured 

thruster subsystem. Ari additional advantage with us~ng this scheme 

~s a reduction ~n the computer storage requirement especially when a 

high dimension filter is used for state and parameter estimation~. 

(ii) Full Kalman filter simulations show that the filter gain matrix 

becomes constant after approximately 20 seconds. One of the 

disadvantages of uS1ng the time-varying Kalman filter ~s the 

computational burden associated with the filter ga~n calculations, and 

hence partitioning the filter gain calculations into a time-varying 

region of ~p to 20 seconds and a constant region for the rest of the 

simulations shows a significant saving on the filtering dnd control 

process. 

(iii) The mismatching problem was investigated by simulating the system 

with the Kalman filter uS1ng Beaufort number 5 dynamics,keeping the ship 

with a worst sea condition dynamics of Beaufort number 8. The system 

and filter responses showed some deviations in the filter estimates. 

~nce, to ensure good estimation accuracy, the filter structure should 

represent a higher Beaufort number than that expected of the real olant. 

(iv) As mentioned above, noise statistics are an important factor in 

shaping the filtel behaviour. Tests have been carried out by increasing 
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the measurement nOlse statistics of the system keeping the filter 

with only the usual information. The filter gave acceptable estimates 

to show its reliability up to a critical noise level (shown in Section 

6.5) where the filter behaviour cannot be relied upon, corresponding 

to the case when the noise covariances were increased by 100 times. 

Kalman filtering models for the dynamic positioning problem have 

been extended to include some of the system non-linearities. Such 

investigations have shown that a form of extended Kalman filter can 

be used to provide the necessary state estimates for closed loop 

non-linear control. The use of such an approach to control system 

design (Chapter 7) is shown to produce more realistic system responses. 

A practical algorithm for on-line estimation and control of a noisy 

non-linear system has been implemented with some computational load. 

Further research can be concerned with the procedure of partitioning 

the non-linear system of Chapter 7. The lineaY constant part of the 

dynamics can be dealt with separately in the usual way using a 

linear Kalman filter with the advantages of reduced implementation 

cost. 
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APPENDIX I 

NOTES ON PER-UNIT SYSTEM OF TIME SCALING 

All the equations of motion for both IlW1.°mpey S I II II ea ab and Star Hercules ll 

vessels have been represented in per-un1.°t. B ° oth t1.me and amplitude 

scaling have been applied. 

Consider the following general differential equation: 

d 
cit x(t) = A x(t) + B ~(t) • . . . • . . . . . . . . .. (1 ) 

which has been represented in a real time. Now suppose that time scale 

change from real time (t) to per-unit time (t'), where 

t' = and tb 1.S the base time 

Then the plant differential equation will become: 

• • • • • • • • • • • • • •• ( 2 ) 

X (t') = tb· (Ax (t') + Bu(t~tb» 
-0 -0 -

where x (t') is the per-unit value of the state vector. 
-0 

( 3) 

In order to determine the values of the control Q and R matrices, and 

hence the state feedback ga1.n matrix, the maX1.mum permissible deviations 

in the per-unit thruster control signals are required. 

The general base units for the per-unit system differes for different 

kindsof vessels, which depend upon the size and the geometry of the vessel, 

and can be summarised for both IIWimpey Sealab lIand IIS tar Hercules ~I 
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(i) "Wimpey SealaB'Vessel 

Mass (m) = 5670 tonne 

Length (Lpp) = 94.49 metre 

Gravitational Acc. (g) = 9.81 m/sec 2 

Time vi pp/g = 3.104 seconds 

Velocity lL Ppg = 30.44 m/sec 

Force (mg) = 55,620 KN 

Moment (mgL) = 5,256,000 ~-m 

Angular Velocity Ig/L = 0.3222 rad/sec 

From which: 

The base time = tb = 3.104 sec 

The amplitude scaling factor = 95 m 

Assuming that all the thrusters acting ~n one direction, the max~mum 

force is (40) tones or (400) KN, then 

400 
per-unit sway force = ----------3 

55.6 x 10 
= 0.007 ~ 0.01 

and the max~mum torque ~s 90 m x 20 tonnes which ~s (1800) m tonne or 

(18000 KN metres, then 

18000 
per-unit torque = ----------

5 .. 2S6x 106 
= 0.003 ~ 0.004 

The assumption has made that, the thruster time constant ~s to be (2) 

seconds or (2/3.104 = 0.644 pu) and hence, 

b I = b 2 = 1/0.644 = 1.55 
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(ii) "Star Hercu1es"Vesse1 

Mass m = 4377 tonne 

Length L = 73 metres pp 

Time /£ pp/g = 2.728 seconds 

Gravitational Acc. g = 9.81 m/sec 2 

Force mg = 42.940 KN 

Moment mgL = 3,134,500 KN.m 
pp 

From which: 

The base time = 2.728 

and for (2) seconds thruster's time constant, which ~s (2/2.728 = 0.733 

pu), b l = b 2 = 1/0.733 = 1.364. 
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APPENDIX 2 

HIGH FREQUENCY MODEL PARAMETERS 

By examining the high frequency part of the dynamics, the general 

structure of the system A-matrix for sway or yaw is: 

0 Tb 0 0 

0 0 Tb 0 

0 0 0 Tb 

-Ci,4 -0.3 -Ci,2 -Ci,1 

where Tb = 3.104 secs for'Wimpey Sea1aH'whi1e the parameter aI, a2, 0.3 

and 0.4 varies Ln proportion to the weather conditions as indicated in 

the following Table 1 for "Wimpey Sea1a~'vessel for Beaufort number 5 

(calm sea) to Beaufort number 9 (the worst weather conditions), and the 

corresponding Beauforts number 5 and number 8 of Table 2 for "Star 

" Hercules vessel. 

Beaufort No 

5 

6 

7 

8 

9 

!--

Beaufort No 

i 
I 5 
I , 
! 8 

0.1 Ct2 Ci,3 0.4 

4.594 4.384 2.988 1.470 

3.663 2.698 1.452 0.556 

3.166 2.119 0.974 0.341 

2.794 1. 789 0.754 0.251 ' 

2.545 1.353 0.486 0.131 

Table No (1) 

I 
al 0.2 a3 a4 

4.037 3.853 2.626 1. 292 
Table ~n (2) 

2.455 1. 572 0.662 0.22 



APPENDIX 3 

CALCULATION OF THE KALMAN GAIN MATRIX 

The position measurements are not defined ~n continuous form but are 

sampled at regular intervals. The system simulation and the Kalman 

filter have both been modelled using their discrete forms. The 

resulting discrete equations are as follows: 

with 

x(k + 1) = ~(k + l,k)~(k) + ~u(k) + rw(k) 

z(k) = Cx(k) + v(k) 

E{w(k)} = 0 

E{v(k)} = 0 

E{W(k)wT (j.)} = 

E { v (k) v T ( j)} = ........... 

(1) 

(2) 

(3) 

(4) 

and where 0kj ~s the Dirac function. The matrices ~ and r are related 

to their continuous-time counterparts by 

Tl 
11 = fo ~(T)B dT · . . . . . . . .. (5) 

Tl 
r = fo ~(T)D dT • • • . • • . • •. (6) 

and 

~(k + 1, k) ~ ~(Tl) • • • • . • • • .• (7) 

where Tl is the sampling interval. 

The state estimate ~s given by calculating the predicted state 

• . . • • • . • .. (8) 

and then calculating the estimated state at the instant (k + 1), USing 

A I = xA(k + 11 k) + K(k + l)(y(k + 1) - Cx(k + 1I k)).(9) x(k + 1 k + 1) 
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The Kalman ga~n matrix K(k + 1) can be obtained, first by calculating 

the predicted error covariance matrix 

• • • • • • •• (10) 

for some initial error covar~ance p(krk), and then calculating 

Finally, the error covar~ance matrix ~s obtained us~ng 

P(k + ~k + 1) =(I - K(k + l)C)P(k + 11 k) (I - K(k + l)C)T 

+ K(k + l)RKT(k + 1) 

· . . . . . .. (11 ) 

• • • • • . •. (12) 

The above equations can be used iteratively to obtain the state 

estimate at any future sampling time, given the initial state and 

covar~ance. 
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APPENDIX 4 

EXTENDED KALMAN FILTER/PROPAGATING THE CONDITIONAL MEAN OF THE STATE 

ESTIMATE AND IT S ASSOCIATED COVARIANCE 

In order to extend the problem of optimal estimation and control for 

linear systems to the general case of a system with non-linearity, 

consider the following non-linear stochastic differential equations of 

the system dynamics: 

x(t) = !(x(t), t) + wet) • . . . . • . . • .• (1 ) 

1n which f 1S a function of the state x(t). 

The problem will be the estimation of the state x(t) uS1ng the non-linear 

measurements, which is described in its discrete form as: 

k = 1, 2, ..• • • • • • • • • • •• (2) 

where ~ is a function of the state x(tk ) and depends on the index k at 

each sampling period. 

Both ~ and ~ are white gauss1an n01se of zero mean, with E(Vk ) = E(~) 
T 

= 0 where E(.) 1S the expected value of • and E(VkVj ) = ~ °kj' 

E(WkWjT) = Q
k 

0kj and E(WkV
j

) = 0 for all k, j, since all the noise 

sequences are independent, where the Kronecker delta functions 

k f J 

. 
k = J 

Given the non-linear system equation of motion and the measurement 

equation, and the problem is to calculate the minimum variance estimate 

of x(t). The minimum variance estimate of x(t) is the conditional mean 

of the state x(t). 
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Suppose that the measurements data are given at time t and the 
k-l 

'" conditional mean estimate of the state t ( ). knoT-~. vec or ~ t k- l is WLl Then 

by integrating both sides of equation (1) from time t t t the 
k-l 0 k' 

propagated state at instant tk will be: 

t 

x(t) = x(tk_ l ) + f 
t 

i(~(T), T)dT + f W(T)dT • .• , , . , (3) 

taking the expectation, differentiation of both sides of equation (3), 

taking into consideration the noise characteristics mentioned above , 

produces: 

· , . , , , , (4) 

In equation (2) above, all the measurements taken up to time t
k

-
l

, 

A 

x(t
k

_l ) is the initial condition 

Refer to equation (4), Over the time interval t
k

- l ~ t < t
k

, the 

solution of equation (4) is the conditional mean of x(t) which is: 

, , , , , , , . (5) 

The initial condition is the conditional mean of the state at t k- l which 

is assumed known. 

The estimation error covariance matrix 15 defined as: 

A A Tl 
P (t) ~ E [(x(t) - x(t)) (x(t) - x(t)) --1 • .•.•... (6) 

The differential equation for the estimation error covariance will be: 

T ' T A 'T 
pet) = E[~(t) xT(t)] + E[~(t) X (t)] - ~(t) i (t) - x(t) i (t) •. (7) 

substitute for x(t) from equation (1) and for x from equation (5) into 
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equation (7): 

pet) = E[(£ + W)x1j + E~(! + W)TJ - E[fJ ~T - x E[.t?J 

= E[f xT] + E[" fT] - j{ E[f1 - E[f]j{T + 2 r Q(t) 6(t-'r)dT 

t k- l 

pet) 
. . . . .• (8) 

Refer to equation (5), denote E [£ (x, t)] 
A 

as f (x(t), t). 

Now expand !(~, t) 1n a Tylar series about the current estimate of the 

state vector, then take the expectation of both sides to compute 

i(x(t), t), as follows: 

af 
i(x, t) = ff'" t) +- (x - x) + _,x, 

ax '" ... x = x . • . • • • . •. (9 ) 

'" i(x, t) = !(x, t) + 0 + ... ......... (10) 

'" substitute the first-order approximation of !(x, t) from equation (10) 

into equation (5) 

• 
~(t) = i(x(t» .. ....... (11) 

To find an approximate differential equation for the estimation error 

'" covar1ance matrix, define matrix F(x(t), t) whose ijth element is: 

af. (x(t), t) 
-1 -

A !.i j (x ( t), t) ~ ---:a=-x-. --( --";t ):--­
J 

x(t) = x(t) 

using equation (9): 

"'. T T 
(x - ~)~ ]+ E [~ ! J -

'" x = x 
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af 

= ax 

af 

ax 

x = i 

" x = x 

af 
'" [ T (" ) ( -- x E f x, t + dx 

x = x 

afT 
P(t) + P(t) ax 

"­x = x 

" T "'T (~ - x)) J - E [lJ x + Q (t) 

x = x 

'" x = x 

+ Q(t) 

'" x = x 

+ Q(t) 

P(t) = F(x(t), t) P(t) + P(t) FT(x(t), t) + Q(t) 

.............. (13) 

Equations (11) and (13) are an approximate expreSSlon for propagating 

the conditional mean of the state and the estimation error covar1ance 

for t
k

- l ~ t < tko Those equations have got the structure of Kalman 

filter and referred to as extended Kalman filter. 
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