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Dynamic Geometry, Construction and Proof Making Meaning in the 
Mathematics Classroom 

The overall aim of this study was to investigate mathematical meaning making in 
relation to the areas of construction and proof through the use of a dynamic 
geometry environment (Cabri II as available on the TI 92 calculator). The 
experimental work was carried out with 11-14 year old pupils in four schools in 
the North of England between 1996 and 1999. The research involved working 
with whole classes and a range of groups of varying sizes. The research 
methodologies adopted were drawn from various areas (an approach advocated 
as suitable for classroom research by Klafid, 1998). The researcher acted as both 
teacher and participant observer. The study was conducted over several cycles, 
with previous cycles of analysis and reference to the literature being used to 
inform subsequent stages. After a pilot phase when recording methods and 
technical approaches were clarified, there were four cycles of investigation. Data 
collection was by means of participant observation, with audio recording of 
dialogue. Screens generated by pupils were recorded in field notes. 
There was emphasis from the outset of the study to relate the findings to 
classroom practice. This led to a consideration, as an ongoing part of the study, 
of ideas of classroom and group dynamics and how these could be combined 
with, and related to, the use of the technology. 
The study illuminated two key areas; the processes of immediate individual and 
group meaning making and wider aspects of social dynamics in the mathematics 
classroom. 
Socio-cultural analysis of classroom and group discourses identified progression 
from spontaneous to scientific concepts, illuminating the development of pupils' 
powers of intuition and sense of conviction. The dynamic geometry environment 
was used to investigate constructions stable under drag, illuminating the way in 
which the dynamic aspects afforded by the technology affect pupils' appreciation 
of the relationship between construction and proof. Various aspects of proof were 
highlighted and in particular the function of proof as explanation was seen to be 
an important aspect in the development of pupils' mathematical meaning making. 
Further analysis illuminated a distinction between the immediate individual sense 
making of pupils and the way this sense making is brought to social and 
consensual meaning making. 
At the wider classroom level the study identified issues of transparency, the 
importance of the social use of argumentation to take forward the 'taken as 
shared' and the development of socio-mathematical norms and whole-class zones 
of proximal development. 
These aspects of individual and group meaning-making and whole class 
dynamics are advanced as ways of promoting local communities of mathematical 
practice as advocated by Winbourne and Watson (1998). 
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Notes 

All through this work pupils are referred to by pseudonyms. 
Extracts from pupil diaries are reproduced with the original spelling, and 

appear in comic sans ms italic font. 

Pupil diary extracts are referenced as D1,2,3 etc to the relevant section 
in Appendix XIII. 

Field Notes, including Scribble Pads are likewise referenced as F1,2,3 

etc 

Transcripts of Audio Recordings are referenced Ti, 2,3 etc 
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Preface 

Geometry as Social 

Two pupils had been using dynamic geometry to investigate the 

possible shapes which can be obtained when a triangle is reflected in 

one of its sides. After they had looked at the possibilities on the 

screen I asked them to draw a diagram illustrating the condition for a 

rhombus to be produced. They identified various points which would 

produce a rhombus and saw that they lay on a line. I was trying to 

make them realise something about the properties of the two lines AB 

and MN in this diagram (letters added later for reference) 

A 

B 

N 
Appendix Fl 
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To my question 

What can you tell me about these two lines? 

I got the reply from one of the two 

One is horizontal and the other is vertical 

And from the other 

Yes that's right 

The fact that the two lines should be perpendicular was obviously 

recognised, but not expressed clearly (mathematically). This incident, 

showing as it does evidence of a clear mind-picture and social 

meaning being formed using the flexibility inherent in language, will 
have echoes with most teachers of geometry. 

Geometrical meaning-making will be seen, in this thesis, as being 

placed firmly in the area of the social. Indeed, meaning-making in a 

social classroom and the teaching of geometry using a dynamic 

geometry environment are the two main interwoven strands of this 

work. The strands will move apart at times and some discussions will 
be predominantly in the separate fields. The incident described above 
is used here as the basis for a discussion about the way in which the 

two strands are linked. 

Geometric facts exist in the abstract. Circles and straight lines are 

only perfect as defined by Euclidean geometry and the strict 

mathematical terminology used to express them. As soon as we move 

outside mutually accepted assumptions and terminology, or as soon 
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as a diagram, necessarily imperfect, is produced, the situation 

changes. Geometry is made social, we move into an area of 

communication of meaning. Whatever appreciation of the precise fact 

is formed in the mind, if it is transmitted using language, the 

accommodation implicit in meaning-making using the spoken word 

comes into play. Mathematical language is used to codify meaning so 

that 'square' triggers the same set of properties in the minds of 
interlocutors, but the problem of the teacher is to arrive at this goal, 

and the way is through a maze of negotiated meanings, 

communicated by language and other signs. The pupils in this 

example have formed ideas about the situation they are addressing, 

mediated by their own social interaction, the technology and the 

teacher. They have made their own meaning. 

In classroom geometry therefore, the teacher will probably be 

concerned first with meaning-making and then with formalising this 

meaning so that it can take its place in the body of mathematical 
facts. The evident, accurate, meaning made in the example above is 

valued but the teacher may wish to formalise the fact which is 

communicated to the whole class. Various viewpoints on this process 

of informal, individual sense-making being brought to consensual 

meaning-making are available in the literature. It is the purpose of 

this thesis to analyse different viewpoints and then relate them to the 

use of hand-held dynamic geometry in the classroom whilst at the 

same time seeking insights into successful classroom practice which 

might have wider application. 
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Chapter 1 

Dynamic geometry and social meaning- 
making 

An introduction 



Chapter 1 

Dynamic geometry and social meaning-making: An introduction 

This chapter provides an overview, in a broadly chronological 

manner, of the whole project. The origins of the project and its initial 

aims are discussed. I outline my own background and experience and 
how I came to the research. The basis of the work in the literature 

and some of the principles and methodologies adopted are discussed. 

The chronological progress of the project is summarised and 

technicalities of hardware and data collection briefly mentioned. An 

indication is given of the overall direction of the project in terms of 

theoretical influences, relevant literature and suggestions for the use 

of dynamic geometry software in the classroom. Reference is made to 

wider issues of group dynamics in the classroom. Publications 

arising from the project are listed and briefly discussed. 

Initial Influences 

This study has been an investigation into the potential of dynamic 

geometry software to influence pupils' ideas of construction and 

proof and how these ideas in turn are connected to mathematical 

meaning-making. The project has been based on the use of the TI 92, 

a hand-held calculator/computer which has available, among other 
facilities, a version of Cabri-Geometre. 

The study has investigated individual and group meaning-making and 
has reached positions in the study of the socio-cultural philosophy of 

education. However my background as a classroom teacher led to a 

conviction from the outset that the project should lead to classroom 

relevance. I was interested in the development of materials and 



classroom practice by applications of theory. I consider that these 

principles can be used by teachers in promoting mathematical 

meaning-making in the local community of practice which is the 

classroom and all those in it. 

Enquiry into a topic such as that under consideration here, the 

classroom use of dynamic geometry and the attendant processes of 

mathematical meaning-making, cannot be said to have a particular 

starting point. This thesis is a description of the work done and the 

position reached to date. It also details the contribution this project 
has to make to the discussion on how socio-cultural ideas and ideas 

on pupils' self awareness of their own learning, can be relevant in the 

classroom. This project continues and extends the work of previous 

researchers and has contributed to original knowledge on the topic. 

However, on a personal level it is also a chronicle of still-continuing 
development in the way I see myself as a researcher and teacher- 

practitioner. 

With these ideas in mind initial aims and objectives were identified. 

Initial Aims and Objectives 

The following objectives were identified at the outset, with a main 

aim to investigate the potential of hand-held dynamic geometry 

software in the mathematics classroom: 
1) To conduct a literature review in the areas of 

i) dynamic geometry use in the classroom 
ii) intuition and proof 
iii) socio-cultural theory in mathematical education. 
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2) To develop and evaluate classroom materials and approaches using 

hand-held dynamic geometry software. 

3) To investigate the impact of dynamic geometry software on the 

development of pupils' understanding of construction and proof, 

through appropriate data collection and analysis. 

4) To produce classroom material through development and 

refinement which realises the potential of dynamic geometry 

software. 

5) To contribute to the debate within the mathematics education 

community about the potential of hand-held dynamic geometry 

software to contribute to children's appreciation of construction and 

proof, through the dissemination of the findings of the study. 

The research has also been intended to address the use of readily 

accessible desktop computers to mediate children's learning. These 

objectives were reviewed in the light of ongoing progress. In 

particular, as the project went through successive cycles of 

development, there was a further element of emphasis, on the 

dynamics of classroom teaching and methods available for analysis 

of the interaction between teacher, pupil, group, the whole class and 

the technology in classroom practice. 

The contribution this research makes to the field is founded on an 

interest in illuminating successful classroom practice, using the 
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knowledge gained in practice and relating this to a background in the 
literature of socio-cultural theory. 

Relevant Literature 

Literature referring to the socio-cultural background of the project is 

discussed in Chapter 2. A wide-ranging review of literature on the 

use of dynamic geometry in the classroom, on ideas of construction 

and proof and topics specific to mathematics education is provided in 

Chapter 4. However it is relevant to include here a summary of 
literature which has informed and influenced the work and to indicate 

a theoretical perspective. 

This project analyses the development of geometrical ideas in a 
dynamic geometry environment from a socio-cultural perspective, 
based on the work of Vygotsky (1962,1978) and the interpretations 

and extensions of this work by others (Luria 1979, Cole 1979). For 

wide-ranging reviews of the field see Wertsch (1985), Wertsch and 
Tulviste (1992), Newman and Holzman (1993) and Daniels (1996). 

I have drawn extensively on the work of Lave and Wenger (1991) on 

the situated nature of learning, which brings forward the idea of 
legitimate peripheral participation. In more recent work Winbourne 

and Watson (1998) have pointed to the analysis of classroom activity 

with hand-held technology in terms of local communities of 
(mathematical) practice. 

Lave and Wenger also refer to the importance of transparency of a 

resource, such that the resource is a (visible) window on 
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mathematical meaning. The importance of considerations of 

transparency to aspects of mathematical education is dealt with by 

Adler (1998). Cobb and Yackel (1996) provide a further way of 

analysing interactions in mathematics classrooms, in terms of the 

establishment and maintenance of socio-mathematical norms. They 

refer to ideas of the use of argumentation, guided by the teacher, to 

take forward that which is `taken as shared'. 

Various researchers have dealt in particular with the use of dynamic 

geometry software. Elsewhere in this thesis I have drawn on the work 

of such writers as Hoyles, Healy and Noss (1995), Healy et al 
(1994a, b) and Jones (1997) who have dealt in particular with the 

learning processes which operate in a dynamic geometry 

environment. Other writers have dealt with the teaching of geometry 
in general, notably Mason (1991,1995) and Mason et al (1985). I 

have drawn on the work of de Villiers (1990,1991) and Schumann 

and de Villiers (1993) on the nature and function of proof and have 

found especially relevant Fischbein's (1982) writing on intuition, 

conviction and proof. The way these sources and others have 

provided an initial background and gone, on to influence the progress 

of the project is detailed fully in subsequent chapters. 

Influence of Previous Experience 

I came to this project after thirty years as a classroom teacher, 

including fifteen years as a member of various writing groups for 

major curriculum projects, (SMP 11-16 and SMP Interact). This is 

not to say that I can supply any answers, rather that some relevant 

questions can be asked. I adopted the SMP 11-16 course in an inner- 
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city school soon after it was published and used it with an individual 

learning approach in mixed ability classes. The variety and relevance 

of the material available was refreshing and the reaction of pupils and 

staff was encouraging. However, it became clear that this approach 

could reduce the role of the teacher to that of classroom manager for 

most of the lesson. An enthusiasm for progress through the scheme at 

the expense of considered involvement in the mathematics, and a 
dearth of opportunity for social interaction on the part of the pupils 

were also apparent. 

As an attempt to resolve these difficulties a topic-based approach was 

adopted with all the class studying the same topic at different levels. 

This approach enabled social interaction and allowed the teacher to 

return to leading the class in their learning. 

I have seen the advantages of the use of information technology in 

various forms, whether via a single computer in the classroom, or by 

moving to a computer suite, or more particularly, with class sets of 

graphic calculators. This experience has led to an appreciation of the 

way the use of technology can mediate learning and motivate pupils 
in the classroom. Children of all abilities can, with suitable material 

and teaching, use graphic calculators, computers or other technology 

to great advantage. It must be a particular concern of the teacher, 

however, to make sure that the objective remains the making of 

mathematical meaning, not the use of technology for its own sake. I 

will return to this concern later, in chapter 9 when transparency of a 

resource is discussed. 
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An Introduction to Dynamic Geometry 

I have seen in my own and other classrooms the power of simple 

dynamic images and ways of animating diagrams, for example using 

an overhead projector, or by the teacher using an argument based on 

a dynamic idea. Cine and, more recently, computer animations of 

particular diagrams are available. These devices demonstrate a 

multiplicity of cases before pupils' attentions are fastened to a static 

diagram, and it is in this area that the drag function in a dynamic 

geometry software environment operates. This function allows the 

independent geometrical entities in the diagram to be dragged on the 

screen and the consequent, related changes in the diagram to be 

observed. It is the defining property of a dynamic geometry 

environment. A diagram can be drawn using the cursor to trace an 

outline and specify points, all of which are independent of each other. 

Alternatively it can be constructed by specifying independent points 

or lengths and using these to define related dependent properties. In 

each case the independent points can be dragged, by highlighting 

them and using the drag button. 

For instance in figure 1.1 two squares have been drawn, one by eye, 

one by construction. 

xr ti c c. ý rHýO c"'ý0 
S HOW HOW 

MAIN DEG AUTO UH 

Fig 1.1 

1\ 23Y Str i. ý i i"ý1q 

ZýA 
MIN PEG hPPROX VN 

Fig 1.2 
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Dragging (as in figure 1.2) has different effects on each square. In the 

case of the drawn square on the left, each corner is an independent 

point, and as such can be dragged, allowing the square to be 

distorted. Although the original appearance of this square is exactly 

the same as that on its right, drawing accurately in this way is only 

possible because of the coarse nature of the screen graphics on the 

T192. It is drawn accurately only in the sense that it is possible to do 

this 'freehand' on this machine. Each corner can be dragged because it 

is independent of the other points in the diagram. 

In the case of the square on the right, in figure 1.2 the construction 

method has been shown by using the Hide/Show function. The 

original circle is defined by its centre and a radius point, and a 
diameter is drawn. Two perpendiculars are drawn to this diameter, 

one at the circumference and one at the centre. This last defines a 

comer of the square on the circumference and a further perpendicular 
is drawn from this corner to define the square. The independent 

elements in the diagram are the centre and size of the original circle 

and the diameter chosen to define the first side of the square. The size 

of the square can be altered by changing the size of the circle, the 

orientation of the square changed by moving the line used to define 

the first diameter. In addition the whole diagram can be moved by 

dragging the centre of the circle. But as the square is completely 
defined by the circle and the original diameter it must remain a 

square under any of these dragging processes. 
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Relevance to the Classroom 

It was a particular concern from the outset to relate this project to 

classroom practices and to the dynamics available to the teacher in 

using the technology. The type of software used in classrooms and 

the way it is used can lead to a wide variety of learning experiences 
being offered to pupils. Some software, of the type offered for 

individual use, can lead to closed relationships between single pupils 

and the screen. In contrast to this, I see the technology as a resource 

to be used in the classroom to promote social meaning-making and to 

contribute to the activity of a community of mathematical practice. 
The use of the technology in this way lays emphasis on the role 

which all members of the classroom community take. In particular 

the role of the teacher is more, rather than less important if 

technology is to be used in a way which promotes social learning. 

Technology is used by teachers as another tool. Using technology 

does not diminish the role of the teacher as the guardian of the 

activity of the local community of mathematical practice, drawing 

forward the meaning-making of individuals and formalising it, 

engaging in the dialectic between scientific and spontaneous 

concepts. Technology use may mean that even more thought should 
be given to the way the teacher sets the social and socio- 

mathematical norms of the classroom, chooses appropriately 

transparent material and seeks to promote its use in a way which 

encourages the participation of pupils in the activity of social 

meaning-making within local communities of practice. 

13 



Methodology and Data Collection 

The methodology adopted in this study has been to use cycles of 

research, the first emanating from an initial grounding in the 

literature and previous experience. Each cycle has built on the 

previous one, with additional input from further reading in the 

literature. The adoption of such a strategy complements the 

methodology adopted. Drawing eclectically on various 

methodologies relevant to the complex social system which is present 
in the classroom dynamic is an approach advocated as suitable for 

classroom research by Klafki, (1998). Work was carried out in 

secondary schools in England, with children in years 7- 9, that is aged 
from 11 to 14 years. Children from four different schools have been 

involved. Data collection has been by participant observation by the 

teacher/researcher, using field notes and audio recorded dialogue. 

Pupil diaries were also used. 
After a short pilot study (chapter 5), work was undertaken with a 

class of thirty Year 7 pupils (chapter 6). Chapter 7 describes more 
detailed investigation into meaning-making with dynamic geometry, 

working with small groups of children. Chapters 8 and 9 deal with 

work with whole classes following refinement of materials and 

objectives, chapter 10 discusses issues of classroom and group 
dynamics and chapter 11 provides a final overview, with some 

suggestions of future directions. 

A further element of the methodology has been dialogue with other 
researchers. This was promoted in particular by the dissemination of 
findings in research publications, detailed in appendices I, II, III and 
IV. 
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The Equipment 

The project used the T192 hand held computer, and in particular the 

version of Cabri-Geometre available on this machine. There is a 
detailed description of the T192 in appendix V, but many who know 

this machine, and have also used Cabri on desktop machines, have 

expressed reservations about the complication of the keyboard and 

the slowness of response (the machine has limited memory). I think it 

is worth saying here that I have found all the pupils I have met to be 

well motivated to the introduction of the hardware and able to make 

progress reasonably quickly. I have always tried to make the 

diagrams used simple, for considerations of principle dealt with 

elsewhere (see particularly chapter 9), so that dragging works 

reasonably well. (Trying to drag complicated screens on the TI 92 is 

not successful. ) Whilst slow and coarse in the eyes of those who have 

used dynamic geometry on a desktop computer, dragging has been 

accepted by children new to the idea. The problems of a complicated 
keyboard are not insuperable and there are advantages in small hand- 

held machines which can be moved to a corner of the desk when the 

teacher wants the children to use paper. An overhead projector 

version of the T192 was available which could be used for class 
discussion. I consider that the findings of this study are easily 

applicable to other dynamic geometry environments. Indeed I will 

seek later to apply some of the findings to broader considerations of 

technology use in mathematics classrooms and to clarify the socio- 

cultural principles underpinning them. 
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Dynamic geometry is based in the formal, Euclidian world. A glance 

at the language of the drop-down menus, figure 1.3 

Fl k 
TT T  TTT 

--" 

1: ara e Line 
3: Midpoint 
4: Per endicular Bisector 
5: Angle Bisector 
6: Macro Construction º 
7: Vector Sum 
8: Compass 
9: Measurement Transfer 
A: Locus 
B: Redefine Point 

TYPE OR USE 44t4 " [ENTER]=OK AND [ESC]=CANCEL 

Fig 1.3 

shows that successful work with younger (11-14 year old) pupils 
depends heavily upon teacher intervention, especially at the outset. 
The language of formal Euclidian geometry used on the menus is not 
familiar to these pupils, and this must be clarified whilst guiding the 

pupils around the keyboard. However providing a sheet describing 

`Useful Keys' was found to help (see appendix VI), as was a large 

poster of the keyboard so that keys could be indicated clearly to the 

whole class. I have been able to use the T192 with classes and see 

successful results in terms of mathematical meaning-making well 
before the end of a first forty minute lesson. Indeed, because of the 

restricted time available in English schools, where pressure to cover 

the National Curriculum makes it difficult to gain access for research, 
it was essential that sufficient mastery of the technology was 

achieved quickly. 
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Data Collection Techniques 

The recording method used was audio recording of classroom 
interactions and field notes of the screens used by teacher and pupils. 
Because the screens used were kept simple for other reasons 
(transparency and the fact that dragging was faster in less 

complicated diagrams), it was possible to record them quickly by 

field notes. Final screens from sessions could be transferred to a 
desktop computer and an overhead projector version of the machine 

was available. When working with small groups it was found useful 

to cover desks with paper and to scribble notes so that pupils' 
diagrams and diagrams drawn by the teacher were recorded. 

Outcomes 

There have been many outcomes to this project, some particular, 

some more general and some of them personal. 

"I believe I have illuminated ways in which dynamic geometry 

software can be used in classrooms in such a way that the 

meaning-making of the community can be advanced, taking into 

account the advantages of hand-held machines and considerations 

of resource transparency. 

91 have provided a theoretical analysis, based in the socio-cultural 
literature, for the advantages of group work and social meaning- 

making in the use of technology. I feel that this analysis can 

contribute to a wider debate about good classroom practice. 
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" Other conclusions are centred around the ways in which teachers 

and children drive forward learning, in particular the ways 

teachers can foster an environment in which children are critical 

of their own learning 

"I have been able to review my own classroom practices, some of 

which developed over a period of years, some of which have 

recently changed, in the- light of reading in the literature and the 

results of this study. 

The current position I have reached is fully dealt with in chapter 11, 

but it is appropriate to provide a brief overview here. The four 

constituent elements in the classroom are seen as the subject content, 

the class pupils, the technology and the teacher. I have looked at the 

detailed interaction between these elements in five different ways, 

spontaneous/scientific concepts (Vygotsky, 1962), sense/meaning 

making (Schultz, 1994), explanation and social proof (de Villiers, 

1991), construction and proof (Hoyles et al, 1995) and intuition, 

conviction and proof (Fischbein, 1982). I see these five factors as 

acting within an area broadly enclosed by the elements of content, 

pupils and class, technology and teacher. Outside this area there are 

more general factors which I believe are relevant to the learning 

environment in the classroom. These are the ideas of socio- 

mathematical norms (Cobb and Yackel, 1996), whole-class zone of 

proximal development (Hedegaard, 1990) and transparency (Lave 

and Wenger, 1991, Adler, 1998). A further strong influence is the 

ability of pupils to be constructively self-critical of their own learning 

(Mercer et al, 1999). As opposed to the immediate nature of the first 
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five detailed interactions mentioned above, these are more long-term 

considerations, which can be taken up and developed by teachers on a 

much longer time scale. These short and long-term factors are 

relevant to the criteria advanced for the development of local 

communities of practice (Winbourne and Watson, 1998). 

In all these areas I consider the input of the teacher to be paramount. 

The teacher has a place in the immediate, detailed, meaning-making 

of the community of practice and will be continually involved in 

ways which can be analysed as suggested above. But the teacher is 

also able to contribute to the history of that community by 

developing, over the long term, classroom dynamics which draw the 

community of practice together in their learning activity. 

Publications arising during the project 

A major element of this research programme has been the 

dissemination of findings as an ongoing part of the project, to engage 

as an active participant in the mathematics education research 

community, using this experience to feed into the continuing 
development of the study. To this end, as well as being dealt with in 

this thesis, this research is reported in four publications which have 

arisen from the project. In Gardiner and Hudson (1998) the 

Vygotskian notion of scientific and spontaneous concepts is used to 

analyse the meaning-making of a group of children using dynamic 

geometry (see appendix I). In Gardiner, Hudson and Povey (1999) 

there is a consideration of the significance of local communities of 

practice as they were observed in class and group work with dynamic 

geometry (appendix II). In Gardiner, Hudson and Povey (2000) 
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aspects of construction and proof in a dynamic geometry 

environment are considered (appendix III). In Gardiner (2000) the 

way my ideas on classroom use of geometry and the technology can 
be applied to work with younger pupils (9-10 year olds) is reported 
(appendix IV). 
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Chapter 2 

Theoretical Background 
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Chapter 2 

Theoretical Background 

The general socio-cultural literature (that which is not specifically 

concerned with mathematics) which has been used to guide the 

project is examined and a theoretical background is developed from 

this literature. Socio-cultural concepts which are referred to in the 

rest of the work, such as social learning, the zone of proximal 
development, spontaneous and scientific concepts, activity and 

meaning-making are discussed. Whilst chapter 3 deals more fully 

with the methodology of the project, this chapter mentions aspects of 

methodology as related to the Vygotskian background of the rest of 

the work. 

Introduction 

In this chapter I discuss the theoretical underpinning which is used to 

provide a foundation to this project. The analysis of classroom 

research and practice in the rest of the thesis is from the perspective 

of socio-cultural theory using, as detailed later, the writings and 

researches of Vygotsky (1962,1978) and of later workers such as 
Lave and Wenger (1991), Watson (1998) and Lerman (1998).. These 

writings and my interpretation of them form one of the themes 

running through the whole of the thesis and it is relevant to discuss 

them at the outset. The socio-cultural ideas from this chapter have 

been used to analyse the way the project has used dynamic geometry 

to illuminate pupils' ideas of construction and proof. This aspect of 

mathematical meaning-making is a second theme running through the 
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work, but it is appropriate to examine the literature relating to this 

area separately. Accordingly the literature and background specific to 

mathematics education and to construction and proof in dynamic 

geometry are examined later, in chapter 4. 

Vygotsky can be seen as a methodologist as well as a psychologist, 
indeed authorities such as Newman and Holzman (1993) would see 

the two elements as complementary and inseparable. 

This chapter contains a section on Vygotskian methodology and it is 

appropriate to deal with issues of methodology next, in chapter 3. 

This chapter begins by looking at the background in Vygotsky's 

writing, then looks at developments of these writings by considering 

the interpretation of the concept of the zone of proximal development 

within the thinking of various researchers. How the idea of the zone 

of proximal development can be extended to encompass communities 

of learners is discussed. After considering Vygotskian methodology, 

the important ideas of activity and meaning-making are discussed. A 

discussion of situated cognition within communities of practice 

precedes a final section dealing with the topic of transparency, before 

a final summary. 

Vygotskian Background 

The works of L. S. Vygotsky, largely written in the years just before 

his early death in 1934, greatly influenced Luria and came to 

prominence in the West largely as a result of Cole's long 

collaboration with Luria. Accordingly it was only from the sixties 

23 



onwards that translations of Vygotsky's works became available 

(Vygotsky 1962,1978, Luria, 1979, Cole, 1979). More recent 

reviews of the field are available, both as original overviews, such as 

Newman and Holzman (1993) and Wertsch and Tulviste, (1992) and 

collections of articles (Wertsch, 1985 and Daniels 1996). 

Daniels (1996) points out the wide ranging and eclectic nature of 

Vygotsky's work. He points to the fact that most of his work in 

educational psychology took place over a relatively short time, and 

thus was not fully expanded before his death. He suggests that this 

may have contributed to the breadth of interpretation of this work in 

the modern educational field and to the richness of the many 

developments, in their different directions, arising from his thinking. 

However initially at least it is instructive to retain a broad perspective 

and to try to look at the wider influence of Vygotsky in the fields of 

educational and psychological research and research methodology. 

Two main aspects of Vygotsky's thinking have influenced later work: 

1. Vygotsky formulated the general genetic law of cultural 
development, emphasising the idea of socialisation before 

internalisation, the inter-psychological preceding the intra- 

psychological. 

Any function in the child's cultural development appears 

twice, or on two planes. First it appears on the social plane, 

and then on the psychological plane. First it appears between 

people as an interpsychological category, and then within the 
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child as an intrapsychological category. This is equally true 

with regard to voluntary attention, logical memory, and 
formation of concepts, and the development of volition. We 

may consider this position as a law in the full sense of the 

word, but it goes without saying that internalization 

transforms the process itself and changes its structure and 
functions. Social relations or relations among people 

genetically underlie all higher functions and their 

relationships (Vygotsky, 1981 a, p. 163) 

Vygotsky defined as 'higher mental functions' volitional 
functions such as 'voluntary attention, voluntary memory, 

and rational, volitional, goal directed thought' (Minick, 

1987, p. 21). Vygotsky saw these higher mental functions 

as developed by the intervention of signs or tools, 

principally speech. These tools allow an intermediate step in 

the psychological mechanism which leads to the conscious 

adaptation of behaviour, to meaning-making. Higher mental 
functions involve the bringing together of the social and the 

individual, via the mediation of tools. 

2. Vygotsky used the idea of a zone of proximal development (ZPD), 

by which he meant the area where development might take place, 

the boundaries of the zone being defined, at least in initial work, 

by a child's unaided ability and the same child's ability when 

aided by intervention from society, originally by `adults or more 

competent peers'. 
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Vygotsky (1978) originally defined the zone of proximal 
development in terms of intelligence testing. He posed the question 

of two children found to have the same mental age in unaided testing, 

who were then shown to have different potentials after intervention 

from the teacher. 

Suppose I investigate two children upon entrance into 

school, both of whom are twelve years old chronologically 

and eight years old in terms of mental development. Can I 

say that they are the same age mentally? Of course. What 

does this mean? It means that they can independently deal 

with tasks up to a degree of difficulty that has been 

standardized for the eight year-old level. If I stop at this 

point, people would imagine that the subsequent course of 

development and of school learning for these children will 
be the same, because it depends on their intellect...... Now 

imagine that I do not terminate my study at this point, but 

only begin it... suppose I show [these children] have various 

ways of dealing with a task.. . that the children solve the 

problem with my assistance. Under these circumstances it 

turns out that the first child can deal with problems up to a 

twelve year-old's level, the second up to a nine year-old's. 

Now are these children mentally the same? 
When it was first shown that the capability of children with 

equal levels of mental development to learn under a 

teacher's guidance varied to a high degree, it became 

apparent that those children were not mentally the same and 

that the subsequent course of their learning would obviously 
be different. This difference between twelve and eight, or 
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between nine and eight, is what we call the zone of proximal 
development. (Vygotsky, 1978, pp 85-86) 

So followers of Vygotsky have considered the development of the 

mind as happening in the zone of proximal development. However 

the concept of the zone of proximal development is broad, and 
different workers have found their own ways of examining the 

processes operating there. There is almost a chronological drift to the 

way the zone of proximal development has been regarded and the 

broadening of the definition over time is perhaps an indication of the 

wide applicability of the concept, and the way it has been used both 

as a precise analytical tool and as a useful broad band of ideas. 

Indeed the various ways in which the zone of proximal development 

has been defined and the ideas advanced to explain the interactions 

between society and the individual which happen there form a useful 
framework for a review of the field. 

Definitions of the zone of proximal development have ranged from 

those related to development and ̀ scaffolding', (Vygotsky, 1962, 

Wood, Bruner and Ross, 1976 and Bruner, 1986), to assessment 
(Vygotsky 1956 pp 446-447), to the distinction and interaction 

between spontaneous and scientific concepts, (Kozulin, 1987 p 

xxxiv), to definitions in activity theory (Engeström, 1987 p 174), and 

to the class and teacher as a whole (Hedegaard, 1990). 

Lave and Wenger (1991 pp 48-49) discuss this movement to a 
broader cultural definition of the zone of proximal development. 

Following them, in this study it has been found helpful to group the 
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various approaches to the zone into three broad categories, which are, 

to some extent, in a chronological sequence. Firstly the initial work 

of Vygotsky and subsequent work by Wood, Bruner and Ross (1976) 

used the distance between unaided and aided problem solving and 

proposed the idea of `scaffolding' to explain the pedagogical 

approaches used in the zone. In this view it is mediation by tools 

which leads to development by internalisation. Vygotsky saw 

mediation of behaviour by sign systems, principally speech, as the 

way in which the higher voluntary mental functions are changed. 

Mediation and internalisation are also effected by tools: 

psychological devices such as mnemonics (Vygotsky, 1981b, 

Zinchenko, 1985), by speech (seen variously as internal, egocentric, 

and social, see Wertsch and Stone, 1985), the teacher (Jones, 1997) 

and the screen (Hoyles et al 1995). 

A second approach begins by extending Vygotsky's discussion of 

scientific and everyday concepts. This cultural interpretation sees 

development taking place by the dialectical interaction of the socio- 

historic, scientific concepts, provided by social intervention, and the 

everyday concepts which form part of the experience of the 

individual. As development proceeds a dialectic between everyday 

and scientific concepts will operate, concepts which were held as 

scientific will become everyday or spontaneous, whilst everyday 

concepts are themselves instrumental in promoting a framework 

within which scientific concepts can operate. 

In working its slow way upward, an everyday concept clears 

a path for the scientific concept in its downward 
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development. It creates a series of structures necessary for 

the evolution of a concept's more primitive, elementary 

aspects, which give it body and vitality. Scientific concepts 
in turn supply structures for the upward development of the 

child's spontaneous concepts toward consciousness and 

deliberate use. (Vygotsky, 1962 p. 109) 

Confrey (1995) discusses Vygotsky's views on development as 
informed by ideas of dialectical and historical materialism and notes 

that he refers to development as 

..... a complex, dialectical process characterised by a 

multifaceted, periodic timetable ... by a complex mixing of 

external and internal factors, and by a process of adaptation 

and surmounting of difficulties. (Vygotsky, 1978, p. 151) 

Confrey argues the need for an historical analysis and that one must 

examine the growth of higher mental functions in order to understand 

them. She discusses the work of Davydov (1990), who emphasised 

the importance of labour in cultural development and the way in 

which labour, by transforming objects using tools, removes 
incidentals and allows invariant properties to be seen. From this 

work, she maintains: 

..... one gets the sense of the centrality of the activity of 
labor on cognition for Marx, Engels and subsequently 

Vygotsky. Also one learns that the internal character of an 

object is not a direct perceptual thing but a mediated 

relational meaning. Finally, tools, as the means of 

transformation of labor, possess a central role as both means 
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of cultural transmission and as intimately associated with the 

results of labor. (Confrey 1995 p. 39) 

These two classifications of approach then, of mediation and 
internalisation and of a historico-cultural approach drawing on the 

idea of scientific and everyday concepts, can be identified. In both of 

these classifications, there is a somewhat limited function or use for 

the social in the zone of proximal development. The social element of 
learning is seen as an almost mechanistic factor in the internalisation 

of knowledge. There is an element here of Newman and Holzman's 

(1993) `tool for result', of the social being lifted down from the 

toolrack as and when needed, as opposed to `tool-and-result', the 

forming of a unity of social meaning-making activity. This critique is 

developed by'Lave and Wenger who argue: 

In these two classes of interpretation of the concept of zone 

of proximal development, the social character of learning 

mostly consists of a small `aura' of socialness that provides 
input for the process of internalization viewed as 
individualistic acquisition of the cultural given. There is no 

account of the place of learning in the broader context of the 

social world. (Lave and Wenger, 1991 pp 48-49) 

More recently, Lerman (1998) makes a similar distinction 

between developments of Vygotsky's thinking on what 
happens in the zone of proximal development. 

..... in the zone of proximal development one can study the 

mediation of tools but 
.... activity theory is more fruitful for 
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longer-term studies, taking account of goals and needs. 
There is a dialectical unity in these two methodologies in 

that, whilst both are rooted in the cultural psychology of 
Vygotsky, mediation is a generalising principle, looking for 

similarities, whilst activity theory is a specialising one. 

(Lerman 1998, p 75) 

Thus Lerman acknowledges differing roles in the ZPD for mediation 

and activity theory, but sees a complementarity between these two 

approaches. 

Workers in activity theory, such as Bakhurst (1988) and Engeström 

(1987) among others, have used a background of the zone of 

proximal development. Lave and Wenger (1991) see a societal 

element to the zone of proximal development leading to social 

transformation. Hudson (1996) studied group dynamics in the use of 

technology and Hedegaard (1990) advanced the concept of a whole- 

class zone of proximal development. 

Lave and Wenger (1991) propose the idea of local communities of 

practice and consider learners as members of those communities, 

with learning taking its place in the overall cultural activities of the 

community. Newman and Holzman (1993) see revolutionary activity 

operating as the unit of Vygotskian analysis, leading meaning- 

making in the zone of proximal development. 

The significance of the ZPD, in our view, is that it is not 

premised on the individual-society separation; it is an 
historical unity. In fact, it methodologically destroys the 

need for interactionist solutions to the dualism of mind and 
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society because it does not accept their ontic separation in 

the first place! The claim that learning takes place in the 

ZPD is neither a claim about learning nor a claim about the 

ZPD. For the ZPD is not a place at all; it is an activity, an 

historical unity, the essential socialness of human beings 

expressed as revolutionary activity, as Marx put it. 

(Newman and Holzman 1993 p 79) 

Daniels (1996) has pointed out that Newman and Holzman's analysis 
is essentially political in nature, contrasting as it does pragmatist and 
dialectical materialist accounts. 

Just as in Lave and Wenger's model of three types of 

approach to the notion of ZPD, Hood Holzman (1985) and 
Newman and Holzman (1993) are questioning the breadth of 
interpretation that is placed on the `social' in the formation 

of mind with the additional concern for the mechanism of 

mediation. 
(Daniels 1996 p 9) 

The emphasis in much of the above has been on the individual in the 

zone of proximal development, albeit on the interactions of that 

individual with society. I wish to look now at work which advances 

the idea of a zone of proximal development involving the class and 

their teacher. 
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Extending the ZPD 

In a long-term study in a Danish school Hedegaard (1990) sought the 

development of a ZPD which included the classroom as a whole. This 

was seen to incorporate the teacher, the pupils and their activity 

rather than the consideration of an individual's learning: 

This activity, in principle, is designed to develop a zone of 

proximal development for the class as a whole, where each 

child acquires personal knowledge through the activities 

shared between the teacher and the children and among the 

children themselves. (Hedegaard 1990 p 361) 

Hedegaard reports in the same paper a motivational shift in children's 
focus, from an interest in the concrete to interest in the derivation of 

principles which can be applied to the concrete. She goes on to 

discuss the evidence she found for the development in children of 

critical and evaluative attitudes to their own performance and 

capabilities, and to the content of teaching. The importance of 

children being consciously involved in and critical of their own 
learning processes is a theme to which I will return later in this thesis. 

More recently Lerman (1998) has pointed to a definition of the ZPD 

derived from the work of Davydov (1988), seeing the ZPD as 

created in the learning activity, which is a product of the 

task, the texts, the previous networks of experiences of the 

participants, the power relationships in the classroom, 

etc...... The zpd is the classroom's, not the child's. In 

33 



another sense the zpd is the researcher's: it is the tool for 

analysis of the learning interactions in the classroom (and 

elsewhere). (Lerman 1998 p 71) 

In the same work, Lerman points out that Vygotsky introduced the 

idea of the ZPD only fifteen months before his death, and reference 
has been made previously to the wide range of interpretations of the 

concept. In general however, 

it provides the framework, in the form of a symbolic space 
for the realisation of Vygotsky's central principle of 

development. (Lerman 1998 p 71) 

This central principle is of social learning leading individual 

learning, of the inter-psychological preceding the intra- 

psychological. How best to employ this principle in the context 

of dynamic geometry in the classroom is, of course, the central 

question of this thesis. In developing a position on this in the 

rest of the work, I will return to the concept of the zone of 

proximal development and what happens there. 

Vygotskian Methodology 

From a Vygotskian perspective methodology should not only be all- 

pervasive in a study, it should be the study. 

.. the method is simultaneously prerequisite and product, the 

tool-and-result of the study (Vygotsky 1978 p 65) 
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Newman and Holzman take up the idea: 

The attempt to categorize Vygotsky, to `dualize' him as 

either a psychologist or a methodologist, contradicts, 
ironically, not only Vygotsky's life-as-lived, but his self- 

conscious intellectual revolt against dualism. (Newman and 
Holzman 1993 p 16). 

Vygotsky can be seen as a methodologist/ psychologist in the sense 

that his all-embracing view of the science of learning brings in the 

Marxist historico-cultural dialectic and the ideas of revolutionary 

activity and practice. It provides a methodology which informs and 

pervades a study and is available to constantly influence the 

conclusions drawn and the direction of future progress. This 

methodology is echoed in the idea of "tool-and-result" discussed by 

Newman and Holzman (1993), who point to a distinction between 

tools such as hammers and screwdrivers (tool for result), and dies and 
jigs (tool-and-result). Hammers and screwdrivers are bought and used 

as needed, dies and jigs are tools designed and refined by the worker, 

the toolmaker. Vygotskian methodology is a `tool-and-result'. Like 

the jig, it is bound up in its result. Newman and Holzman say 

The toolmaker's tool is different in a most important way. 
While purposeful, it is not categorically distinguishable from 

the result achieved by its use. Explicitly created for the 

purpose of helping to make a specific product, it has no 

reified prefabricated social identity independent of that 

activity. Indeed, empirically speaking, such tools are 

typically no more recognizable as tools than the product 
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(often a quasi-tool or small part of a larger product) itself is 

recognizable as product. They are inseparable. It is the 

productive activity which defines both - the tool and the 

product (the result). (Newman and Holzman 1993 p 38) 

The concept of activity has a special significance in the applications 

of Vygotskian ideas and is dealt with more fully in the next section. 

Activity 

Activity has been seen as the fundamental unit of Vygotskian 

psychology, just as behaviour might be seen in the same way in some 

work in the United States and consciousness in some European work. 

Zinchenko (1985) points out that: 

..... the problem of units for psychological research has 

confronted every school of scientific psychology. In the past 

a variety of phenomena have been singled out in this 

capacity. For example sensations (in associationism), 
figure/ground (in Gestalt psychology), the reaction or reflex 

(in reactology and reflexology respectively), set (in set 

psychology), and the behavioural act (in behaviorism) have 

served as units. (Zinchenko 1985 p. 95) 

Kozulin (1986) discusses the role of activity in Soviet psychology, in 

particular referring to the interpretation of the idea by Leontiev (see 

for instance, Leontiev, 1981, pp318-349) where activity was used as 

both a unit of analysis and the subject of that analysis. Kozulin 

identifies the tautology in this approach, and describes the work of 
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later Soviet workers (Davydov 1981, Lomov 1982, Zinchenko, 1985) 

and how it began to influence Western thinking. Kozulin summarises: 

As I see it, the real opposition between Vygotsky's theory 

and Leontiev's thus appears as an opposition of the 

following two schemas: Vygotsky's theory views higher 

mental functions as a subject of study, semiotic systems as 

mediators, and activity as an explanatory principle. In 

Leontiev's theory, activity, now as activity, and now as 

action, plays all roles from subject to explanatory principle. 
(Kozulin 1986 p 271) 

Activity then is a two-way, dialectical process, an interaction both 

between the individual and society and between society and the 

individual. 

Practical-critical activity transforms the totality of what there 

is; it is this revolutionary activity that is essentially and 

specifically human. Such activity `overthrows' the over- 
determining empiricist, idealist and vulgar materialist 

pseudo-notion, of particular `activity' for a particular end - 
which in reality, i. e., society, is behavior. The distinction 

between changing particulars and changing totalities is vital 

to understanding tool-and-result methodology and, therefore, 

revolutionary activity. (Newman and Holzman 1993 p 41) 

The object of activity can become confused. I referred in chapter 1 to 

my experiences with texts such as the SMP 11-16 scheme driving the 

work of teacher and class in a way which was identified as unhelpful. 
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Engeström (1991) addresses the problem of the text driving 

children's learning. He refers to 

the school text as the object of activity instead of being an 
instrument for understanding the world. When the text 

becomes the object, the instrumental resources of the activity 

are impoverished - students are left `to their own devices'. 

(Engeström 1991 p 250) 

So, to summarise, what is activity, in the sense in which I want to use 

the term? It is the ability to engage, through social interaction, with 
intention, in the process of making meaning. The engagement in 

activity referred to here is a tool-and-result phenomenon, that is the 

engagement is now as tool, now as result. The social interaction 

involves the learner drawing from and giving to the social, cultural 

and historic community, again in a tool-and-result way. The intention 

points to a conscious involvement of participants. They see 
themselves as members of a community practising revolutionary- 

critical activity for the purpose of making meaning. Meaning-making 

is a term I will use repeatedly in this thesis and as such it too deserves 

special attention. 

Meaning-making 

Schultz (1994), in a paper on the hermeneutical aspects of activity 

theory, offers an interpretation of meaning as a referent property 

containing overall cultural intention. He distinguishes meaning and 

sense, seeing sense as being a much more immediate concept. Sense 
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refers to the application of referent meaning made by an individual to 

the circumstances prevailing at the time for that individual, and as 

such will depend on an appreciation of meaning but also on 

emotional, historical and cultural factors. Meaning is seen as an 

objective function of a phenomenon, independent of the individual. I 

will refer to this distinction further in Chapter 9, where the distinction 

between meaning-making and sense-making will be more closely 

examined. 

In the rest of this thesis, except in Chapter 9, I want to use the term 

meaning-making to signify both the appreciation of the referent, 
intentional aspects of meaning and the sense-making aspects 
discussed by Schultz (1994). The distinction between this meaning- 

making, grounded in the activity of the individual in society and 

society in the individual, and the positivist idea of understanding is 

made by Lerman (1998). He speaks of his reasons for avoiding the 

term `understanding': 

The term is part of the regime of truth which locates power 
in the hands of teachers who can say when a child 

understands or doesn't, independently of what s/he produces, 

verbally or in writing (Watson, 1995). Its entirely internal 

nature makes it a rather useless notion (Lerman, 1994), 

whilst its association with closure places it in a positivist 

paradigm. (Lerman 1998 p 75) 

Thus the term understanding implies a closed, finished 

process, whilst meaning-making is seen as an on-going, 
dialectical process of involvement in social activity. 
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After referring to the work of Schultz (1994), Hudson et al (1997) go 

on to discuss the work of Crawford (1996) on activity theory. 

She highlights how activity denotes a personal (or group) 

involvement, an intent, a commitment that is not reflected in 

the usual meaning of the word in English. She draws 

attention to the fact that Vygotsky wrote about activity in 

general terms to describe the personal and voluntary 

engagement of people in context - the ways in which they 

subjectively perceive their needs and the possibilities of a 

situation and choose actions to reach personally meaningful 

goals. In building upon Vygotsky's work, Leont'ev, 

Davydov and others made clear distinctions between 

conscious actions and relatively unconscious and automated 

operations. 
(Hudson et al 1997) 

Newman and Holzman (1993, Ch. 6) refer to the English title used 
for Vygotsky's (1962) work `Thought and Language' and the 

subsequent title `Thinking and Speech'. They see a dialectic between 

learning and development being complemented by a dialectic 

between meaning-making and language-making, and propose the title 

`Meaning-making/Language making' for Vygotsky's work. 

Long before children do what is recognized as speaking, 

they are making meaning; they are reorganizing the 

determining environment, which includes linguistic 

elements. It is by virtue of children learning to use these 

elements that they learn the societal use of them (language- 
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making/thinking). While sounds and words may be 

necessary tools for language making, meaning-making is its 

historical precondition. (Newman and Holzman, 1993 p 113) 

These perspectives on activity theory and meaning-making 

move towards ideas of empowerment, of children taking 

responsibility for their learning by seeing it as part of the 

activity of the community in which they find themselves. 

.. 'good learning' is and must be learning in advance of 
development precisely because and as one learns that one is 

a learner (inseparable from being related to as a learner) 

through revolutionary activity - making meaning - in the 

ZPD. 

(Newman and Holzman 1993 p 144) 

Situated Cognition within Local Communities of Practice 

I have referred earlier to Lave and Wenger's (1991) views on the 

significance of the idea of the zone of proximal development. The 

important contribution of Jean Lave to the broad field of Vygotskian 

socio-cultural studies, in this work (Lave and Wenger, 1991) and 

others, (Lave, 1988,1993) is now discussed. 

Lave decided to move outside the classroom, to look at learning in 

society, in order to better understand the teaching-learning 

environment. She refers to research, for example, amongst tailors in 

Liberia, midwives in Yucatan and quartermaster technicians in the 
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US Navy. She identifies `situated learning', learning firmly related to 

the activity of a community of learners. 

In the concept of situated activity we were developing, 

however, the situatedness of activity appeared to be anything 

but a simple empirical attribute of everyday activity or a 

corrective to conventional pessimism about informal, 

experience based learning. Instead, it took on the proportions 

of a general theoretical perspective, the basis of claims about 

the relational character of knowledge and learning, about the 

negotiated character of meaning, and about. the concerned 
(engaged, dilemma-driven) nature of learning activity for the 

people involved. That perspective meant that there is no 

activity that is not situated. It implied emphasis on 

comprehensive understanding involving the whole person 

rather than "receiving" a body of factual knowledge about 

the world; on activity in and with the world; and on the view 

that agent, activity, and the world mutually constitute each 

other. 

(Lave and Wenger, 1991, p. 33) 

In the classroom this thinking will mean that we look at 
learning activity as situated, not just in the local social 
interactions of the child, but in the classroom, school and the 

wider society outside school. It will mean that we must 

consider school learning as situated cognition, and as such 
influenced by societal factors, some which we can recognise, 

some which we cannot know about, and some which, although 

we can accept their existence, remain beyond our control. 
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According to Lave and Wenger, situated cognition occurs via 
legitimate peripheral participation, with learners (newcomers, 

apprentices) being brought into a local community of practice. The 

potential difficulties with this approach to school learning are 

acknowledged by the authors. The community into which newcomers 

are brought is fairly well defined if one looks at apprentice tailors, 

but in school society and in the school in society this is not the case. 

If, as Lave and Wenger hope, their analysis of learning taking place 
in communities of practice is a model which can be applied to what 
happens in the school classroom, the idea of community in the 

classroom needs to be addressed. Lave and Wenger would claim that 

the classroom needs to be located in the practice of society as a 

whole. Of Lave's work Watson (1998) says 

... it is by looking at learning in social contexts in general 

that we will learn more about learning in schools, and not 

the other way round. Here is the major attraction in her 

theories for educators, that when we look at classrooms from 

her viewpoint we see them as social communities in which 

all sorts of things are being learnt (how to behave in a way 

that is valued by the teacher, how to be accepted by one's 

peers, what writing implements are fashionable.... ) which 

are not the focus of the teaching. To describe what goes on 
in a classroom fully one must consider all the actions, 

thoughts, feelings and environmental aspects within it. 

(Watson 1998 p 2) 
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The curriculum and the teacher, social considerations and peer 

relationships will make even the identification of which community 

newcomers are being brought into a difficulty. There will be a 

tension, for instance, between becoming a member of a community of 

practitioners of a particular academic subject, a mathematician, say, 

and becoming qualified, by examination, in this subject. Further 

tensions will exist between membership of both these communities 

and membership of the community of learners about the practice of 

society as a whole. `What gets learned is problematic with respect to 

what is taught' (Lave and Wenger 1991 p 41). However if we can 

accept the value of the consideration of learning as a move towards 

participation in a socio-cultural community of learners and as an all 

pervasive human activity of legitimate peripheral participation in 

local communities of practice we need to find ways of applying this 

analysis to what goes on in school. 

Transparency 

Taking a socio-cultural perspective on the use of resources, Lave and 

Wenger (1991 pp 102,103) address the issue of the transparency of a 

resource, and this is further examined by Adler (1998 pp 8-11). A 

resource used in the classroom can be so visible to students that it 

obscures the topic under consideration and prevents meaning-making. 
At the same time some visibility is necessary. We want the resource 

to be visible in the sense that it should direct the gaze of students, so 

enabling their meaning-making. 
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Invisibility of mediating technologies is necessary for 

allowing focus on, and thus supporting the visibility of, the 

subject matter. Conversely, visibility of the significance of 

the technology is necessary for allowing its unproblematic - 
invisible - use. This interplay of conflict and synergy is 

central to all aspects of learning in practice: it makes the 

design of supportive artifacts a matter of providing a good 
balance between these two interacting requirements. (Lave 

and Wenger, 1991 p. 103) 

Clearly the familiarity of pupils with technology governs its use, in a 

way which is informed by arguments such as this. As pupils become 

more familiar with a particular piece of software the teacher will be 

able to introduce the use of more complicated functions without 
losing transparency. 

A more general consideration is that of the caution which the teacher 

must employ in selecting `real world' examples to relate a topic to 

pupils' personal experience. As soon as appeal is made to experience 

many different factors are brought into the classroom, the majority of 

them unknown to the teacher. Examples used by the teacher and in 

school texts can often be generated for the purpose of illustrating a 

particular point, but such examples probably bring with them 

meanings which are different for each individual and are dependent 

on social class, previous experience and many other socio-historical 

and socio-cultural factors. 'Real world' examples may well require 

children to make the effort to divorce the example given from their 

culture, from their experience of the real world, in order to place it in 

a school learning context. The teacher can usefully employ the idea 
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of transparency here to consider the suitability of examples as 
resources. 

Language can be viewed as a resource in this way too. Adler (1998) 

says of language: 

It is a cultural resource in that it includes the main 
language(s) learners bring to class (and their relation to the 

language of instruction). It is also a social resource in that it 

includes learner's verbalisations during class, as well as 

communication (talk with and between learners). (Adler 

1998 p. 7) 

In examining language (as a resource) for transparency, we can see 

that an insistence on formal language related to a topic may interfere 

with spontaneous meaning-making. Children's informal language, 

used in sense-making activity, may well not have the precision of 

more formal language, but it can be used to provide a basis for 

interaction with the local community of practice, and brought to 

socially agreed meaning. The teacher will judge when the formal 

language has become a sufficiently transparent resource to allow its 

unproblematic use. 

A much more challenging aspect of resource use in the socio-cultural 

view is the generation of a classroom in which pupils are conscious 

of the whole community, inside and outside school, as a resource. 
Revolutionary activity, drawing on socio-historical culture, brings the 

totality of the world into the classroom. In successful communities of 
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practice pupils will see themselves, sometimes as newcomers, 

sometimes as old-timers, as having a valued part to play, and their 

place in the community itself as a resource. 

Summary 

This chapter is an attempt to provide a theoretical backdrop against 

which the rest of the study can be viewed. Other theoretical aspects, 
from the specific field of mathematical education, and in particular 

on construction and proof using dynamic geometry, will be dealt with 

separately (in chapter 4) and both theoretical aspects will be used to 

analyse classroom activities. However it is the thinking dealt with in 

this chapter which will provide the background to the whole project, 

or rather the various lenses which will be used to examine the 

classroom use of dynamic geometry. Ideas of social learning, from 

Vygotsky (1962) and as developed by reference to scientific and 

everyday concepts by Davydov and Markova (1983), and 

subsequently the ideas of Engeström (1987) and others on activity 

theory will be used. From Lave and Wenger (1991) and Winbourne 

and Watson (1998) ideas of situated cognition in local communities 

of practice and considerations of transparency of a resource will be 

applied. The notion of meaning-making will be widely relevant, as 

will considerations of a whole-class zone of proximal development. 

However I believe that such a methodology is not at odds with the 

approach advocated by Dengate and Lerman (1995) who call for the 

use of the wide-angle lens as well as the microscope. 
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This last point brings me to an important consideration. This chapter 
has indeed dealt, at times, with aspects of the theory and philosophy 

of education in abstract ways, ways which imply close-up 

examination of the relationships between the individual pupil and the 

subject content, albeit with emphasis on the social nature of learning. 

I stressed, in chapter 1, a desire to address classroom practice in the 

use of the technology. This is still my intention. I believe that the 

theoretical viewpoints discussed here can be used to analyse 

successful classroom practice and to develop methods of using 

technology in a way which fosters whole class and group social 
learning. As Dengate and Lerman (1995) say in the abstract to the 

paper cited above: 

The current desire of mathematics educators to devise 

variations of constructivist models of learning, combined 

with growing interest in the Soviet school of social 

constructionist theory, has perhaps clouded a bigger picture 

regarding the place and role of learning theory, especially as 
it relates to mathematics classroom practitioners. (Dengate 

and Lerman, 1995 p. 26) 

I hope that in the rest of this work, whilst using some of the more 

close-up and detailed methods of analysis outlined in this chapter, I 

have been able to keep in mind the need to 'pan-out', to be aware of 

the classroom and all those present in it, and that classroom's place in 

a wider society. 
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Chapter 3 

Methods and Methodology 
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Chapter 3 

Methods and Methodology 

This chapter discusses the methodological approach adopted in this 

project and maps out the structure of the work. The socio-cultural 

approach, founded on the work of Vygotsky, has pointed to an overall 

view of the methodology being closely bound up in and related to the 

study. Because this study has sought to relate itself to the classroom, 

with its many faceted aspects, an eclectic approach such as that 

advocated by Klafki (1998) and developed by Hudson (2003) is 

proposed, also drawing on the writings of Hamilton and Delamont 

(1974) and Eisenhart (1988), Bassey (1995) and Brown and Dowling 

(1998) and referring all these to a Vygotskian approach as detailed 

in Newman and Holzman (1993). The research has been conducted in 

cycles, with the first being founded in the literature. Subsequent 

cycles built on previous work, but used additional sources from the 

literature which were particularly relevant to the approach taken, or 
in some cases indicated a re-examination from a different standpoint. 
After some experimentation with video recording the main body of 

the data was collected by participant observation, using audio 

recordings of classroom interactions and field notes of the screens 

produced by pupils. Pupils kept diaries of their reactions to the work. 
This data was subjected to analysis from various theoretical 

standpoints as detailed in this chapter and in the relevant areas of the 

rest of the work. 
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Introduction 

Methodologies for the classroom 
This study has been into the way technology, specifically dynamic 

geometry on the TI 92, can be used with 11-14 year old pupils. There 

has been emphasis all along on investigating classroom use of this 

technology. Hudson (2003) has pointed out the need to address the 

complexity of classroom processes and Watson (1998) emphasises 

the wide variety of different processes which are taking place in the 

classroom. Activity within the classroom takes place in many 
different areas and in ways which are variously important to the 

people in it. The intended learning programme will be only a subset 

of these activities. Cultural and societal aspects of the school and 

society as a whole surround the work which takes place in the 

classroom and may help or hinder meaning-making in the particular 

subject area. Hudson (2003) draws attention to European ideas of 
Didaktik, in particular that of critical-constructive Didaktik. He 

suggests that this tradition recognises that the complex processes at 

work when teaching and learning take place in the classroom are best 

dealt with by a range of research approaches, which also take into 

account the wider societal context within which meaning-making is 

happening. This eclectic approach is intended to 'support pedagogical 

practice' and 'need(s) to be based on a combination of methods and 

methodologies' 

The tradition of critical-constructive Didaktik offers a 
distinctive approach to educational research, which 
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addresses the complexity of the processes of teaching and 
learning in the methodologies and methods adopted, whilst 

maintaining attention to considerations of meaning making 

within a wider societal context. 

Hudson, drawing on Klafki (1998), identifies three method 

groups/methodologies. 

  Historical-hermeneutical methods, 
intended to use scientific method to analyse and deconstruct 

meaningful phenomena and to relate the didactical process, seen 

as involving all social aspects, to the wider picture of society and 

culture. 

  Empirical methods, 

which are seen to be necessary when contemporary issues (for 

instance, in the context of this study, whole class teaching), 

decoded didactically by a historico-hermeneutic approach are 

studied in the classroom context. 

Methods of social analysis and ideology critique. 
No pedagogical or didactic province is seen to be outside society. 
Society directs the direction of educational developments by 

means of curricula and syllabi, and by assessment procedures. 
Broader aspects of the school society play their part, such as 

setting and other organisational arrangements, the attitudes of 

teachers and other students. The development of social analysis 
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methods must be tempered by a parallel critique of the ideologies 

behind the type of education on offer. 

The background to this approach is the acceptance that method 

groups/ methodologies will be found useful in particular areas of a 

study, but a point will be reached where the preconditions of a 

particular approach will mean that its usefulness declines and that a 
different approach will be needed to make further advances. 

This eclectic approach has led to reference to a number of 

methodologies in this study, which are discussed in this chapter. 

The view of activity as both a method of research and the object of 

research, seeing Vygotsky as a methodologist/psychologist, points to 

a continual dialectic between method and substance, the 'tool-and- 

result' methodology referred to by Newman and Holzman (1993). 

Eisenhart (1988) has advocated absorption into the research methods 

of mathematics education of the approaches used in educational 

anthropology. Bassey (1995) has presented the idea of the study of 

singularities. A further influence has been views put forward by 

Brown and Dowling (1998) on the importance to classroom 

practitioners of both using and doing research. 

In addition this chapter outlines the progress of the study through its 

different phases and the detailed techniques used at each stage. 
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Tool-and-Result Methodology 

In chapter 2I introduced the idea of tool-and-result methodology. It 

is obviously not inappropriate to deal with methodology in a section 
devoted to theoretical background. Equally, if tool-and-result 

methodology is used, the methodology should be all-pervasive in the 

study. Newman and Holzman (1993) use the terms tool-and-result 

and tool for result. They advance the metaphor of hammers and 

screwdrivers, which are tools for result, taken from the tool rack, 

used and replaced to be re-used for a similar purpose. They compare 

this to the tool-and-result, the toolmaker's tool, a die or jig which has 

no particular function outside the purpose for which it was created. 
Vygotskian methodology is tool-and result; it is bound up in the 

revolutionary activity of meaning-making. Newman and Holzman see 
Vygotsky as a methodologist/psychologist in the sense that he has an 

all-embracing view of the science of learning. Revolutionary-critical 

activity is seen to be the way society acts on the individual in the 

historico-social dialectic. This activity can be seen to constitute of 
itself a methodology which is all embracing in a study, which 

pervades the study and is able to constantly influence its progress and 

the direction it takes. 

Educational Anthropology 

Such an emphasis on the location of meaning-making (and 

consequently of research into it) within the context of society as a 

whole points firmly to the adoption of an ethnographic approach to 

inquiry. In a paper which discusses the use of ethnographic methods 
in mathematics education research Eisenhart (1988) describes herself 

as an educational anthropologist, using the research tradition of 
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cultural anthropology. Eisenhart points out that ethnography in its 

basic tenets is grounded in the philosophical position of 

interpretivism. 

Central to interpretivism is the idea that all human activity is 

fundamentally a social and meaning-making experience, that 

significant research about human life is an attempt to 

reconstruct that experience, and that methods to investigate 

the experience must be modelled after or approximate to it. 

(Eisenhart, 1988 p 102) 

Eisenhart calls for the adoption of an anthropological approach from 

mathematics educationalists. Mathematics education researchers can 

try to embrace more the way ethnographers enter into the lives and 

activities of those who are the subject of their study. Eisenhart 

recognises the problematic nature of this approach, in that it can 

make educational researchers nervous about questions of objectivity. 

However workers influenced by anthropological considerations (Cole 

and Means, 1981; Cole and Scriber, 1974; Lave, 1977,1982,1985) 

have shown that there is a way of incorporating the two approaches. 
Eisenhart emphasises 'these researchers have tried to understand 

mathematical problem solving in the same way as their subjects' (her 

emphasis). Another difference between the two approaches pointed 

out by Eisenhart is 

the limited way in which mathematics education researchers 
have been sensitive to the intersubjective meanings that 
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might constitute the schools, classrooms, and instructional 

dyads they study. (Eisenhart, 1988 p 111) 

The knowledge of schools and mathematics brought into the 

classroom by pupils is perhaps rarely considered by mathematics 

education researchers, but will be much more in the forefront of the 

considerations of educational anthropologists. Socio-cultural 

background will be recognized as much more important by these 

ethnographers. 

On the other hand, if educational anthropologists consider the work 

of mathematics education researchers, they may wish to give more 

attention to theories of cognitive development and information 

processing: 

These two topics are generally outside the scope of socio- 

cultural theories and, as usually formulated, contradict the 

thrust of interpretivism; anthropologists resist them because 

of their acontextual, ahistorical and asocial features. 

Yet .............. cognitive theories might be joined with 

socio-cultural theories in efforts to create a comprehensive 

theory of human activity. (Eisenhart, 1988 p. 112) 

Eisenhart's final point returns to a theme which has already been 

addressed and to which I intend to return in this work. She 

emphasises the need for educational anthropologists to eschew the 

belief that, because of the necessarily narrow view they take when 

they are involved with classrooms, they can have nothing to say 

about the choices which teachers take, 'choices about what to do on 
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Monday morning, choices no educator can ignore' (Eisenhart, 1988 p. 
112). She concludes 

By joining with mathematics education researchers and other 

educators who, by necessity, must grapple with how to 

interpret research findings into practice, educational 

anthropologists could move into a new and potentially 
fruitful domain of study. (Eisenhart, 1988 p. 112) 

This concern, that of relating socio-cultural theory to classroom 

practice, has been a major guiding principle and is central to this 

study. 

The Study of Singularities 

Bassey (1995) has advanced the idea of the study of'singularities', an 

another approach which is applicable to this study. This can be seen 

as the study of something which has occurred at a certain point in 

space-time. When this event becomes the object of study it is defined 

as a singularity. 

A singularity is a set of anecdotes about particular events 

occurring within a stated boundary, which are subjected to 

systematic and critical search for some truth. 

and 
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this truth while pertaining to the inside of the boundary may 

stimulate thinking about similar situations elsewhere. 
(Bassey 1995 p 111) 

Singularity studies are undertaken on a small scale and are very 

detailed. The findings are related to (as opposed to applicable to) 

populations outside the immediate parameters of the study. In this 

project close studies have been made of classroom episodes, with the 

aim of relating the findings to more general classroom practice. 

This project has also used a technique of revisiting some classroom 

episodes and re-examining them, using a different background from 

the literature and a different lens (Lerman, 1998). In chapters 8 and 9 

some data is re-examined in this way. This process leads to a degree 

of triangulation which augments that available from the different 

approaches employed and from the extension of the study from 

smaller groups to whole classes. 

The Research Model 

There were cycles of research, the first using as a starting point and 

means of location, previous classroom experience and a background 

in the literature. Subsequent cycles each drew on the previous phase, 
but were also influenced by further reading of the literature, dialogue 

with colleagues and researcher introspection. There was also a formal 

dialogue with the research community, using refereed publications. In 

the analysis and interpretation of the data gathered in a particular 

phase there was generally one area of the background literature which 

was the principal lens used, and this is indicated in the particular 
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chapter. However ideas from the literature were carried forward to 

other areas and data from previous phases was often re-examined 

using the lens of a later chapter. 

Figure 3.1 illustrates the pattern of progress through the project. After 

locating the project in current literature and in my previous 

experience in the classroom, the main path of the research followed 

successive cycles as shown. Subsidiary features of the progress of 

the work such as continuing inputs from the literature and from 

dialogues with research colleagues are shown. Also indicated are 
inter-phase links and revisits, together with publications produced 
during the progress of the project. 
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Methods of Data Collection 

Most of the data collected in this project came from transcription of 

audio recorded dialogue from groups or classrooms whilst activities 
involving the TI 92 were taking place, from diaries and notebooks 
kept by pupils and from field notes recorded in various ways. These 

are discussed in detail later and their relation to the four main aspects 

of ethnographic inquiry (Eisenhart, 1988) identified. 

However it is felt to be worthwhile recording in a brief aside the 

other methods which were tried before the final data-recording 

technique was identified. File handling on the TI 92 could allow 

pupils to record their screens in the memory of the individual 

machines used. However the process is far from simple. If the 

machines were used over a long period with a particular group of 

children and they could build up their skills it might be possible to 

use this facility. In the case of this project it became clear very early 

on that access to secondary classrooms, with departments worried 

about pressure to cover syllabuses, would be limited. Accordingly it 

was decided not to use file saving and rather to try to use time with 

classes concentrating on content. This meant that some other method 

of recording screens would be needed. In work with dynamic 

geometry on desktop computers, Hoyles and Noss (1992) used a 
'dribble file' which continuously recorded pupils' key-presses and the 

screens they generated. Individual screens from the T192 can be 

captured onto a desktop computer, and this process has been used in 

providing the figures in this thesis. However the advantage of the 

T192 over the desktop is its small size and portability. This would be 
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lost if it were connected in such a way whilst pupils were using it. 

Video recording of classrooms, by a second observer using a hand- 

held video camera was tried. There was only limited success in 

videoing screens. Because of the limited angle of view pupils had to 

'show' their screens to the camera, which limited spontaneous 

observation. The video operator had to be close to the pupils if any 

conversation was to be picked up and pupils became embarrassed, 

again limiting spontaneity. 

One T192 was available with a port which allowed linkage to an 

overhead projector. This was used by me to introduce topics and 
discuss the pupils' ideas. On one occasion, a group were audio 

recorded whilst using the projector version, and the projection of 

their work was videoed. This was again problematic, as another 

advantage of the T192, that work can be kept private, was lost, and, 

whenever I needed the projector version to talk to the class, they had 

to lose their screen. (Later versions of the T192 all have the necessary 

port. This would mean that some of these problems were avoided, 

and also raises interesting possibilities for classroom practice, since 

any pupil can show their work to the class. ) 

In the next stage of the project, working with, at most, two smaller 

groups, it was found that audio recording of dialogue and the 

recording of screens by field notes was possible. When subsequent 

work with classes was undertaken it was decided to rely on this 

method, with audio recorders on desks for each group. In later stages 

of the work I was concerned to limit the complexity of the screens 

used, for reasons of transparency discussed elsewhere, which meant 
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that brief notes could provide a record. It was decided to record these 

simpler screens by field notes and it was found that a useful way to 

do this was to cover an area of the table used by each group with a 
dated scribble sheet, which pupils were free to use, and which I used 

to illustrate discussions I had with them and to make a record of the 

screens involved. These methods of recording the activity and 
dialogue of pupils became the methods relied on for the rest of the 

project. Together with the collection of pupil diaries they formed the 

basis of ethnographic methods related to the four aspects detailed by 

Eisenhart (1988) and discussed above. These can now be related in 

detail to this project. 

Ethnographic Techniques 

The four methods of data-gathering commonly used in ethnographic 

studies (Eisenhart, 1988, p105) are discussed here. 

" Participant observation 

Ethnographic research implies the willingness of the researcher to 

enter into and participate in the activity of the community being 

studied. Outsiders may not be able to participate in the learning 

activity. The researcher as participant observer must locate on a 

spectrum defined by the two ideas of participation and 

observation. Complete participation in the activity under study 

will lead to high subjectivity and sympathy with the other 

participants. A fully observational role, detached from the activity, 

suggests objectivity. This is not to say that location on this 
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spectrum will be maintained. During the course of this study and 
in different phases, the position on this spectrum changes as data 

is collected from small groups or from classrooms. However, in 

the overall research environment of the present project, where I 

acted as teacher/researcher within groups and classes, participant 

observation was largely skewed towards the observational. 
However, viewing the classroom as a community of practice 
(Lave and Wenger, 1991) in which class and teacher have 'shared 

ways of behaving, language, habits values and tool use' 
(Winbourne and Watson, 1998) indicates the value of a participant 

role for the researcher. Indeed, such a role is essential if the study 
is to embrace the ideas of educational anthropology. 

" Ethnographic interviewing 

Interviews allow the participants, in a way which may be more or 
less structured, to make their own contribution to the direction of 

the study. Interviews are the ethnographer's way of finding the 

subjective views of the participants and may be completely open- 

ended, almost conversational, or structured questionnaires. In the 

case of this study, pupils were asked to keep diaries of their 

impressions of the activities in which they were involved, as an 

open-ended way of contributing to the study and these are referred 

to in the relevant sections. 
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9 The search for artefacts 

The researcher's view of the context is necessarily constrained, 

and further data is collected by reference to the literature. This 

enables a broader view to be taken, which looks at the context 
from a historical and wider social perspective. Content relevant to 

this project was used initially to locate the study in the context of 

the body of knowledge on this topic, providing an initial 

grounding. My previous classroom experience also contributed to 

this grounding. Subsequently, in the various phases of the study, 

there was further input from the literature, but at this stage there 

began to be a dialogic element, in that the project began, in its 

turn, to make its own contribution to the body of literature. 

9 Researcher introspection 

In educational anthropology, as opposed to objective research of 

the hypothesis-test-conclusion type, the researcher will constantly 

examine the progress of the study and may well revise the nature 

of it. Reflective introspection on the part of the researcher is 

therefore an important part of the research process. Researcher 

sensitivity, recorded in field notes and fostered by the involvement 

of the researcher in the activity of the study and an introspective 

approach to it, together with continual referral to the literature 

typifies this aspect of educational anthropology. 
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Identification of Aspects of Data Collection 

" Participant observation 

Participant observation in the classroom, by a teacher/researcher of 
pupils, as observed above (p 64), is necessarily shifted towards the 

observational end of the spectrum. In the case of this project 
participant observation was monitored by audio recording of dialogue 

between pupils and between teacher and pupils. The collection of 
field notes, whilst principally intended to contribute to researcher 
introspection, also contributed to this area, particularly the scribble 

sheets used to record classroom and group activity. 

" Ethnographic interviewing 

Rather than using interviews, the views of pupils were gathered by 

collecting open-ended written impressions of their experiences from 

pupils, as recorded in diaries. These diaries were found mainly to 

yield information on affective issues. In many cases audio recording 

of pupils as they worked on the tasks was carried out without the 

participation of the teacher, and enabled data collected to be regarded 

as open-ended. 

" Search for artefacts 

The literature on the classroom use of dynamic geometry and socio- 

cultural principles of meaning-making was used to provide a starting 
location for the study. As it progressed this literature remained 
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important, and further reading in this area was relevant. However 

there were other aspects of the literature, particularly those relating to 

classroom dynamics, which were introduced as the project went on. 
An element of this dialogue with the literature was interaction with 

colleagues in the field and the publication of works in refereed 
journals. 

9 Researcher introspection 

Field notes, both from contemporary notes made on scribble sheets 

while talking to pupils and other notes made before and after 

sessions, were the immediate input into this part of the ethnographic 

process. Introspection and examination of the progress of the study 

and of my personal involvement in it, and the way it was affecting 

my view of myself as a reflective classroom practitioner provided a 

way of relating the project to my view of classroom practice. 

Calendar of data collection 

Figure 3.2 sets out the data collection sessions in chronological 

order, together with the schools where they were done. It also 
indicates the chapters which deal with particular sessions and the 
developing thrust of the work. 
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Calendar of data collection 

Phase Date School, Extent of Involvement Content/ Description/ 
Age of Direction Discussion 

pupils 
Pilot December School A Two classes of 25-30 Preliminary Chapter 5 

1996 11-12 yrs, pupils, two 80 minute classroom 
mixed sessions each work 
ability 

Phase June School A One class of 28 pupils, Classroom Chapter 6 
1 1997 11-12 yrs, four sessions of eighty exercises in 

mixed minutes geometry 
ability 

Phase October School B Higher attaining pupils Meaning- Chapter 7, 
2 1997 12-13 yrs were invited to attend in making in 

lunchtime sessions, of smaller Chapter 8 
about 40 minutes. A total groups 
of eight pupils attended for and 
one lunchtime a week, 
over a period of seven Preface 
weeks. There was 
intermittent contact with 
this school over the course 
of the project. (See 
reface 

Phase June/July School C Two classes of 25-30 Classroom 
3 1998 13-14 yrs pupils were involved. One work, 

was of high attainment, classroom Chapter 10 
one a lower set. Each was dynamics 
seen four times, for 75 
minutes each. 

Phase Summer School D The sessions took place at Sense and Chapter 7, 
4 Term 11-14 yrs a lunchtime mathematics meaning 

1999 club. Attendance was making Chapter 9 
variable, usually about 18 
and included children aged 
between 11 and 14, of all 
levels of attainment 

Fig 3.2 
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The Schools 

All the four schools involved in this study are situated in the north of 
England. Schools were approached and asked if they were willing to 

take part. Many schools were reluctant to use up curriculum time on a 

research project, in the case of two of the schools the work was done 

in out-of-hours sessions. In the other two schools some classroom 

work was possible. 

School A 

School A is a large, mixed, oversubscribed, 11-18 comprehensive 

school in a large city, with a wide range of ability and social groups. 
About one in seven pupils has a first language other than English. 

School B 

School B is a mixed 11-16 comprehensive school with 455 students. 
The school serves a wide rural area. The proportion of students who 

come from areas suffering significant social disadvantage is small. 
Standards of attainment of the intake of students are close to the 

national average. 

School C 

The school educates about 700 boys and girls in the I 1-16 age range. 
It is designed for 750 pupils and is fully comprehensive, with about 

six per cent of pupils speaking English as an additional language. The 

economic, social and demographic characteristics of the school's 

catchment area are a little less favourable than the national picture. 
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The number of pupils receiving a free school meal is approximately 

26 per cent. 

School D 

The school is a mixed comprehensive school for pupils aged 11-18, 

in a semi-rural area. The school draws its pupils from social and 

economic backgrounds close to the average. The proportion of pupils 

eligible for free school meals is broadly in line with the national 

average, as is the level of attainment of pupils on entry. The 

percentage of pupils speaking English as an additional language is 

high at 9.5 per cent. 

Conclusion 

This chapter has developed the overarching methodology of the 

project. In chapter 2I dealt with the theoretical background to the 

study and many of the ideas from that chapter will be applied, using 

the methodologies discussed here, in a tool-and-result way, to the 

analysis of singularities in the classroom. In addition the approaches 

outlined in chapter 4 from the literature concerned with mathematical 

education, geometry construction and proof and the use of dynamic 

geometry in particular will be used to inform the analysis of data. In 

each phase of the project further aspects of the literature and different 

viewpoints are used, in a process of research sensitivity based on an 

eclectic approach to methods/methodologies. 
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Chapter 4 

Geometry and Technology 

A Review of Literature 
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Chapter 4 

Geometry and Technology: A Review of Literature 

After an initial discussion of personal background and the ways in 

which the literature has been influential in providing starting points 
for the project, this chapter goes on to review the literature which is 

specifically relevant to the field of mathematical education in general 

and dynamic geometry in particular. This is treated in sections: 

" Representation and Technology 

" Dynamic Geometry 

" Visualisation, Conviction and the Nature of Proof 

" Transparency of Resources 

" Socio-Cultural Dynamics in the Mathematics Classroom 

Literature: Location and Continuing Influence. 

Two broad areas of experience in mathematics education, in the 

classroom and writing for a national mathematics scheme provided a 
backdrop to this project, but it was with readings in the literature that 

the project began to take shape. The background in the classroom will 
be a familiar one to many teachers. A picture of the statutory 

requirements of the National Curriculum interacting with a 

necessarily pragmatic approach imposed by time constraints to 

influence the teacher's belief in the value of an interactive, practical, 
discovery-based approach to classroom work will be recognised by 

many. In many ways the same priorities are juggled by writers of 
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classroom texts, with the added complication that texts are expected 

to be commercial in a limited field and to be applicable to all the 

different ways schools may use to try to resolve their problems. 

Within this background I had used stand-alone computers, computer 

suites, graphical calculators and other forms of technology. I had 

collaborated in writing material on the use of technology with classes 
(Appendix XIII). 

At the outset of this project this background was useful, but did not 

provide a starting point sufficiently grounded in theory. Reference to 

the literature was needed, as with any study of this kind. The work of 

many previous authors has made a continuing contribution, both as 

an initial means of locating the project in current thinking and then 

contributing to progress over the course of the various cycles of the 

data gathering. At the outset, reference to the literature enabled the 

project to be located in the field of study, and provided a starting 

point, a frame of reference, from which progress could be made. As 

the work has continued there has been a different, continual 
involvement in the literature, so that I have felt more in dialogue with 

the standpoints of other workers. 

The cyclical nature of the research and the way different phases were 
influenced by different areas of the literature is dealt with elsewhere 
in this work. Particular sources in the literature were relevant at their 

particular times and these sources and their influences are dealt with 
in the appropriate chapters. There are, however, large bodies of the 

literature which are generally relevant to this study. One particular 
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area, that of socio-cultural theory and how it provides a general 
background to the project, has been dealt with in chapter 2. This 

chapter will deal with literature specific to mathematics education 

and the use of technology and in particular sources which deal with 

the use of dynamic geometry. 

I referred in chapter 2 to the idea of transparency developed by Lave 

and Wenger (1991), which they use to examine resource use. They 

point out that resources used in learning should be visible enough to 

direct the gaze of learners, but transparent enough to allow that gaze 

to see through to significant meaning-making. Along with other 

researchers I have found this apowerful notion in analysing 

applications of technology and other resources in the mathematics 

classroom. In this chapter I will consider the concept of transparency 

in terms of its application to the topic of mathematics learning 

generally and dynamic geometry in particular. 

Representation and Technology 

There is a large body of work on the importance of representation of 

mathematical problems in general and the use of diagrams in 

geometry in particular. In a recent wide-ranging review of the topic 

by Goldin and Janvier (1998), Mesquita (1998) discusses conceptual 

obstacles relevant to the use of diagrams and representations in 

geometry. She points out particularly the distinction between the case 

where a more experienced student is able to accept a diagram as a 

representation of a general case, whereas the less experienced will 
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focus on the particular figure given. She refers to this as the ̀ double 

status of geometrical representations'. 

This means that the same figure can represent either an 

abstract geometrical object, or a particular concretization. 

Depending on the problem we are sometimes interested in 

the first situation, and sometimes in the second. Based on 

this ambiguity, it is clear that the figurative register, used 

alone, does not enable one to distinguish between the two 

cases. The degree of abstraction that is required to deal with 

a representation varies from one situation to another. 

(Mesquita, 1998 p. 186) 

Mesquita (op cit) goes on to discuss the `typicality' of diagrams, 

citing the importance of orientation, particular proportions and 

preferred shapes. She sees this as connected to the idea of double 

status, and suggests that preferred orientation of squares, for instance, 

is due both to a cultural bias derived from architecture and physical 

constraints and from a readiness to associate orthogonality primarily 

with horizontal and vertical lines (or lines up and across the page). 
She goes on to discuss ̀ prototypical' shapes. 

Rectangles and triangles such as 

0 
would be prototypical, whereas others of the types 
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would not, by reasons of proportion and orientation. Mesquita says 

Stability and aesthetic preoccupations may reinforce the 

perception of these prototypical figures. ...... Due to the 

influence of physical space and other cultural reasons, 

teachers (and textbooks) tend to privilege prototypical 
figures, which are more easily used than others. Economy of 

paper and page setup factors also contribute to the same 

effect. (Mesquita 1998 pp 189-190) 

In working with dynamic geometry, early introduction of the drag 

function enables pupils to see the general nature of representations. If 

pupils see that the shape of a triangle they have drawn can be altered 
by dragging, the generality of the diagram is emphasised in a way 

which will help to overcome these problems of appreciation of the 

general applicability of geometric properties. Mason (1991) points 

out that the indication of generality given by dragging a diagram can 
itself be used as a stimulus for proof, in that pupils will feel a need to 

explain why the general case applies. 
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Berger (1998) makes some relevant general points in a discussion 

paper on the use of graphical calculators, which can equally be 

applied to the use of other handheld devices such as the TI 92 in 

whole class circumstances. After referring to the preference for the 

availability of hand-held machines in the classroom (as opposed to 

access to software in a computer suite) she continues 

Unfortunately, despite the potential and actual importance of 

this tool, there is not much literature dedicated to explaining 

or understanding how the graphic calculator, specifically, 
functions in relation to the learner. In fact, much of the 

literature relating to the graphic calculator is anecdotal or 
describes evaluative studies which fail to distinguish 

adequately the role of the tool from that of the instructional 

process (Penglase and Arnold, 1996 p 53). 

.......... I wish to suggest that a Vygotskian approach to 

learning, with its emphasis on mediated activity within a 

particular socio-historical context, is appropriate to address 
the relationship between the mathematical learner and the 

different sign systems (multiple representations) afforded by 

the graphic calculator. (Berger, 1998 p 13) 

and, 
For internalisation to take place, it is not sufficient that a 

student is merely exposed to a new technology; rather he/she 

needs to engage thoughtfully with the technology (Salomon, 

1990). In order to interact in such a mindful way, he/she has 

to use the technology actively and consciously in a socially 

or educationally significant way. (Berger, 1998 p. 19) 
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She argues for dedicated research related specifically to the use of 

graphic calculators. 

.. the learning experience ......... is sufficiently different from 

(that) in a computer environment that it warrants its own 
dedicated research and interpretation. (Berger, 1998 p. 14) 

There is, then, a need to address issues of socio-cultural aspects of 
learning in relation to the use of handheld calculators such as the 

T192. It is hoped that the present study goes some way to answering 

this need, by looking at the socio-dynamics behind the use of hand- 

held calculators in general and in the area of dynamic geometry in 

particular. To this end I now turn to a discussion of the use of 
dynamic geometry in the classroom. 

Dynamic Geometry 

Dynamic geometry software has become widely available for desktop 

computers and networks. Geometry Inventor, Geometer's Sketchpad 

and Cabri Geometre are all available commercially and there is at 
least one source of dynamic geometry software on the Web (appendix 

VII). All these software suites run on the PC. The present research, 

using as it does (particularly in the later stages) fairly simple 
diagrams which would be available on any package, is not specific to 

any one piece of software. In fact, that used was Cabri II as available 

on the Texas TI 92. 

Although the choice of software is not critical, the hardware used is 

seen as important to the ideas developed in the project. The T192 is a 
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hand-held machine available in the normal classroom environment. It 

can be easily moved to the side of the desk if necessary. The socio- 

cultural, whole class and group approach which was adopted for the 

field trials and data collection and which is advocated as a method of 

classroom use is enhanced by the use of this particular hardware. 

Features of this machine, which are relevant to this study, are its 

small size and the possibility of connecting it to a projector for class 
demonstrations. (See appendix V for details of the T192). As detailed 

above, Berger (1998) has referred to the lack of research into the 

specific socio-cultural implications of such technology. 

Cabri Geometre was developed at the Universite Joseph Fourier in 

Grenoble by a team led by J-M Laborde (1988). Schumann and 
Green (1994), in their introduction to the use of the software, explain 

the acronym CAhier de BRouillon Interactif (interactive rough 
book), and Mason (1991) points out that this provides a useful insight 

into the way in which the authors see the use of the package. In their 

preface Schumann and Green (1994) quote a passage by Higgo taken 

from the Mathematical Association pamphlet Not the National 

Curriculum (1992) 

The opportunity to DO, EXAMINE, PREDICT, TEST, 

GENERALISE should, from an early age, permeate the 

learning situations pupils are put in. They should be 

encouraged to question (WHY? ) and extend (WHAT IF? ) 

their findings. Geometry should be presented in such a way 

as to highlight the logical aspects. At appropriate stages 
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children should be helped to go on to formulate their own 

proofs (sometimes as a group). 
What is important, however, is that we do not restrict pupils' 

progress (denying them the opportunity to `act as 

mathematicians') and do not try to separate or 

compartmentalise the stages too much. 
(Higgo, 1992) 

In all dynamic geometry packages a fundamental feature is the ability 

to draw a diagram under some geometrical constraint and to 

investigate the consequences of `dragging' the independent 

geometrical entities in the diagram as a means of investigating 

invariant geometrical relationships. This provides a means of moving 
from the specific to the general, of considering atypical shapes as 

well as the prototypical forms of representation discussed by 

Mesquita (1998). Healy et al (1994a) have indicated that dynamic 

geometry can be introduced using the drag function to emphasise the 

difference between drawing and construction. They introduced the 

software to children without any preliminary work on ruler-and- 

compass constructions in a deliberate attempt to investigate the way 
in which pupils could use the software as a starting point. They asked 

pupils to draw faces and introduced the idea of `messing up', of 

allowing the drawings to be checked to see what the effect of 
dragging was and how and to what extent features were interrelated 

when independent points were dragged. 
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Our purpose was to focus on the difference between 

constructions which were `non-mess-up-able' and drawings 

which could be messed-up in well-defined ways. 
(Healy et al, 1994a, p. 16) 

Healy et al report that the idea of whether or not a screen could be 

messed-up became a powerful image to children, even away from the 

computer. 

In a collection of articles reviewing the field Mason (1995) mentions 

the opportunities which manipulative software can afford for students 

`to consider the why, to explore "by hand methods" in order 

to appreciate what tools are doing'. (Mason, 1995 p. 13) 

He acknowledges the importance of pupils becoming involved in the 

mathematics they are learning, of doing, manipulating, before sense 

making and articulating. He continues 

But doing is not in itself sufficient, for sense-making does 

not follow automatically from manipulation. Nor does 

articulation follow automatically from sense-making. To 

encourage and support transitions requires the awareness of 

an expert, a teacher. 

(Mason, 1995 p. 10) 

Mason, in the same article, refers to the need for teachers to be 

`aware of their own awarenesses' in order to be able to stimulate 

sense and meaning making in students. The importance of the 
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teacher's contribution to students' work with dynamic geometry is 

also emphasised by Jones (1997). He draws a distinction between 

perceiving and specifying geometric relationships. Perceiving is 

mediated by the dynamic image on the screen, and specifying is the 

process of expressing this perception in mathematical language. 

Jones goes on to discuss how this process is mediated by a dynamic 

geometry environment. Citing Wertsch (1991), Jones sees the 

mediating artefact and the activity as mutually dependent. In the case 

of dynamic geometry environments the language of the environment, 

used in the on-screen menus, leads to the process of specifying 

relationships. 

De Villiers (1995) indicates an approach of allowing generalisation to 

arise from constructions. An NCET document (Goldstein et al, 1996) 

has detailed the work done in a pilot study in four secondary schools. 
The ICMI conference in Pisa (Mammana, 1995) had as its theme the 

teaching of geometry in the twenty-first century. In their contribution 
Hoyles et al (1995) considered the interdependence of construction 

and proof. Healy et al (1994b) refer to the importance of on-screen 

scaffolding. Healy (2000) reports two distinct types of construction, 
leading in different ways to mathematical meaning-making. 'Soft' 

constructions take some of the conditions specified, for instance in 

attempting to draw congruent triangles. They can be manipulated to 

allow examination of conditions and the exploration of possibilities. 
'Robust' constructions take all the conditions and attempt dragging to 

assess the soundness of propositions. Reporting this work Hoyle says 
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.. our vision was one in which students employ Cabri tools 

(to) construct, manipulate and check geometrical 

relationships, receiving computer feedback brought about by 

their activities that could help towards the proof of any 

conjectures they formulated. To this end we devised a 

sequence of activities, each of which included a computer 

component with a common structure: students were to 

construct mathematical objects on the computer, identify and 
describe the properties and relations that underpinned their 

constructions, use the computer resource to generate and test 

conjectures about further properties, and make explanations 

as to why they must hold. (Healy, 2000 p. 106) 

The drag function and the idea of a construction invariant under drag 

are central to the use of the software to lead towards an appreciation 

of geometrical invariants. In introducing the use of Cabri in this 

project, the classroom material was directed at using the drag 

function, by showing how diagrams which were not defined by 

geometrical invariants could be `messed up', to help pupils to make a 
distinction between drawing and construction. The materials also 

sought to promote concepts such as that of using a circle to preserve 
length (Healy et al, 1994a, 1994b). Pupil fluency with the machines 

was a further objective of early work (Goldstein et al, 1996). Later 

work was directed at assessing any particular advantages of the 

handheld equipment and probing the mediation of learning in the 

dynamic geometry environment. 

The principles adopted were that the materials should allow rich 

meaning-making to develop from classroom interactions between 
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pupils, teacher and screen. The development of the materials was 

guided by the ideas of Hedegaard (1990), who advocated the 
fostering of a'whole-class zone of proximal development'. Some 

early thinking by workers in the area of activity theory was sceptical 

of the use of computers in the classroom, (see, for instance, 

Engeström et at, 1984) citing Papert's (1980) ideas of the computer 

and the child forming a private area for learning. Such a union was 

seen as precluding the social interaction necessary for learning. Such 

a closed loop is possible with some types of software. However these 
fears do not seem to be justified provided the possibility is recognised 

and more recent work has emphasised the advantages of the use of 
technology in group work (Hoyles, 1985, Hoyles and Noss, 1992, 

Hudson, 1996). 

Visualisation, Conviction and the Nature of Proof 

The use and purpose of proof has been the subject of heated debate in 

the literature. There are those (A. Gardiner, 1995) who insist that a 

rigorous approach is needed, who value a step by step formal proof as 

a reproducible and communicable process. There is evidence that at 

university level, mathematics learners find identification of a logical 

proof difficult, and are often influenced in their judgement of 

mathematical arguments by empirical and aesthetic issues, rather than 
following a chain of reasoning (Finlow-Bates, Lerman and Morgan, 

1993). There are others, for example Mason (1991), who call for an 

acceptance of the ability to test a very large number of examples as a 
form of proof. According to Mason such a case is provided by 
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dragging in dynamic geometry. Referring to the power of computers 

to present a dynamic image under the control of the user, he calls for 

acceptance of a form of proof afforded by such a large number of 

examples. He writes: 

I predict that one of the long-term effects of computers will 
be to establish a mode of certainty which lies between the 

too-easy acceptance of a generalisation from one or two 

cases and the rigour of mathematical proof. Programs like 

Cabri-geometry enable the user to experience a huge range 

of particular cases, and by appeal to continuity, an infinite 

number of cases. This plethora of confirming instances will 
be highly convincing for many, if not most, people. I find 

this entirely reasonable. (Mason 1991 p. 87) 

Rotman (1994) gives a further critique of conventional notions of 

proof and the anticipated impact of computers on our understanding 

of them. 

There is a wide spectrum of opinions between the view of proof as an 

absolute logical system and a need for conviction and many 
intermediate positions are taken. But the very fact of this lively 

debate is evidence of the essentially social nature of proof. We prove 

to others, proving is about communication, and as such is linked to 

socio-cultural interpretations of learning. We prove to ourselves as 

well, but this is an internal dialogue, perhaps analogous to socio- 

cultural ideas of internal speech and meaning-making. My view of 

the proof debate is one which draws encouragement from those 

aspects of it which can, at any particular level, increase opportunities 
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for social interaction. Whatever stance is taken on the importance of 

proof, it is useful to analyse the processes of proof in more depth, to 

examine the nature of those processes and the way they can be used 
in the classroom to assist pupils in the process of deriving 

mathematical meaning. 

The role and function of proof has been discussed by de Villiers 

(1990). Drawing on work by Bell (1976), he identifies and discusses 

five components of proof 

" verification (concerned with the truth of a statement) 

" explanation (providing insight into why it is true) 

" systematisation (the organisation of various results into a 

deductive system of axioms, major concepts and 

theorems) 

" discovery (the discovery or invention of new results) 

" communication (the transmission of mathematical 
knowledge) 

(De Villiers 1990 p. 18) 

On the topic of verification, de Villiers points out that this is often an 

endorsement of an already firmly held conviction. He refers to 

Polya's (1954) assertion that conviction precedes proof `When you 
have satisfied yourself that the theorem is true, you start proving it'. 

Polya goes on to point out that a theorem, an example of 
demonstrative reasoning, usually has its genesis in plausible 

reasoning. 
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You have to guess a mathematical theorem before you prove 
it; you have to guess the idea of a proof before you carry 

through the details. (Polya 1954 p. vi) 

De Villiers notes that empirical examples often lead to 

conviction/verification; similarly, one of Fischbein's (1982) forms of 

conviction is empirical conviction arising from a number of practical 
findings. 

Fischbein (1982) identifies three forms of conviction: formal, arising 
from argument, empirical, arising from a number of practical 
findings, and an intuitive intrinsic conviction, which he calls 
`cognitive belief. A dynamic geometry environment can echo these 

ideas in its provision of a climate where argument is fostered, by 

allowing dragging to provide empirical proof and by triggering with 

the screen children's intuitive visualisations. There can be classroom 
interchange which moves between these areas, which can be related 

to the ideas of spontaneous and scientific concepts offered from 

socio-cultural theory. There is a place in this dialectic for the way 

pupils deal with necessary and sufficient conditions in mathematical 

argument. 

Empirical example is a powerful vehicle for conviction and, with 
dynamic geometry software, may lead to a form of verification; 
however such verification and conviction do not in themselves lead to 

meaning-making. Indeed the reaction of pupils to a visual or 

empirical demonstration intended to convince is often lack of interest. 

On being presented with a demonstration of a geometrical truth there 
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is a danger that pupils will react with a dismissive 'so what' attitude. 
De Villiers (1991) claims that, in contrast, it is possible to excite 

pupils' motivation for and satisfaction from the deductive explanation 

of a proof, to engage what Mason has called 'this sense of mustness' 
(Mason 1991, p. 73). 

Davis (1993) argues for the interpretation of the word `theorem' in a 

sense that "is wide enough to include the visual aspects of 

mathematical intuition and reasoning". Dynamic geometry can 

provide a visual trigger to intuition, allowing reasoning and synthesis 
into formal mathematical language to begin. 

Mariotti and Bartolino Bussi (1998) consider the teacher's input into 

classroom use of dynamic geometry, using a simple construction (of 

a square given a line segment as a stating point). The authors 

consider the distinction between accurate concepts and ideas and how 

pupils represent these on the screen using the technology. Mariotti 

and Maracci (1999) examine the distinction between argumentation, 

as a means of reaching personal conviction or of convincing others, 

and the development of a more formal proof. Boero et al (1999) 

consider the process of generation of conditionality and give 

examples of ways of presenting pupils with situations where 

conditional statements (If ............ then) can be encouraged and 

explored. The drag facility in dynamic geometry allows pupils to 

explore such situations and test their conjectures. 

Visualisation plays a major part in the work of many authors, 
including Bills (1996) on generic proof and Nelson (1993) on visual 
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proof. Nelson presents proofs entirely visually, via a series of 
diagrams. Cunningham says 

One of the most remarkable things about visualisation is the 

amount of mathematics students will learn and the amount of 

work students will do in order to create images describing a 

mathematical concept, especially when the computer is used 

as part of the process. (Cunningham 1994) 

Mason (1991) refers to `inner screens' and makes a plea for 

visualisation, for `saying what you see'. He calls for an awareness of 
`the fact that there are facts'. He emphasises that pupils, rather than 

working through exercises in geometry, should use dynamic 

geometry packages in a way that allows them to see themselves as 

working on mathematics. He discusses the conviction available when 

pupils drag a geometrical diagram and see that in a large number of 

cases a particular conjecture is correct. 

For many people, this level of convincing will be adequate. 
But it is more important that people have a well-developed 

sense of the fact of geometrical facts (together with an 

underlying scepticism of anything machine generated), than 

that they are pushed through tedious and for them 

meaningless computations and reasonings that purport to 

provide a proof, but which remain mysterious incantations. 

It is possible to raise the question of proof, of trying to 

convince yourself that certain facts must hold, and even to 

be intrigued by the plethora of interconnections between 

different facts, but this need not be demanded of everyone. 
(Mason, 1991 p. 72) 
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Whatever stance is taken on the definition of proof, and as I have 

outlined these are many, I feel that the importance of proof in the 

classroom lies in its essentially social nature. Proof in its very nature 
draws pupils in to a meaning-making activity, into a community 

whose practice is making mathematics. 

Transparency of a Resource 

The idea of transparency introduced by Lave and Wenger (1991, 

pp102,103) and further examined by Adler (1998, pp 8-11) has been 

discussed already in Chapter 2. I have found its application to 

mathematics resources to be relevant and powerful, and discuss it 

here in relation to mathematics in general and dynamic geometry in 

particular. 

Lave and Wenger use the analogy of a window to explain their 

thinking on transparency, pointing to the need for a resource to be 

visible in the sense that a window is visible, drawing the attention, 
but allowing the gaze to pass through, in this case to allow 

mathematical meaning-making. Adler (1998) discusses the use of 

resources in the mathematics classroom, seeing transparency as a 

useful yardstick by which to consider their use. She points out that 

the language used in the classroom must be considered for its 

transparency, and refers to a'dilemma of transparency' which can 

arise if the teacher insists on formal mathematical language. 

Referring to an observed lesson she says 
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.. in some moments of practice, explicit focus on 

mathematical language in fact seemed to obscure 

mathematical meaning. Instead of mathematical talk being a 

transparent resource with its dual functions of visibility and 
invisibility, (visible in that it extends the practice, and 

invisible in that it enables smooth entry into the practice) 

explicit mathematical language teaching became opaque. 

The talk itself became too visible, the object of attention 

rather than also a means to mathematics. (Adler, 1998 p. 9) 

In the same article and in the context of rural schools in South Africa, 

Adler considers the transparent use of simpler resources, such as the 

chalkboard and the school's approach to the use of time and the 

timetable. She suggests that in schools where time is well managed, 

time itself becomes a transparent resource, leading to economic time 

use by students. 

A further point is made by Adler (1998), which carries significance 

when brought together with work from other authors who have 

examined the use of 'real' situations in mathematics classrooms. 
Adler refers to the use of money as a resource, to the way it is used in 

the classroom, possibly as a vehicle for the teaching of numeracy. 
She points out that such examples bring with them, from the rest of 

the school and above all, from the wider society outside school, a 
host of socio-historical connections. These will be different for each 
individual in the class and may be mediated by issues of social class 

and, in the particular case of money, real buying power. Such 

considerations will affect the transparency of the resource, and 
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therefore its capacity to allow a way through to mathematical 
meaning-making. 

This is why drawing on resources from contexts and 

practices outside of school mathematics creates significant 

challenges for teachers. ..... context crossing can be 

dangerous and alienating in school, and more so for some 
learners than others. 
(Adler, 1998 p. 11) 

Other workers have identified difficulties inherent in the use of 

examples from the 'real' world in the mathematics classroom. Boaler 

(1997) has drawn attention to these dangers in the context of female 

under-achievement in relation to so-called realistic mathematics, and 
Cooper and Dunne (2000) have looked at issues of social class, 

gender and equity in relation to UK National Curriculum tests in 

mathematics. Work such as this emphasises the opacity which can be 

inherent in examples used in mathematics classrooms in an attempt to 

relate topics to the 'real world'. In attempting to make the material 

relevant social and class factors can be introduced at the expense of 

transparency, of allowing pupils to see through to mathematical 

meaning-making. 

I believe that the idea of transparency is very valuable in assessing 

the use of resources in the classroom. The teacher must consider 

carefully the transparent use of resources as they apply to the 

members of the class and whether or not they allow mathematical 

meaning-making. Relevant factors include: 
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" the language used as pupils move from spontaneous sense-making 

to their own internal meaning-making and on to the use of formal 

mathematical communication; 

" the diagrams employed to support the activity, which should be a 

window to meaning-making; 

" the software used should allow transparent use; 

" and the hardware should not dominate the view of the pupil. 

This last point indicates a place for portable, hand-held technology 

such as the T192 and later I wish to deal specifically with the issue of 

transparency as it applies to the use of the T192. 

Socio-Cultural Dynamics in the Mathematics Classroom 

In chapter 2I dealt at length with the socio-cultural principles which 

will be used in the rest of this work. These were general principles of 

educational psychology, and were not specifically directed at 

mathematics education. In this section I want to deal with some of the 

principles I discussed in the previous chapter as they relate in 

particular to mathematics classrooms and to introduce the ideas of 

other workers who have developed their own related approaches. 
The works of Vygotsky, which emphasise the primacy of the social in 

learning and the way the zone of proximal development can be seen 

as the site of learning were a starting point. I discussed the different 

positions taken on the significance of the zone of proximal 
development by various workers, as a site for mediation (Bruner, 

1986) as the place where there is a dialectic between scientific and 

everyday concepts (Vygotsky, 1962 p 108) and as the environment 
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for the practising of revolutionary critical activity (Engeström, 1987). 

Situated cognition within local communities of practice, as advanced 
by Lave and Wenger (1991) is developed as a concept with relevance 
in mathematical education by the work of Winboume and Watson 

(1998). A wider definition of the zone of proximal development is 

adopted in the work of Hedegaard (1990), who sees the idea as 

embracing the activity of the whole class and the teacher. Lerman 

(1998) sees the zone of proximal development as including previous 

experiences of participants and the power relationships in the 

classroom, and Watson (1998) points out that Lave and Wenger's 

view of learning in society locates the classroom in the wider 

community, with all the social and class influences which such 
location implies. 

Activity is seen as the ability to engage, through social interaction, 

with intention, in the process of meaning-making. Meaning-making is 

seen as a stage in the developing attitude of learners as they begin to 

develop a critical awareness of their place in the practical-critical 

revolutionary activity which is the learning society. 

As I have said, many workers in the field of mathematics education 
have brought their own perspectives to the general socio-cultural 
background developed from these ideas. The work of Winbourne and 

Watson (1998) and Cobb and Yackel (1996) in particular have 

provided insights into factors which influence mathematical 

meaning-making in a whole-class or group zone of proximal 
development, indicating socio-cultural vectors which may operate for 

such meaning-making. 
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Winbourne and Watson (1998) draw on work by Lave and Wenger 

(1991) and Lave (1993). They extend the idea of situated cognition 

within local communities of practice, and the related idea of 
legitimate peripheral participation, to consider `local communities of 
(mathematical) practice'. They identify features of such a local 

community of (mathematical) practice: 

" pupils see themselves as functioning mathematically 

within the lesson; 

" within the lesson there is public recognition of 

competence; 

" learners see themselves as working together towards the 

achievement of a common understanding; 

" there are shared ways of behaving, language, habits, 

values and tool-use; 

" the shape of the lesson is dependent upon the active 

participation of the students; 

" Learners and teachers see themselves as engaged in the 

same activity. (Winbourne and Watson 1998 p 183) 

They examine classroom interaction in terms of such a community 

and go on to discuss the idea of `telos', of the meaning-making of the 

whole class being aligned in directions generated by social 
interaction. They see telos as a unification of small scale ̀ becomings' 

by which many learners join a community of practice. They see: 
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a link between our notion of LCP and the situated 

abstraction of Noss and Hoyles (1996). Just as they claim the 

computer provides domains which support students' 

abstraction, so we claim LCPs support students' growing 
image of themselves as someone who is legitimately 

engaged in mathematical practice, as someone, in other 

words, who is becoming a mathematician. (Winbourne and 
Watson, 1998 p. 183) 

This approach is echoed in the work of Cobb and Yackel (1996), who 
have analysed mathematics classrooms in terms of the negotiation 

and maintenance of social and socio-mathematical norms. Social 

norms include 

" insistence on explanation of answers 

" respecting the contribution of others 

" making clear agreement as well as disagreement. 

Socio-mathematical norms would include 

" some notion of what constitutes a valid, complete solution 

" agreement on the worth of alternative solutions 

" negotiated agreement between teacher and students on the 

mutual acceptability of solutions. 

Social norms will exist in all classrooms, and will bear a direct 

relationship to the society in which the classroom is situated. Because 

social norms will affect the negotiation of socio-mathematical norms, 
Apple (1992) has argued that the classroom is firmly situated in the 

wider context of the practices of school and society. Yackel and Cobb 
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(1996) discuss the influence of socio-mathematical norms on 

argumentation in the classroom. They draw on the ideas of Toulmin 

(1969) as developed by Krummheuer (1995), seeing argumentation 

as made up of conclusion, data, warrant and backing. Yackel (1998) 

says of argumentation: 

it clarifies the relationship between the individual and the 

collective, in this case between the explanations and 

justifications that individual children give in specific 

instances and the classroom mathematical practices that 

become taken-as-shared. As mathematical practices become 

taken-as-shared in the classroom, they are beyond 

justification and, hence, what is required as warrant and 

backing evolve. Similarly, the types of rationales that are 

given as data, warrants and backing for explanations and 

justifications contribute to the development of what is taken- 

as-shared by the classroom community, that is to the 

mathematical practices in the classroom. (Yackel 1998 

p210) 

Thus argumentation is seen as a social, rather than a logical process, a 

means of establishing that which is held in common about the topic in 

question and moving forward the 'held in common' by classroom 
interaction. Voigt (1995) discusses the reflexivity between learning 

and interaction and speaks of this reflexivity contributing to a 

classroom microculture which in turn affects the meaning-making 

which is taking place. 
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Conclusion 

In examining the literature relevant to classroom use of dynamic 

geometry this chapter has first considered general difficulties which 

pupils may have with geometrical representations and the way 
dynamic geometry can be used to overcome them. It has considered 

the principles adopted by workers in the use of dynamic geometry 

and drawn on work related to the various functions of proof which 

can be used in social learning. It has related the general socio-cultural 

principles outlined previously more specifically to mathematics 
learning. I suggest that recognition of ideas of a whole class zone of 

proximal development, of local communities of practice and of 

negotiated socio-mathematical norms and argumentation have much 

to offer in looking at how technology, appropriately transparent, can 
be used to effect social meaning-making in the mathematics 

classroom. How these considerations from the literature are applied 

to the various stages of fieldwork and the material and practices used 

there is dealt with in the chapters which follow. 
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Chapter 5 

Starting Points 
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Chapter 5 

Starting Points 

This chapter describes a pilot phase carried out at an inner city 

comprehensive school in the north of England. There were a number 

of objectives in undertaking the pilot phase and the findings in these 

areas and in other areas (which were found to be just as valuable) 

are presented here. In the two weeks (four one hour lessons, two each 

with two classes) it was intended to introduce the 11-12 year old 

pupils to the T192 and to the Cabri Geometre software, and to 

observe their reaction to the introduction of dragging as a means of 
distinguishing between drawing and construction. Methods of data 

collection were trialled and preliminary observations looked at ways 

of working with whole classes. 
In addition this chapter gives an account, from work at different 

schools, of other pupils' initial reactions to working with the TI92. 

Introduction 

As I began to work with children using dynamic geometry on the 

T192 for the first time, I had a number of objectives in mind. Among 

these were: 

" an appreciation of the need, on my part, to become familiar with 
the use of the TI 92 in classrooms; 

" an attempt to find out how quickly children could become 

proficient in the use of the TI 92 and the dynamic geometry 

software; 
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"a wish to try to use the machines with whole classes, as well as 

with smaller groups; 

" an early attempt to develop materials and activities which use the 

software to teach geometry at this level; 

"a need to investigate methods of data collection when thirty or so 

children were each using the calculators independently (albeit on 

the same or related tasks). 

This chapter reports on progress with these early trials. Other initial 

reactions of children in other schools to the technology are recorded 

and discussed. 

The tasks set for the children were directed at introducing the idea of 

dragging, and the distinction between a drawing and a construction. 

These tasks were an adapted version of the work of Healy et al 

(1994a). 

This section will discuss some of the principles behind such work, 
detail the tasks and the way in which the class responded to them. 

The problems associated with the collection of data which might 

throw light on the meaning-making which was taking place are 

outlined. 

First Trials 

The first part of this pilot phase was carried out in school A, an inner 

city 11- 18 comprehensive school. The school has 1600 pupils of the 

full range of ability, one seventh using a language other than English 
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as their first language. The pupils were two mixed ability Year 7 

classes (age 11-12), each of about twenty-seven individuals. Two 

sessions of one hour each were available with each class for this pilot 

stage. The pupils had not used dynamic geometry software or the TI 

92 before. 

The introductory material was intended to provide some familiarity 

with the software and to look at children's perceptions of the 

distinctions between drawing and construction. It was intended to 

investigate if there was a realisation of the possibility of defining a 
diagram in terms of geometrical constraints, i. e. so that there were 

geometrical dependencies. 

The approach owed much to the ideas used by Healy et al (1994a), 

who used the notion of `messing up' diagrams as a way for children 

to explore geometrical constraints by using the drag function. I also 

wanted to see how quickly children grew familiar with the T192 and 

gain an insight into how the next stage of the research might proceed. 

Hoyles, Healy and Noss (1995) discuss the significance of the 

availability of dragging in a dynamic geometry environment and the 

possibility that, in such an environment, construction may almost 

replace proof. 
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Speaking of dynamic geometry environments in general, they say: 

They provide a model of Euclidean geometry which offers 
feedback through 'dragging' as to whether constructions or 

theorems are 'correct'. 

(Hoyles, Healy and Noss, 1995 p. 103) 

Healy et al (1994a) describe the introduction of dynamic geometry to 

Year 8 (twelve year old) pupils by using an exercise designed to 

highlight the difference between drawing and construction for 

children who have little formal knowledge of geometry. They asked 

children to draw a face, with eyes and mouth etc., and to investigate 

how the face could be `messed up' by dragging elements of the 

diagram. They had reservations: 

We were aware that our approach ran some risks. The way 

students are introduced to a powerful medium inevitably 

moulds their perception of it and by introducing the element 

of drawing we were certainly not starting with an approach 

which encouraged a Euclidean perspective on the activities. 
We knew from our Logo work that freedom to create one's 

own goal - degoaling - is double-edged. On the one hand it 

allows pupils to appropriate the activities, to feel that the 

work is theirs, rather than the teacher's. On the other hand it 

sometimes enables pupils to avoid interacting with the 

mathematics at all! (Healy et al, 1994a p. 14) 

Healy and her co-workers worked with one researcher to a pair of 

pupils and a stand-alone computer, and it was felt in the present 
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project that the slightly more structured approach adopted, with a 
drawing provided as a file, might be more appropriate when working 

with whole classes. 

Pupils had a T192 each and worked in pairs. After some explanation 

and demonstration on the overhead projector version of the machine a 

worksheet (Appendix VIII) was given out and the pupils called up the 

first file and began. Two video cameras, operated by volunteers, were 

used on a roving basis whilst pupils worked. 

The file called up by the pupils had been previously loaded on all the 

machines by linking them one-to-one. This file contained a drawing 

of a face where parts of the diagram were independent elements and 

others were dependent. The pupils were asked to explore this drawing 

by using the drag function to investigate ways in which the drawing 

could be altered, then exchanging machines and trying to restore their 

partner's alterations. 

Typical results are shown below. 
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Pupils were able to investigate some of the geometrical dependencies 

in the drawing of the face, but restoring the original drawing proved 
difficult and there were difficulties in reloading the original file. 

A second type of worksheet, which follows the same theme, is 

detailed in appendix IX. Here the intention was to use a simpler 
diagram and make the appreciation of methods of construction more 

accessible. The file as presented to the children (by previously 
loading it onto the T192) contained two `identical' squares, one 
drawn and one constructed. The children were asked to investigate 

the effect of dragging on the various elements of the diagrams. The 

OHP version of the T192 was used for class demonstration and 
discussion. 

The original file is shown below (Fig 5.3), with, in Fig 5.4, the effect 

of dragging and using the `Hide and Show' option to reveal 

construction details. 
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After this work some of the children were able to go on to use the TI 
92 to construct simple geometrical shapes, particularly an equilateral 
triangle based on a generating circle. 
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Data Collection 

The intention in the pilot phase was to try different methods of data 

collection, with an objective of being able to collect information in 

later trials which threw light on what meaning-making was taking 

place at the classroom and individual level. The approach consisted 

of feasibility studies of different methods of collection and an 

assessment of ways of observing individual meaning-making in the 

classroom. Video recording of the children and their work was used, 

using two cameras which were operated by external observers. 
Additionally children were asked to record their reactions in note- 
books. It was not possible to record the T192 screens on the video, 

and the possibility of gathering individual children's reaction was 
limited by the need for the operator and camera to be physically close 
for the microphone to pick up the speech of individuals. Children's 

reactions were stilted and they were usually reduced to silence. 
Additionally, in the subsequent stages of the study it was not 

anticipated that camera operators would be available. Field notes of 

the sessions revealed an ability on the part of students to become 

quickly familiar with the software, and to make progress with the 

tasks set and to move off in their own directions. 

Wednesday 4/12 
Some got on to measuring spontaneously. Good attempts at 

constructing an equilateral triangle from A, B, C et al. (from 

field notes) F2 
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Initial Reactions of Pupils 

As in all the schools visited in the project, most pupils' initial 

reactions to the machines in this trial were favourable. 

Typical comments as recorded in note-books were: 

I preffer doing maths on the 7192 because its alot more interesting 

than writing on paper.... I preffer the computers because it saves the 

bother with compass and rulers and protracts and all the working out. 

(Pupil A) D1 

I think that maths is better on the 7192 because they are really 

good (Pupil B) D2 

I like moths.. especially the mini hi- tech computers 
(Pupil C) D3 

This initial enthusiasm for work with the technology is a valuable 

asset to the teacher, but there are some areas where thought must be 

given and caution exercised. For instance there was a realisation on 

the part of some pupils of the need for familiarity with the software. 
Typical was pupil A, who continued later in the same account: 

But one of the problems is that it takes quite a lot of time to learn 

how to use it properlly, So it sometimes holds you back but once you 

learn how to use it it speeds things up considerably. (Pupil A) D4 
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A further problem was error correction. File handling and re-loading, 
if the face on worksheet 5.1 was irretrievably distorted, was not easy. 

These difficulties in error correction were recorded by one pupil: 

What I don't like is when a press the wrong botton by accident it 

makes my work go funny and then I have to start again. (Pupil D) 

D5 

These comments were informative and valuable in that they pointed 

to a successful introduction and indicated refinements. However one 

aspect of the comments which I found particularly striking was the 

ability from the start of these pupils to examine critically the use of 

the technology. In the following section I look at the initial reactions 

of other pupils to the technology and examine them for further 

insights into this critical faculty of pupils. 

Other First Reactions 

In a second school, school B, an 11-16 comprehensive with a slightly 

below average attainment intake, the subjects were pupils aged 12-13 

years who volunteered to meet at lunchtime to take part in the 

project. 

There is an advantage inherent in the introduction of new technology 

in the classroom. Motivation is increased by the use of any new 

approach. In this school a start was made by letting children take 

machines away for a time to experiment on their own, with only a 
brief instruction sheet (Appendix VI) as an introduction. One girl 
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who had done so asked if her friend could also have a machine and if 

they could stay in at lunchtime so that she could show her friend what 

she had learnt. The conversation between them (there was no teacher 

present except to switch on the recorder at the beginning) is 

transcribed partly here (for a full transcription, see appendix X). 

There are important points to be made after a detailed examination of 

the discourse, which will be looked at more closely later. However 

when considered as a whole it provides a powerful indication of the 

self-motivation which children can bring to learning with technology 

and an indication of the potential of this approach. For example, part 

way through the recording this extract occurs: 

18 B Mmmm yeah 
19 A Tell me if you don't get it 

20 B Ido get it 

21 A And then once you've finished your shape you 
do enter, enter and it draws your shape in bold. 

Right? 

22 B Mmmm My rectangle's going to fall apart 

23 A That's alright, look at mine, it's not even 

a rectangle, that's just a shape. 

Right, you can go on F4 and that's all 
sorts of different lines and points, you 

can have compass, you can measure, ....... 

Ti 
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They had decided to use the polygon option to try to draw a 

rectangle. 
Pupil A is advocating the advantages of the program, and pupil B is 

responding, being brought into the community of practice. There is 

evidence (Lines 22 and 23) of spontaneous appreciation of the 

distinction between drawing and construction. The two devoted half 

an hour of their own time to this exploration. The commitment shown 

by these pupils is an example of the motivation which can be 

generated by using technology. 

In another school, school C, an 11-16 community college with a wide 

rural catchment area and an above average ability entry, lower ability 

year 9 (13-14 year old) pupils gave their first reactions to using the 

technology as part of the project. 

It was more useful than a blackboard diagram because you were 

making it happen and you had to understand to do this. If a 

teacher drew it you could just go along and not learn anything. 
(Pupil E) D6 

I think it is really good because it looks simpler when you do 

things yourse/f. It is much easier to understand how things 

work. Also it makes testing out theorys a lot easier than doing it 

on paper. (Pupil F) D7 

This suggests an opportunity to encourage appreciation of the general 

nature of constructions and particularly proofs. 
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One theme running through the initial comments which pupils made 

about their use of the T192, which became an important consideration 

of further work, was that of pupils' consciousness of their own 

learning processes. Many pupils were critical of their own learning 

practice and showed an awareness of the implications of the 

technology. Some of the points made referred to the importance of 

the drag facility: 

The machine is usefull and I think it is good to be able to 

experiment on your own diagram. (Pupil G) D8 

I think its verygood, its useful to have a moving image rather 

than drawing it. (Pupil H) D9 

The difficulties which children can experience when presented with a 

geometrical diagram, which may be intended sometimes to represent 

a particular situation or at other times a set of general principles is 

mentioned in chapter 3, where reference is made to the work of 

Mesquita (1998). Dynamic geometry software, allowing as it does the 

dragging of independent entities, provides a way of allowing children 

to see a generalisation before moving to fix that generalisation as a 

static diagram, perhaps on paper. This suggests an opportunity to 

encourage appreciation of the general nature of constructions and 

particularly proofs. 
Hoyles, Healy and Noss (1995) discuss the significance of the 

availability of dragging in a dynamic geometry environment and the 
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possibility that, in such an environment, construction may almost 
replace proof. 

Others wrote about ease of use: 

It is easy to clear your screen again if you do make a mistake 
(Pupil I) D10 

The machine is quite easy to use once you have got used to it 

(Pupil G) D11 

There were a number of comments which related to issues of 

ownership and affect, indicating the particular advantages of the use 

of hand-held technology such as the T192: 

It is better being able to have your own. (Pupil G) D12 

They are good because you can stay where you are, in the 

classroom. (Pupil J) D13 

The TT 92 is a very good and useful machine, powerful and 

personal because you can have it in front of you and no body can 
look at it. (Pupil K) 

D14 
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Conclusions 

Before the pilot study a number of objectives had been identified and 
information was gained in each area, even if in some cases it 
indicated that a revised approach would be necessary. 

" Personal familiarity with the technology 

I had not used the machines in class before. Within the scope of 

this initial work the lessons were successful. I became confident in 

the use of the machine, and in the way I was able to demonstrate 

with the overhead projector version. 

" Children's ability to become accustomed to the TI 92. 

The TI 92 is a complicated looking machine (Appendix V) and I 

had some reservations about how children would deal with the 

complexity of the keyboard, especially in a whole class lesson, 

where a number of queries could need attention at once. In some 

of the pilot lessons I was helped by assistants, who could deal 

with problems which arose, and I chose the type of material with 
the possibility of this difficulty arising in mind. The children were 

able to use the files already loaded, and most made good progress. 
To a large extent they were only using the drag function, and 

coped with this well. Error correction was one source of problems 
for pupils and later work used simpler screens so that it was easy 
to start again. 
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The initial reactions of pupils in other trial schools were 

consistently enthusiastic. There was a considerable bonus in pupil 

motivation with the introduction of the T192. Pupils of ages 

between 11 and 14 years, when first presented with the machines, 

all began work with enthusiasm and made progress when careful 

consideration was given to the accessibility of the material used. 

They made cogent initial comments on some points, showing a 

willingness to be critical of their own learning and thoughtful 

about the implications of the technology. Particular points made 

referred to the advantages of the dynamic image, the difficulties of 

error correction and the need for familiarity with the equipment. 

There was reference to the advantages of the hand-held 

technology in matters of affect, children mentioning the 

possibility of keeping screens private, of not moving from the 

classroom and a feeling of ownership. 

" Use with Whole Classes 

I had determined to look at the use of the technology in whole 

classes and the pilot study was arranged to allow this. As an 

exercise in teaching this was successful, but from the point of 

view of research into individual, group and whole class meaning- 

making it was evident that further development of techniques of 

data gathering and recording would have to take place. The 

meaning-making of individuals could not be focussed on by the 

gathering of data from class teaching, and the material used was 
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not such as could be used to easily align the class in their group 

meaning-making. 

" Development of Materials. 

The materials used, which were based on those used by previous 

workers (Healy et al, 1995) allowed exploration of the drag 

facility and were designed to indicate the distinction between 

drawing and construction. They were reasonably successful in 

this, but as files were provided with the initial screens available 
(for reasons outlined above), the activity was somewhat limited in 

the potential it gave for development. Some pupils who finished 

the activities went on to construct an equilateral triangle which 

could not be 'messed up', using ideas they adapted from the 

construction of a square. The square construction indicated the use 

of arcs to conserve length, and pupils found it relatively easy to 

use this method to construct an equilateral triangle. 

" Data Collection 

Data collection was by video recording using hand-held cameras 

operated by third persons, and as outlined above served to indicate 

that considerable refinement would be necessary. The screen on 

the TI 92 was not visible and in order to pick up the voices of 

individuals or small groups the camera and operator had to be so 

close as to be intrusive, and this inhibited conversation. The 

recordings made were not very useful. The children were asked to 
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write down their first impressions of working with the TI 92 in 

note books, and this proved a more productive source of data. 

The results of this pilot study suggested that the use of the technology 

was not particularly problematic for the teacher or for the children, 

but that choice of material and methods of data collection would 

require further refinement. In the next phase of classroom work, 

described in Chapter 6, material which drew the whole class together 

in exercises in geometry was used, and a different recording 

technique trialled. 
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Chapter 6 

Phase One - Classroom Exercises 
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Chapter 6 

Phase One - Classroom Exercises 

This chapter describes the first trial of classroom material, which 

took place in a class of about thirty 11-12 year old pupils (one of the 

classes from a north of England comprehensive school which had 

been involved in the pilot study). The theoretical background relevant 

to this particular work is discussed. There was an attempt to 

introduce a particular geometrical problem, of translating a line 

segment parallel to itself. The material used is described and 
discussed and the method of data gathering is detailed. Data 

collection was reassessed and refined. Data obtained is discussed 

and analysed and this phase of the project is critically examined. 

Introduction 

Following on from the first pilot, one of the two mixed ability year 

seven (11-12 year old) classes in school A was used for further 

trialling of material and development of teaching methods and data- 

recording techniques. More advanced geometry processes were 
introduced and a coherent theme to the work was developed by 

looking at problems about comparing lengths and angles. The 

objective was to gain more insight into the way dynamic geometry 

could be used in classrooms and the learning processes which were 

operating within the whole class and smaller groups. It was hoped 
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that using a well-defined problem and developing a solution in the 

classroom community would provide evidence of the meaning- 

making which was possible with the topic and the technology. 

Methods of data collection, which had shown a need for refinement 
in the pilot phase described in the previous chapter, were reassessed. 

Healy et al (1994b) report on using dynamic geometry for 

constructions, in particular the use of a circle as a length measure 

using Cabri. Their approach was to ask children to double the length 

of a line segment. They report on the tendency of pupils to draw a 

point in the position where they think it should be and discuss the 

difficulty pupils have with seeing any necessity for construction. 
They have seen what is required, it becomes a known concept in their 

minds and they draw it (or rather a representation of it) on the screen. 

This is essentially what is asked for from pupils if they are asked to 

sketch on paper, say, an equilateral triangle. They are expected to 

give the inaccurate drawing they have produced the accurate meaning 

of 'equilateral triangle'. It is a fundamental element of Euclidean 

geometry that concepts, firmly held in the mind, are represented in 

diagrams which are necessarily inaccurate, but which can be used for 

further meaning-making. However the idea of a construction is the 

use of firmly held concepts to achieve as accurate a representation as 

possible. In the classroom the construction may be used to build 

further meaning-making, such as an appreciation of the locus 

properties of angle and line bisectors. Outside the classroom, 

constructions are relevant in accurate drawing (witness the dividers 

which signify the stonemason). 
119 



Dynamic geometry combines elements of both of these ideas. 

Because the underlying programming distils Euclidean geometry, 

producing the elements on the screen, constructions on the screen are 
imbued with an absolute accuracy that they could never have on 

paper. If a point is drawn on the screen to indicate say, the doubling 

of a line, it may indicate complete appreciation of what is required, if 

what is required is a line of a certain length. There is a tendency for 

pupils to see what they want to see in the diagram. However, what is 

required here is a construction which cannot be, in the words of 
Healy et al (1994a), 'messed up'. Pupils need to appreciate that a 

sufficient construction is one which will survive dragging and still 

give a line doubled in length. They are required to see beyond the 

immediate construction task and to appreciate what is needed to find 

a generally applicable solution, in a way which is closely related to 

the production of a proof. 

Healy et al go on to describe work with intersecting lines, where 

pupils grasped the idea of a circle as a useful way to transfer length 
from one line to another. The material used in this phase took up this 

idea. 

The Material 

In the classroom work described here, the comparison of length was 
introduced with rods of slightly different lengths. The first abstract 

exercise involved comparing the lengths of two line segments with 

common end points. Estimation of angle was introduced here also, 
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mainly because, in the second exercise, it was intended to look at the 

parallel translation of a line segment. The problem here was set as 

that of drawing, on the screen or on paper, two equal line segments 

which would meet if produced at a given angle, and then checking for 

equality and the accuracy of the angle. 

As an introduction, the lesson started with two plastic rods, each 

about a metre long, being held up by two pupils on different sides of 

the classroom. When asked to suggest ways of finding which was 
longer the children made proposals mainly involving measuring. This 

perhaps indicates a tendency to use empirical, numerical methods or 

may be an indication of a primacy of number over shape for these 

pupils. It was only after some discussion that they decided that a 

good method would be to stand the two rods next to each other. The 

translations and rotations of the rods to allow them to be compared by 

standing next to each other took place in the classroom. This 

introduced the rotation and translation involved to the pupils, because 

they could see the sector turned through and the parallelogram swept 

out by one of the rods as it was moved next to the other (provided 

they were arranged beforehand to be coplanar). Healy et al (1 994b) 

mention the usefulness of asking pupils to sketch a required 

construction on the screen before attempting to produce it accurately. 

This is another way of providing scaffolding to help in an 

appreciation of the geometry underlying the construction. 

This was followed by a discussion of the use of compasses, on paper, 

and the compass function, on the T192, to compare the lengths of two 
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line segments which constituted the arms of an angle. The 

opportunity was taken to introduce estimation of angle, so that pupils 

were asked to draw two equal line segments which met in a common 

end point at an angle of (say) 40 degrees, and to find a way of 

checking accuracy using only compasses and protractor on paper, or 

the compass (or circle) function and the angle measuring function on 

the T192. The version of Cabri used on the T192 distinguishes 

between lines, segments and rays, as shown in figure 6.1. 
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Fig 6.1 

It was necessary first of all to ensure that the pupils knew that a 

segment here meant what they knew as a'line'. This was an example 

of the difficulties which can be experienced in using technology such 

as this with pupils who are not familiar with formal Euclidian terms. 

Familiarity with the software is soon developed, but such difficulties 

can obscure the mathematical objective, in this case, the comparison 

of length. (However it is worth saying that a discussion of the 

definitions of a ray and a line with this class of 11-12 year olds led to 

the observation from one pupil that a ray was just as long as a line 

because each had as many points as you could want. ) 
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The children saw that a circle drawn with the point of intersection of 

the two line segments as centre, with its radius equal to one of the 

line segments, was a sufficient device for comparing the length of the 

two line segments (fig 6.2). The angle measuring facility in Cabri 

was used to check the size of the angle. 

The final task was to draw, by eye, two equal line segments which 

would meet if produced off the screen or paper, at a given angle, and 

then to find a way of checking equality and the angle. Again, 

protractors and use of the angle measuring function were allowed, but 

not rulers or the length measuring function. There is a compass 
facility which allows pupils to specify the radius of a circle. The 

circle shown (fig 6.3) has centre A and radius equal to CD, showing 
that CD is shorter than AB. 
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Checking the angle, if producing the line is not possible, presents 

another problem. A line segment such as CD can be grabbed and 

translated and C superimposed on A by eye. The angle resulting can 

be measured, but it will always be the angle subtended by B and D at 

C or A unless some way is found to combine these two points. The 

accuracy is in doubt and the value will change if the line segment is 

translated again. 

The solution arrived at involved translation of the line segment CD in 

a way defined by construction. The need for this translation had been 

suggested by the use of the plastic rods and the parallelogram swept 

out in translating the rod indicated to the class a possible successful 

approach. 

In order to measure the angle between AB and CD, AP must be 

drawn such that ACDP is a parallelogram. The circle with D as centre 

and radius equal to CA is required. Angle PAB can now be measured, 

and since AP represents a translation of CD, is the angle required. 
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The class could see that a parallelogram was needed, but the 

particular construction outlined above was demonstrated to them. 

Data Collection 

As an attempt to reveal the activity of a group of pupils in the class, 

they were video recorded from behind whilst using the overhead 

projector version of the T192. The projected image of their work on 

the screen was recorded together with the dialogue of the group of 

pupils. This was successful to some extent, but there were difficulties 

caused by the need to use the one overhead projector version of the 

T192 additionally with the whole class. (Later versions of the T192 all 
have the port needed to connect to the overhead projector. This 

facility would have helped here, and also opens up the opportunity of 

any screen generated in the classroom being shown to the whole 

class. ) Further refinements of the recording methods were seen to be 

needed. Again the children were asked to keep diaries, and this 

proved to be a useful source of data. 

Discussion of Results 

Before beginning the second exercise described above Joe wrote in 
his diary: 

I prefer to use the calculators rather than paper because the 

calculator is more accurate, if you make a mistake you can just 

125 



clear it rather than making a mess on paper and it's quicker to 

use a calculator than a piece of paper, pens and pencils. D15 

However, once embarked on the second exercise difficulties with the 

screen caused Joe problems in producing the construction on the TI 

92. 
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Fig 6.5 Fig 6.6 

Joe's neighbour had produced the screen above (fig 6.5) and Joe had 

seen the construction was shown to be sound by dragging B. He 

wrote, after seeing this, 

I found it easier to draw the parallelogram using a compass on 

paper rather than on the TI 92. D17 

His construction drawn on paper is shown in figure 6.6. 
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This episode illustrates an important consideration in the use of hand- 

held technology such as the TI 92. Aside from the advantages relating 

to affective issues of privacy and ownership mentioned in the 

previous chapter, the machine does not dominate the pupil's horizon 

in the way that a desktop monitor does. It is easily put to one side if 

work on paper is preferred. (Additionally, as with any portable 

technology, it is used within a classroom associated with the 

particular subject area, rather than in a computer suite. ) Particular 

advantage has been found in pupils being able to switch from screen 

to exercise book, that is to see constructions on the screen, gain an 

understanding by dragging and then to transfer to paper using a more 

traditional construction. The use of the concrete example of the rods 

seemed to allow most members of the class to see what was required, 

and almost all were able to use a circle to compare the lengths of two 

line segments which had a common end point. 

There appeared to be a general intuitive appreciation of the need to 

translate the line segment in the second example so that it moved 

parallel to itself. Some, at least, of the class managed to produce the 

final diagram on the screen or on paper. However, returning to the 

considerations raised by Healy et al (1994b), I felt that intuitive 

understanding had been reached by the majority of the class from the 

scaffolding provided by the use of the rods. Producing the 

construction on paper or on the screen was a secondary and probably 
less important part of the exercise. When pupils showed that the 

construction was sound by dragging, they were verifying, not making 

meaning. This construction was too complicated to allow the majority 
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of the class to see through the technology to the geometry beyond. 

Many who could appreciate the details of the construction, such as 

the pupil above, preferred to use compasses and ruler to complete the 

construction on paper. However they had seen that the construction 

was sound, and seen a dynamic image of it dragged. One advantage 

of the T192 is that it does not dominate the view of pupils in the way 

that a desktop computer monitor does. It is easily put to one side. The 

pupils who preferred to work on paper were reacting to the obscurity 
introduced by the technology. Their meaning-making had been 

stimulated by seeing the dynamic image before attempting the 

construction. They could, however easily put the T192 to one side if 

they wished and work on paper. There is a strong case to be made for 

the use of dynamic images such as those available from technology 

such as dynamic geometry in this way. They can be presented to the 

class before a static diagram, so that the generality of the result is 

emphasised (Mesquita 1998). Pupils then more easily see a diagram 

on paper as a representation of a set of general properties. 

Conclusions Drawn 

" The Material 

Some children worked successfully with this material, but it was 
felt that the intuitive grasp of what was required, generated early 
in the lesson by the use of the concrete example of the rods, was 
interrupted in a rather pedestrian way by the use of the 

technology. This was especially so in the second example, where 
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the line segment had to be translated parallel to itself. The 

preference of some pupils for drawing with instruments on paper 

seemed to back this up. In general, meaning-making seemed to 

come from other sources than the technology, with the software 
being used to verify, rather than to take forward meaning-making. 

" Data Collection 

Again the useful data came from pupil diaries. Video recording of 

the screen used by a group of pupils by arranging for them to use 

the single T192 which could be connected to the overhead 

projector was problematic. The image of the screen was not clear, 

and the same machine and projector were needed to demonstrate 

to the whole class. Some refinement of technique was required to 

enable evidence to be gathered of the meaning-making of 
individuals and groups. 

I felt that this trial had illustrated some physical advantages of the TI 

92 and reinforced my ideas of its usefulness as an example of non- 

intrusive technology. However the content material chosen was too 

complex to allow the examination of meaning-making, and the 

recording system used for data collection needed further refinement. 
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Chapter 7 

Zooming In 

The second phase involved the study of the mathematical meaning- 

making of small groups of 12-13 year-old pupils. This was a 
development from the first phase, to investigate more closely the 

meaning-making which was taking place when smaller groups used 

the technology. The material used was more open ended and I acted 

more as a participator than a leader. Audio-recorded dialogue was 

transcribed and the screens generated by pupils were recorded in 

field notes. A theoretical perspective using the ideas of spontaneous 

and scientific concepts and intuition was applied to the meaning- 

making which was observed. 

Introduction 

This chapter reports on further refinement of the research methods in 

an attempt to narrow the focus onto aspects of concept formation and 
development which may be operating when groups of children use a 
dynamic geometry environment. With this in mind, and also bearing 

in mind experience gained in the pilot trials and phase one, the 

material was made more open, the recording method was simplified 
(audio recording of dialogue and field notes of TI 92 screens) and the 

work was done with smaller groups of children. Groups of up to four 

pupils were used from school B, aged 12-13 years, and additional 

results are reported from school D. 
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The interaction of children and the technology which was observed is 

examined using, among others, ideas of spontaneous and scientific 

concepts (Vygotsky, 1962) and intuition, conviction and proof 
(Fischbein, 1985). 

Zooming In 

I was concerned from the outset to relate this work to how the 

technology could be used by the classroom teacher, and previous and 
later chapters reflect this concern, examine relevant literature and 
develop this theme. However in planning the work reported in this 

chapter I decided to investigate meaning-making in small groups, in 

the belief that this would provide insights into the wider vision of 
improved classroom use of the technology. This close-up study of the 

meaning and sense making activity of smaller groups of children was 

intended to give some insight into detailed interactions between the 

group, the software and the teacher, which might be relevant to later 

work with larger classes. 

Background Literature 

As has been the case all through this' study, there was emphasis in this 

section on the ability of a dynamic geometry environment to allow 

examination of the stability of the screens produced when 

geometrically independent entities are dragged. Again the drag 

function and the idea of a construction invariant under drag were 

central. The research tasks which were developed were directed at 
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making a distinction between drawing and construction, and at 

seeking an understanding of concepts such as that of using a circle to 

preserve length (Healy et al, 1994a, 1994b). Pupil fluency with the 

technology has been a further central consideration as highlighted by 

Goldstein et al (1996). They emphasise the importance of allowing 

pupils to become familiar with the particular dynamic geometry 

environment by fairly unstructured exploration. In the case of this 

project the children involved at one school were allowed to take the 

machines home for a week before the sessions recorded here, and 

asked to experiment on their own with Cabri. 

As discussed previously in chapter four, Fischbein (1982) identifies 

three forms of conviction: formal, arising from argument; empirical, 

arising from a number of practical findings; and an intuitive intrinsic 

conviction, which he calls 'cognitive belief. I feel that the dynamic 

geometry environment can reflect these ideas by providing a 

background for pupil/pupil and pupil/teacher discussion, by allowing 
dragging to provide empirical proof and also through the way in 

which the ability to experiment with dynamic screen images triggers 

pupils' intuitive ideas. Fischbein proposes that 

the intuitive and the analytical forms of knowledge are 

complementary and deeply interrelated. They are two facets 

of an unique mental productive behaviour. (Fischbein, 1982 

p. 11) 

Fischbein sees intuitive conviction as intrinsic in character, with no 

need being felt for formal or factual justification. He sees intuition as 
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triggered 'in the frame of practical situations as a result of the 

personal involvement of the learner'. When using dynamic geometry 

with pupils, intuitions can be triggered and it is the concern of this 

chapter to examine the way in which these intuitions can be used to 

build more formal reasoning, or, in Vygotskian terms, to move from 

spontaneous to scientific concepts. In the wider mathematical sense 

this process is akin to that of moving from intuition to a formal proof. 

I have tried to use this principle in considering the ability of dynamic 

geometry to generate intuitive insights by pupils into the geometry 

they are looking at, and how these intuitions can be brought to 

analytical knowledge by mediation in the Vygotskian sense. 

A Vygotskian analysis would see learning moving from the social to 

the individual together with the idea of mediation by a variety of 

tools, the site for learning being the zone of proximal development. 

There have been many definitions of the zone of proximal 
development and alternative analysis of the processes of learning 

which operate there. The present analysis calls on a background of 

spontaneous and scientific concepts operating in the zone of proximal 

development. Vygotsky himself advanced the idea of 

everyday/spontaneous concepts as compared to scientific/systematic 

concepts. He considered that these were interrelated in a process of 
development. The growth of scientific concepts supplies a framework 

which allows everyday, spontaneous concepts to be assimilated into 

conscious use. At the same time everyday concepts give body and 

structure to scientific concepts. These two aspects of development 

occur in a dialectical fashion, as if the two kinds of concept clear 
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paths from scientific to spontaneous and back again. As quoted in 

chapter 2, Vygotsky saw development as: 

a complex, dialectical process characterised by a 

multifaceted, periodic timetable ... by a complex mixing of 

external and internal factors, and by a process of adaptation 

and surmounting of difficulties. (Vygotsky, 1978, p. 151) 

The purpose of the analysis of classroom dialogue in this chapter is to 

examine the way mediation by tools (among them the screen, the 

teacher and the group) takes place in the context of dynamic 

geometry in the classroom, looking particularly at this interaction 

between spontaneous and scientific concepts. From a Vygotskian 

perspective, emphasis is placed on the idea of mediation by a variety 

of tools, within the learner's zone of proximal development 

(Vygotsky, 1962). The contribution of a dynamic geometry 

environment as such a mediating artefact is highlighted by Jones 

(1997), who also emphasises the importance of the contribution of 

the teacher. 

The Research Task 

In an attempt to set a task which exposed the mathematical meaning- 

making taking place, the first part of this cycle of the project involved 

the examination of the pupils' ability to talk about and construct a 

square. It was hoped that the notion of a square would not be new to 

the pupils, but that in observing their attempts to construct a square, 
there might be opportunities for insights into their mental processes 

and the development of their appreciation of more abstract concepts. 
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I was present as teacher/researcher during the sessions but tried to 

take a role which was defined by whatever direction the children 

moved in their efforts to complete the task. The task itself was 

simpler than those used in the previous cycle, but at the same time 

more open ended in that pupils were asked to use their own ideas as 

to how it might be done. The recording methods were simplified by 

using audio recording, with field notes to record the screens 

generated during the discussion. The process of trying to record the 

screens which pupils generated by video recording had not been very 

successful, and I found that, with the numbers of pupils involved 

(never more than four), I could make field notes of the screens in 

sufficient detail. Pupils also made notes about their work in personal 
diaries. 

These 11-12 year-olds were quite confident about the concept of a 

square. One said: 

We were probably about five, six maybe seven, no younger 

than that, we were probably four, when we learnt that it has 

four sides and corners and that they are all the same but we 

were probably about six when we learned the word right 

angle. (Darren) 

T2 

A preliminary exercise, without the T192s, was used, with cardboard 

shapes which were all approximately square, but with only one 
`accurate' square. The group (three boys, Darren, Tony and Rob) was 

given the shapes and asked to use whatever method they liked to 
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identify the `best' square. The following dialogue indicates an ability 

to use the equal angle and equal side properties referred to in the 

writing transcribed above. 

1 D That one's definitely all right angles They had used the 

corners of apiece of 

paper to check 

2 T Yeah that one's all right angles 

3 D But we don't know if it's a square though, right 

4 T Let's have some more 

5 D I've tested them, Tony; they're not totally right 

angles. 
So now we've got these that are definitely 

rectangles of some sort but we need something 

to measure the sides against. 
We're not allowed to use a pen or anything are 

we? 

6 R A ruler 

7 D I know. This er tape box. Using a marked 
So that's the length that way, then these should length to compare 

match up 
They don't so this is a rectangle but not a square. 
Right next 

T3 

By using the right angle properties, (by checking against the corners 

of a piece of paper) and equal side properties (by offering up sides to 

a marked length), the group were able to arrive at a consensus about 

which of the cardboard shapes they considered was a square. There is 

a systematic use of the equal side and equal angle properties and a 
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sufficient method is found for identifying a square. There was no 
attempt to move beyond this to look at such things as properties of 
diagonals and indeed no need to do this to complete the task. 

There is social intercourse here, but it is somewhat mechanistic, 
defined closely by the task set. This is indicated by the language used 

and the nature of the social interactions present. Darren uses 
'definitely' (twice, at 1 and 5) and 'totally' (at 5), and tends to 

dominate the exchange. 

Subsequent work involved using dynamic geometry on the TI 92 to 

explore ways of constructing a square which was stable when 
dragged. The pupils had not used the TI 92 before and met with the 

teacher/researcher in their lunch breaks. After a brief period of 
familiarisation and demonstration, they were given a T192 to take 
home and experiment on, together with an introductory instruction 

sheet (appendix VI). When they next met they were given a task of 

constructing a square which was stable under drag. Fragments from 

the resulting dialogue are presented below. The three pupils involved 

are Rob and Darren (from the previous transcript) and Janine, and the 

teacher/researcher is JG. 

In his explorations of the machine Rob had seen the `Regular 

Polygon' option, which allows 'construction' of a square directly. 
This extract is from the first session using the TI 92. 

1 D Does anyone know how to draw a square? 

2 R Polygon, Regular Polygon See figure 7.1 

T4 
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Fig 7.1 

The `Regular Polygon' option offers a hexagon first, as indicated by the 

(6) in figure 7.1, and it is not immediately evident how to draw a regular 

polygon with fewer sides. In this case the use of the technology was not 

very helpful in assisting pupils to develop their ideas about construction. 
Janine also had taken a machine home and her explorations had led in 

another direction, towards the `measuring' menu. This allows the use of 

tools for measuring lengths, angles and areas. A measuring approach had 

been introduced in the original squares exercise and it is not surprising 

that this led to the approach these pupils used. The relatively coarse 

graphics on the T192 make it possible to draw a square which is accurate 
by eye alone. 

In the first part of the dialogue which follows a method, using the 

polygon option which allows free drawing of a polygon is proposed by 

Janine and accepted (line 6). Then a more formal approach begins to 
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emerge (line 7). The community is beginning to combine a pragmatic 

approach with a one more based in geometrical principles. Towards the 

end of the exchange there is an acceptance of the need for the use of 

abstract definitions rather than practical measurement. The dialogue is 

reproduced on the next page and further analysed. 
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I'm doing it on normal polygon, it's This option allows drawing of a 
3 J 

a lot easier and you can always polygon by defining its vertices 

measure your lines. 

4 D It's hard to get it a proper square. 
5 J But afterwards you can measure 

your lines. 

6 R Yeah, you can, can't you? 
7 D I know! You could do it two Darren is beginning to search for a 

triangles, two right angled triangles formalised method 

next to each other and merge them, 

then it'd be a proper square. 
8 R I think I've got a perfect square By using polygon' and the rectilinear 

here. nature of the screen Rob had drawn an 

accurate square which would not, 
however, survive dragging 

9 J See, I've just figured out mine's not Janine was aware of the necessary 

right, cos one of my lines is 1.91 conditions and the capacity of the 

cm and the other is 2.03 cm software to check them 

There's also area; you can do the 
10 J 

angle and see if the angle's a right 

angle, as well. 
11 R Well you can tell if it's a right Rob was still relying on the 

angle. coarseness of the screen. 
12 J Yeah but you can't for definite Janine is moving to an appreciation 

of the need for construction. 
[13 D I think it is regular polygon 

T5 
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Fig 7.2 

All three went on to use Regular Polygon successfully (Fig 7.2) and 

dragged their squares to confirm that the construction was stable. The 

end result, of using the rather unproductive Regular Polygon option, 

does not afford many opportunities for using the ideas of geometrical 

construction. However the exchange between the three pupils does 

provide insight into their use of language and the meaning behind 

that language. The development of ideas of construction as distinct 

from drawing becomes evident from this interaction. For example, 

Darren makes reference to a `proper square' at line 9 and Rob talks 

about a `perfect square' at line 10. These examples could be viewed 

as evidence of these pupils' spontaneous conceptions of the idea of 

construction (of a square in this particular case). The use of the 

qualifiers `proper' and `perfect' suggests a spontaneous idea of a 

square as an idealised mathematical object and a readiness to search 

after a representation of this ideal rather than to draw an 

approximation to it. Later on, in the continuation of this dialogue, 

(line 22), the word `square' is not qualified, possibly because the 

idealised form is now more deeply embedded in the pupils' 

conception. 
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Janine's investigation led her towards attempts at simply drawing the 

square. It is not difficult to draw by eye an accurate square with the 

coarse graphics on the T192 screen. Janine proposed then using the 

measuring functions and her spontaneous ideas of the properties of a 

square to check for accuracy. Her ideas on how to complete the task 

were based in drawing and verification, rather than in construction. 
Even though the ideas offered for verification are the same ones used 
for verification of the cardboard 'squares' the discussion is less 

positive and the need for a definitive construction is indicated (Lines 

4,8, and 12). The discussion at lines I1 and 12 centres on different 

levels of conviction. For example, Rob suggests that `you can tell if 

it's a right angle' which Janine counters with the comment that `but 

you can't for definite. 

In the second part of the exercise the group were asked to carry out 

the same task, but not to use Polygon or Regular Polygon. The idea 

of using a circle came from our discussion of their previous use of the 

Regular Polygon option, and they were asked to use their own ideas 

to follow this up. Darren (fig 7.3) and Rob (fig 7.4) both used a 

circle, a radius and a perpendicular through the centre as a starting 

point. 
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Fig 7.3 (Darren) Fig 7.4 (Rob) 

Darren had drawn two segments, again by eye, to complete his 

square. Dragging showed him that the point was not defined. Rob had 

defined a point where he estimated the other corner of the square to 

be and drawn two rays through that point. He drew two angle 
bisectors, which coincided originally, because of the accuracy of his 

estimation, but separated if he dragged the undefined corner of the 

square. The scribble sheet used to discuss the exercise is available in 

the appendix, F3. 

This conversation followed. 
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14 D I'm trying to do an angular bisector... Darren had followed up 

cos if the angular bisectors make a right Rob's idea of using angle 

angle in the middle then that'll mean it's bisectors 

a square, but I can't get it to do them. 

15 7G How do you know that the angle 
bisectors will meet in the middle in a 

right angle? 
16 D Well I don't know that they will in a 

right angle. 
17 R They will. 
18 D If it's a proper square then it'll be in a 

right angle because you'd be 

chopping the square like diagonally. 

19 R There'd be four triangles. 
20 D There'd be like four triangles and they'd 

all be right-angled triangles 
21 R There'd be two 45° angles Darren was shown how 

to draw an angle bisector 

22 D Yes!! Now that looks like it's going at a 

45° angle right through. That meets in 

the other corner there, so I think that 

means it's a square. 
T6 

Here the pupils are moving from spontaneous concepts of a square, 
towards scientific concepts, helped in their meaning-making by the 

technology. There is interplay between different levels of conviction 
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and mathematical argument. In the passage from lines 14-21 a 
sufficient definition of a square is arrived at eventually, only to be 

abandoned at line 22 for the germ of a new approach. 

Janine used a different starting point. She began by drawing a line 

segment and was wondering how to continue. 

23 JG So you've got one line like that.... What 

would help you to draw a square? 

24 J It would have to be parallel 
25 JG So you want to draw a line parallel to 

this... 

26 J Yes 

27 JG And where does it have to be? 

28 J It has to be the same length as that down Defining the square by 

two opposite sides 

29 JG Like that? So how would you draw it? 

What shape would help you draw that 
down to there? 

30 J A triangle Janine wanted to use the 

idea of 45 ° triangles 

31 JG Look on F3 F3 offers a circle 

T7 

Janine chose the circle option and went on to successfully construct a 

square (fig 7.5) by drawing two circles of radius equal to her line 

segment, centred on its ends and two perpendiculars from the ends. 
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Fig 7.5 

There followed an attempt to probe understanding of the independent 

elements in the diagram. This conversation with Rob refers back to 
figure 7.4. 

32 R I dunno. If I try dragging this ray, 
Rob is able to speculate 

because the ray's not secure at the point, 
about the effect of dragging 

that ray'd drag around wouldn't it? 

But if that was a perpendicular to that 

ray,...... 
33 JG So this circle is a good starting point 

isn't it? 

If you have that circle and that ray, how 

many sizes of square can you draw? 

34 R Just one 

35 1G As soon as you've drawn that and that 
36 R Once you've drawn the circle then Realised that the ray was 

you've got the size irrelevant to the size 

T8 
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Rob went on to construct a square by drawing a circle (fig 7.6), a ray 
from the centre and a perpendicular through the centre, followed by 

two perpendiculars where the first two lines intersected the circle. 

+ 

Fig 7.6 (Rob) 

Pressing the grab key when the cursor is away from the diagram 

makes the independent points in the diagram flash. This useful 
facility allows pupils to explore their diagrams, by finding out the 

points which can be dragged. Referring to figure 7.6: - 

37 JG What flashes? 

38 R That corner there. Does that mean The centre of the original 

that's the only corner that can be circle 
dragged? 

39 JG That's the only point that can be 

dragged. Tell me what you drew first. 

40 R I drew the circle first 

T9 
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Rob went on to discover that he could grab the circumference of the 

circle as well as the centre and so alter the size of the square, and 

alter the orientation of the diagram by dragging the original ray. By a 

similar process Janine realised that the original line segment in her 

diagram completely defined her square. 

Scientific and Spontaneous Concepts 

In observing these classroom activities and in analysing this 

interaction, there is a clear interplay between ideas of drawing and 

construction and also between notions of necessary and sufficient 

conditions (for construction). It is argued that this interplay reflects 

that between pupils' spontaneous concepts and their developing ideas 

related to scientific concepts, which in this case are associated with 
ideas of construction and proof. These pupils can be seen to be 

operating in a dialectic between their spontaneous conceptions of 

proof and accurate construction, informed by their ideas and the 

insights available to them via the mediating role of the dynamic 

geometry environment and other desk top tools, and the scientific 

concepts of construction and proof. The second episode in particular 

provides a rich illustration of how everyday (spontaneous) concepts 
`create a series of structures necessary for the evolution of a 

concept's more primitive, elementary aspects, which give it body and 

vitality' and hence how scientific concepts ̀ in turn supply structures 
for the upward development of the child's spontaneous concepts 

toward consciousness and deliberate use' (Vygotsky, 1962). By the 

end of this episode, it is suggested that Rob, Darren and Janine have 

displayed evidence of an appreciation of the idea of construction and 
that they have had at least an elementary introduction to ideas 
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associated with geometrical invariants. Spontaneous concepts 
developed in lines 3-13 are developed and become more scientific by 

social interaction and by the mediation of the teacher and the 

technology. 

Development over Time 

In the course of this project it was not possible to examine the 

development of particular classes over time. Schools in the UK are 

pressed for time to cover the curriculum required, and none of the 

schools which co-operated in the study was prepared to let the 

research continue over more than two or three sessions with any one 

class. In the sessions at this school, school B, however, there is 

evidence of the development of appreciation of geometrical ideas and 

the use of language with individual pupils. The research was done 

with volunteers in their lunch hour and so the population was fluid, 

but as an example, one pupil, Rob, can be traced through several 

sessions. Rob's first involvement was in the exercise on sorting the 

'square' shapes. He was very much on the margins of the discussion, 

making only one contribution (see the dialogue reported on page J. -? ß, ̀ 7 

T3). The discussion is about using the obvious square properties, 

equal sides and equal angles (which were adequate for the task set). 
Rob was one of the pupils who took a TI 92 away for a time to 

explore the geometry environment, and his next contribution to the 

dialogues reported in this session is fuller (see T4 and T5 , pp 1.39 ' 

and 141). However by the time of the next session he was providing 
ideas (about angle bisectors, see page 144, scribble pad F3 and 

transcript T6) which led to much more advanced discussion of the 

possible ways of defining a square. In a subsequent session he was 
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able to discuss the independent and dependent properties of the 

diagram he had constructed (see T8 p 147 and T9 p 148). By using 

the drag function he could identify the elements in his diagram which 
defined the size and orientation of the square he had constructed. He 

was talking confidently about the properties of his diagrams. Over a 

number of sessions he had developed from someone on the margins 

of discussion with his peers to someone who was able to engage with 

the problem and whose conversation could be said to reflect an 

appreciation of rigorous construction and dependent and independent 

geometrical facts. 

Further Classroom Research 

Later in the project, in another school, school D, an 11-18 mixed 

comprehensive with an intake representing average social and 

economic background, volunteer pupils met at lunchtimes to use the 

T192. Here one of the tasks used was the worksheet below (fig 7.7). 

The Hide/Show option, which allows construction lines to be hidden, 

was demonstrated to pupils. They were told that important 

construction lines on the screens on the worksheet had been hidden in 

this way. The first two tasks in particular were designed to be simple 

constructions which would, in two similar diagrams, test pupils' 

ability to demonstrate their ideas about circles and tangents. The 

recording methods were similar to those detailed above, with audio 

recorders on desks to record dialogue and field notes used to record 

screens. 
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Try these 

2 

3 

1 The line moves round the circle, always touching it. 

2 The ̀ ball' moves down the hill. 

3 The circle always touches the two lines, no matter where 

they move. 

Fig 7.7 

This conversation was between two low attainment pupils, Curtis and 
Dave and the researcher, JG. 
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I C We're doing this one Curtis decided to try to draw the 

circle moving down the slope 
2 D Go to the centre, we want They drew a line to represent the I 

a line slope 
3 C What did we use? Let's 

try segment 

4 D F2 Enter F2 reveals the menu which offers 
'segment : The segment was used to 
define the radius of the circle, ending 

on the line and drawn perpendicular 

to it by eye. 
5 C Then go to the circle The circle was drawn using the 

segment as radius. The segment was 
then hidden using Hide/Shaw 

6 D Watch this see if this does 

it 

7 C Ah you've done it 

You need to draw a 
segment from the centre 

8 D I've done it sir. Whoo hoo Circumference point defined as on 
What! It gets bigger. line, but line not defined as a tangent 
Why does it do that? see figs 7.8,7.9 

Tl0 
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It THIS t01NT 

Fig 7.8 Fig 7.9 

The pupils had defined their circle with reference to a segment 

which was originally approximately at right angles to the line 

(fig 7.8), but attempts to drag the circle by using the centre 

resulted in the circle crossing the line (fig 7.9). 

Curtis and Dave had made a start on the problem by drawing 

the 'slope' line, (Line 2) and there was a spontaneous 

realisation that a perpendicular was needed, developed socially 

at line 7, but it was not defined (Lines 3,4). In the next 

passage, which followed immediately, mediation is used to 

make the spontaneous concept of the necessity of 

perpendicularity more scientific. 

9 JG You've told the circle to go through that point 

haven't you? How do you make that circle roll? 
You don't want it to go through that point do you? 

What do you want to happen? 
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10 C I want it to roll 

11 JG So it just has to? 
So you don't want it to go past the line, you want it 
just to touch the line 

Can you tell me what would help? 

Let's just put a point for the centre of the circle. 
How big do you want the circle to be? 

Points on 

Now where will it touch? screen 
Centre there, and it's just got to get to......, 

12 C That point Points to 

point of 
contact 

13 JG Now can you tell me exactly where it should be? Is There had 

there a word on the board to help? been class 
discussion of 

important 

ideas 

relevant to 

the topic 

14 C Pen....... Stumbles to 

read it 

15 JG That's right, perpendicular. You've got to use the Went on to a 

perpendicular further 

attempt 
T11 

Here there is further evidence of spontaneous concepts (Line 4) being 

available for development by mediation (for instance line 11). The 

technology is providing the practical background for intuitive insight 

and the social intervention of others (Line 5) and the teacher (Line 9). 
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The possibility of dragging the diagram is also important (refer to 

figs 7.8,7.9). This allows consideration of the independent 

geometrical entities in the diagram on the screen and contributes to 

the meaning-making activity. 
The dialectic between spontaneous and scientific concepts is 

mediated by social (lines 1-7) and screen interaction (see figures 7.8 

and 7.9). 

Summary 

Fischbein (1982) points to the generation of intuitive insight and its 

interaction with more analytic processes. Vygotsky (1962) gives us 

the idea of scientific and spontaneous concepts operating in dialectic 

in the zone of proximal development, as mediated by social and other 
factors. The place of the technology and the teacher in this theoretical 

background is suggested by the analysis presented here. 

Fischbein (1982) refers to the importance of intuition and the way 

this can be triggered by practical interaction, in this case with the 

screen images. He argues that intuitive intrinsic conviction, or as he 

calls it 'cognitive belief is a form of perception. It is a perceived 

solution to a problem, but will require interaction with its 

complement, the analytical form of knowledge, in order to lead to 

meaning-making. This interaction is seen here both as social, with the 

teacher and other pupils, and also as that provided by the dynamic 

geometry environment. 
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From the Vygotskian viewpoint, spontaneous concepts are in a 
dialectical relationship with scientific concepts, and the interaction 

between them is mediated by social activity with other pupils, the 

teacher and the technology. 

In considering this process of development, the role of the teacher 

within the zone of proximal development has been found to be an 
important element in assisting pupils to move from their 

spontaneous/everyday conceptions towards more scientific concepts. 
This echoes the findings of Jones (1996) who argues the need for a 

significant input from the teacher when pupils are working within a 
dynamic geometry environment. In later chapters I will refer to these 

findings and revisit them for examination with a different lens and 

also examine the way these findings can be applied to whole class 

and group teaching. 
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Chapter 8 

Construction and Proof, Construction as 

Proof 
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Chapter 8 

Construction and Proof, Construction as Proof 

This chapter considers how the use of dynamic geometry software 

can contribute to the development of pupils' ideas of construction and 

proof. Classroom research is reported involving Year 8 pupils (aged 

12 to 13) in mixed urban comprehensive schools in the North of 
England. The previous chapter considered the relationship between 

scientific and spontaneous concepts and intuition, conviction and 

proof. A further perspective offered in this chapter considers the 

elements of proof and concludes that, whilst verification and 

conviction have an importance, it is in explanation that proof 
becomes social. Further work examines the relative importance of 

and the interaction between construction and proof. The f ndings of 

these aspects of the study illuminate the potential of the technology in 

supporting the development of ideas of construction and its 

relationship to proof. 

Introduction 

This chapter considers the data analysed in the previous chapter from 

another theoretical basis, drawing on the work of De Villiers (1991) 

which proposes different aspects and functions of proof in geometry. 
The work considered was with secondary school pupils of agesl2-13 

years, in school B, using Cabri Geometre on the Texas TI 92 
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calculator. Classroom activities were audio recorded and the 

transcripts analysed. Field notes were used to record the screens the 

pupils had generated. 
In the previous chapter the viewpoint of spontaneous and scientific 

concepts (Vygotsky, 1962, p. 109) was combined with reference to 

the work of Fischbein (1982) on intuition, conviction and proof. In 

this-chapter I use the ideas of de Villiers (1991) on the role and 
function of proof and follow up the proposal of Hoyles et al (1995) 

that dynamic geometry constructions can be seen as a form of 

replacement for proof. De Villiers (1991) has emphasised the diverse 

nature of proof and it is suggested that explanation and 

communication, as the social aspects of proof, can be identified in the 

classroom episodes recorded here. This illuminates how the use of 

technology combines with social interaction from peers and the 

teacher to contribute to the development of pupils' understanding of 
ideas of construction and proof. 

Background Literature 

There is a strong link between construction and proof in geometry 

and this relationship is emphasised in the use of dynamic geometry 

environments. A proof carries authority for mathematicians because 

of the rigour of the deductive steps which make it up. A further 

statement of geometric truth is justified by proceeding in logical 

stages from geometrical truths which the audience can accept. The 

derived statement becomes a new geometrical truth. When dynamic 

geometry is used to construct a particular figure, say a square or 

equilateral triangle, or an angle of 72 degrees, there is an element of 
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proof in the fact that the resulting diagram can be dragged to verify 
the construction. Just as a reasoned proof gives justification to a 

statement which may or may not be true, the fact that a construction 
is stable under drag indicates the steps in its construction are justified. 

The square is not drawn, but constructed. Whilst it may be possible to 

change its orientation and size, it will remain a square. 

Hoyles, Healy and Noss (1995), writing in a series of discussion 

papers on aspects of geometry in the twenty first century, 
(Mammana, 1995), consider the interdependence of construction and 

proof and suggest the possibility of the replacement of proof by 

construction in a dynamic geometry environment. They see a need 
for the use of clearly formulated statements leading to deductions to 

be augmented by the careful iterative use of empirical evidence, and 

suggest that dynamic geometry provides an environment in which 

this can take place. 

Students would conjecture about the 'local' relationships 
between geometrical objects, construct these objects and 

relationships for themselves, and prove the truth of their 

conjectures in ways which are spiral and iterative rather than 

linear. (Hoyles, Healy and Noss, 1995 p. 104, their italics) 

Fischbein's (1982) three forms of conviction: formal, arising from 

argument, empirical, arising from a number of practical findings, and 

an intuitive intrinsic conviction, which he calls `cognitive belief 

were referred to in chapter 7. It was suggested that the dynamic 

geometry environment can echo these ideas in its provision of a 
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climate where argument is fostered, by allowing dragging to provide 

empirical proof and triggering with the screen children's intuitive 

visualisations. There is a dialectic of proof (or conviction, which at 

this level (ages 11 to 14) is seen as almost interchangeable with 

proof) which moves between these areas. This dialectic is mediated 

by the technology in ways which can be related to the ideas of the 

relationship between construction and proof put forward by Hoyles et 

al (1995) There is a place in this dialectic for the way children deal 

with necessary and sufficient conditions in mathematical argument. I 

refer here not to a formal written proof but to the understanding of 

mathematical necessity which, conceptually, is at the heart of proof. 

Various functions of proof were examined by Bell (1976), who 

studied what he called'proof explanations' and distinguished between 

the functions of verification, illumination and systematisation. Bell 

notes that conviction usually arrives by other means than proof, often 

by the amalgamation of a number of empirical observations into a 

judgement. He goes on 

Proof is an essentially public activity which follows the 

reaching of conviction, though it may be conducted 

internally, against a potential imaginary doubter. (Bell, 1976 

p. 24) 

Bell describes the development of a proof from the learner's 

standpoint, saying that it first grows out of the internal generalisation, 

which is tried out on other pupils. Contradiction will probably first 

lead to reassertion, and then to an appeal for evidence. There may be 
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a later recourse to a written statement of the proposition, so that shifts 

of ground can be prevented and counter examples cited. The final 

stage will entail an awareness of the need for an argument, probably 

written, and the formalisation of starting assumptions. Bell points out 

that this process follows the historical development of the Euclidean 

model of proof. He notes that such a development of the need for 

proof in the classroom can start from class activity. 

It follows from the above analysis that pupils will not use 
formal proof with appreciation of its purpose until they are 

aware of the public status of knowledge and the value of 

public verification. The most potent accelerator towards 

achievement of this is likely to be cooperative, research-type 

activity by the class. 
(Bell, 1976 p. 25) 

De Villiers (1990), drawing on this work of Bell, proposes various 
further elements of proof. He identifies the areas of 

" verification and conviction 

" explanation 

" systematising 

" discovery 

" communication. 

He notes that empirical examples often lead to 

conviction/verification; similarly, one of Fischbein's (1982) forms of 

conviction is empirical conviction arising from a number of practical 
findings. Mason (1991) refers to the power of computer software to 
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present a dynamic image. He sees such an image as a'plethora of 

confirming instances'. He refers to an intermediate position between 

generalisation from a few examples and the provision of a rigorous 

proof, and maintains that conviction arising from the dynamic image 

afforded by programs such as Cabri Geometre is justified. 

Empirical example is a powerful vehicle for conviction and, with 
dynamic geometry software, may lead to a form of verification; 
however such verification and conviction do not in themselves 

constitute meaning-making. Indeed the reaction of pupils to a visual 

or empirical demonstration intended to convince is often lack of 
interest. Pupils do not engage with the geometry if they have not been 

involved with it via their own activity. De Villiers (1991) claims that, 

in contrast, it is possible to excite pupils' motivation for and 

satisfaction from the deductive explanation of a proof, to engage 

what Mason has called'this sense of mustness' (1991, p. 86). This 

partly draws upon the idea of proof operating in a domain 'wide 

enough to include the visual aspects of mathematical intuition and 

reasoning' (Davis, 1993, p. 333). Again it is with the involvement of 

the teacher that this motivation can be brought to meaning-making. 

De Villiers points out further that seeing conviction as a function of 

proof is somewhat difficult. He points out that completely rigorous 

proofs are very long, citing Renz (1981), who gives an eighty-page 

proof of Pythagoras' Theorem. He refers to Polya (1954) who said 
'When you have satisfied yourself that the theorem is true, you start 

proving it'. Conviction is needed for proof, rather than proof being a 

prerequisite of conviction. 
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De Villiers sees the explanation function of proof as more rewarding. 
He maintains that explanation, in that it provides an insight into why 

a proposition is true, can lead to motivation and a much firmer basis 

on which to base further work. I would argue that another important 

aspect of explanation is the fact that it has an object. We explain to 

others or to ourselves. In any case, this makes explanation a meaning- 

making activity. The importance of the explanation function of proof 
is discussed more fully later in this chapter. 

A further function of proof according to de Villiers is 

systematisation. He maintains that elaborating the logical steps in a 

proof helps to give a global perspective, to draw the proof into the 

body of mathematical knowledge. Proof can also lead to discovery, in 

that whilst negotiating a proof it is possible to distil the argument to 

its essentials, and so arrive at limiting conditions. Whilst these 

aspects of proof are important they are unlikely to occur during the 

work in dynamic geometry which is described here, depending as 

they do on argued logical steps. 

De Villiers' last function of proof is communication. Here proof is 

seen as an area of public debate, perhaps in the mathematical 

community generally or, more relevant to this thesis, between pupil 

and pupil, pupil and teacher. 

.. proof is a unique way of communicating mathematical 

results between professional mathematicians, between 

lecturers and students, between teachers and pupils and 

among students and pupils themselves. The emphasis thus 
falls on the social process of reporting and disseminating 
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mathematical knowledge in society. Proof as a form of 

social interaction therefore involves the subjective 

negotiation of not only the meaning of the concepts 

concerned, but implicitly also of the criteria for an 

acceptable argument. In turn such a social filtration of a 

proof in various communications contributes to its 

refinement and the identification of errors, as well as 

sometimes its rejection by the discovery of a counter- 

example. (de Villiers, 1990, p. 22) 

From the socio-cultural stance taken in this thesis, the interesting 

elements in de Villiers' work are the explanation and communication 

aspects of proof. If proof is to be an element in the social activity of 

meaning-making these aspects of it are more relevant than others. If 

proof is to contribute to social learning in the classroom the teacher 

will develop the reflective explanation of geometrical truths by pupils 

and the communication of these explanations to others. In offering a 

reconsideration of the nature of proof, de Villiers (1991) writes 

not with the intention of sacrificing any fidelity in 

mathematics merely for pedagogical expediency, but 

actually the contrary: the encouragement of greater fidelity 

with respect to the variety of reasons behind proof. (de 

Villiers 1991 p. 26) 

He quotes Chazan (1990) as calling for the 
inclusion of exploration and conjecturing; presentation of 
demonstrative reasoning as explanatory; treatment of 

proving as a social activity; and emphasis on deductive 

proofs as part of the explanatory process, not its end point. 
(p. 9) 
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It is argued here that consideration should be given to the importance 

of this explanatory process. With the availability of dynamic 

geometry software, conviction and verification may often be readily 

achieved. However, the explanation delivered by a proof brings it 

firmly into a social dimension, into an area which is open to 

mediation by others, in a way which the more intuitive functions of 

conviction and verification do not. Of course, explanation, conviction 

and verification are often inter-linked. Explanation may lead to 

conviction or the individual may need first to be convinced in order 

to be stimulated to produce a deductive explanation; and empirical 

verification can support the kind of conjecturing required to frame an 
hypothesis before trying to explain it: `you have to guess a 

mathematical theorem before you prove it' (Polya, 1954, p. vi). 

However, explanation and justification, whether conducted alone or 

communally, seem inherently social activities, deriving their purpose 

from the existence of a community of mathematical meaning makers. 

When explanation in the classroom becomes a social activity, it takes 

its place in the dialectic of proof and begins to lead to students 

making mathematical meaning. 

In the literature relating to the significance of dynamic geometry 

environments, Hoyles, Healy and Noss (1995) initially discuss the 

changing significance of proof, referring to a preference for empirical 

argument on the part of pupils. They propose that, for many pupils, 

deductive proof gives only contributory evidence and that proof does 

not have any significance to such pupils for use in problem solving. 
Hoyles, Healy and Noss go on to suggest that dynamic geometry 

environments such as Cabri can provide, if they are used to develop 
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an appreciation of the nature of rigorous construction, a replacement 
for the need for proof, or at least, an important contribution to a 

revised view of how proof and construction might be used in the 

classroom. 

Data Analysis and Discussion 

In this chapter some of the dialogue collected in school B, an 11-16 

comprehensive is re-examined. Previously it was analysed from the 

points of view of scientific and spontaneous concepts (Vygotsky, 

1962) and intuition and proof (Fischbein, 1982). In this chapter the 

way in which the social nature of the explanation aspects of proof (de 

Villiers, 1991) and considerations of the relationship between 

construction and proof (Hoyles, Healy and Noss, 1995) can be used 

as new lenses on these observations will be examined. The classroom 

research has involved the development of materials which have the 

aim of releasing the potential of the dynamic geometry software and 

which, at the same time, capitalise on the hand-held nature of the TI 

92. This development has been against a backdrop of the desktop 

nature of the T192 where a hand-held dynamic geometry environment 

was used with small groups of pupils in order to stimulate 

collaboration and interaction. After some time when they had been 

able to experiment on their own with the T192, the pupils were asked 
to construct a square. (See chapter 7 for a more detailed discussion of 
the background to the task and relevant diagrams. Line numbers in 

these transcripts are those from chapter 7. ) 
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4 D It's hard to get it a proper square. 

5 J But afterwards you can measure your lines. 

6 R Yeah, you can, can't you? 

7 D I know! You could do it two triangles, two 

right angled triangles next to each other and 

merge them, then it'd be a proper square. 

8 R I think I've got a perfect square here. Drawn using the 

rectilinear nature of the 

screen pixels 

9 J See, I've just figured out mine's not right, 

cos one of my lines is 1.91 cm and the other 
is 2.03 cm 

There's also area; you can do the angle and 
10 J 

see if the angle's a right angle, as well. 

11 R Well you can tell if it's a right angle. Again relying on the 

nature of the screen 

T4 

There is evidence here of a distinction between a construction and a 

drawing and a realisation of the need for logical steps for such a 

construction, similar to the logical steps in proof (line 14, see below). 

For example, as noted in chapter 7, Darren makes reference to a 

`proper square' at line 9 and Rob talks about a ̀ perfect square' at line 

10. These examples could be viewed as evidence of these pupils' 

spontaneous conceptions of the idea of construction (of a square in 
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this particular case). It is possible to identify in the above passage 
elements of the explanation function of proof in lines 7 and 8. 

Darren and Rob had gone on to use properties of angle bisectors to 

help figures 

Fig 8.1 Fig 8.2 

move towards a construction method (see figures 8.1 and 8.2). It is 

suggested that there is interplay between different levels of 

conviction and mathematical argument. The passage from lines 14-21 

shows the development through explanation and communication of a 

sufficient definition of a square. Again, the proving role of 

explanation and justification can be seen at work, stimulated by the 

students' social engagement with the process of construction. By the 

end of this episode, it is suggested that both Rob and Darren have 

displayed evidence of an appreciation of the idea of construction. 

14 D I'm trying to do an angular bisector... cos 
if the angular bisectors make a right 

angle in the middle then that'll mean it's 

a square, but I can't get it to do them. 
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15 JG How do you know that the angle 
bisectors will meet in the middle in a 

right angle? 

16 D Well I don't know that they will in a 

right angle. 

17 R They will. Beginning to engage in 

ideas of construction 

18 D If it's a proper square then it'll be in a 

right angle because you'd be 

chopping the square like diagonally. 

19 R There'd be four triangles. 

20 D There'd be like four triangles and they'd 

all be right-angled triangles 

21 R There'd be two 45° angles Formalising finding 

(in each triangle) 

T5 

This development can also be seen to parallel Fischbein's (1982) 

three forms of conviction: there is a sense, early on, of an intuitive 

intrinsic conviction; dragging provides experience of a number of 

practical findings; and finally we see the initial stages of a formal 

approach arising from argument. This last is not yet a formal proof as 

accepted within academic mathematics; but we see the beginnings of 

the use of explanatory chains of reasoning. 
Mason, reflecting on aspects of Bruner's (1986) work on Vygotsky, 

has written of 
`the role of the teacher as being a vicarious consciousness, 

able to hold onto global aims and themes when pupils' 

attention is diverted to detail' (Mason 1991, p. 90). 
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We see, in the episode above, a complex mixture of elements with 

mediation by both teacher and technology in the furtherance of 

pupils' meaning-making. This echoes the findings of Jones (1997) 

who argues the need for a significant input from the teacher when 

pupils are working within a dynamic geometry environment. 

Explanation as Social 

It can be said that whilst conviction and verification have been 

identified as elements of proof, it is in explanation that proof and 

construction acquire a fundamentally social dimension and begin to 
impinge on meaning-making. Explanation is the area of proof which 
is most available for mediation in the Vygotskian sense. Images may 
be able to convince, dynamic geometry may provide a form of 

verification, but it is when explanation begins that proof moves into 

an explicitly social dimension. 

However the form of communication which we call explanation has 

many layers to it and we can identify various shades of meaning. 
Indeed the imprecise nature of what we understand by explanation 

suggests that it contributes in various forms to the process of proof. 
Davis and Hersh (1983, p. 73) describe mathematical argument as ̀ a 

human interchange based on shared meanings, not all of which are 
formulaic. ' De Villiers (1990) refers to the unique role of proof in the 

`explanation, systematisation and verification of results, 

something which is not possible to the same degree using 
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only intuitive and/or quasi-empirical methods' (De Villiers 

1990 p. 23). 

Explanation as a communication process has an object and it is 

instructive to analyse the episodes recorded here in a way which 
identifies these objects. We explain to ourselves (line 32), to others 
(lines 3-13), to pupils, to teachers. Scaffolding provided by the 

teacher (lines 32-36), as dialogically pupil and teacher construct a 

connected chain of reasoning, is often key to building on the 

conviction which is already present through dynamic geometry or 

otherwise, with logical deduction leading to richer meaning-making. 
Because explanation, through communication, draws proof out of the 

intra-psychological, it can give pupils ownership of their mathematics 

and provide motivation. Another intuition may lead to further 

discoveries, which may be verified on the screen, but it is when a 
deductive explanation can be produced and proof acquires a 
dialectical social element that it reaches its potential as an important 

part of meaning-making. 

It is possible in these transcripts to trace a path through Rob's 

progress from empirical drawing (lines 8 and 11), to the beginnings 

of an appreciation of construction (aided by listening to-Darren at line 

14), to providing an important piece of the argument at line 21. 

32 R I dunno. If I try dragging this ray, because the Using formal 

ray's not secure at the point, that ray'd drag geometrical terms 

around wouldn't it? 

But if that was a perpendicular to that 

ray,...... 
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33 JG So this circle is a good starting point isn't it? 

If you have that circle and that ray, how 

many sizes of square can you draw? 

34 R Just one 

35 JG As soon as you've drawn that and that 

36 R Once you've drawn the circle then you've got Appreciation of 

the size geometrical constants 

in the diagram. 

T7 

+ 

Fig 8.3 

Later (lines 32 and 36) Rob is able to discuss the geometrical 
invariants in his diagram with confidence (see figure 8.3). He has 

used the social interaction of explanation to make meaning about the 

problem and is using formal arguments about construction in a way 

which is not very different from a proof. 

Summary 

It is proposed that these episodes, when considered from theoretical 

standpoints such as the dialectic of proof, complemented by 
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explanation as the engine-room of proof, driving forward meaning- 

making, indicate a framework for a classroom approach. The study 

points to the potential of hand-held dynamic geometry environments 

to promote the development of pupils' understanding of notions of 

construction and proof. The environment provides opportunities for 

mediation by pupils, the teacher and the technology. It is the 

explanation aspect of proof which the teacher can use to motivate 

pupils and help to give them a sense of themselves as the makers of 

mathematical meaning. 
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Chapter 9 

Making Sense, Agreeing Consensus 

In this chapter two elements in the process of meaning-making are 
identified. The sense making and consensus making of children 

working within a dynamic geometry environment are distinguished 

and examined. Work with whole classes divided into groups was 

audio-recorded and is analysed against a background of the work of 
Schultz (1994) on sense and consensus making in the context of 

activity theory. The ability of the material used to offer opportunities 
for these elements to combine in meaning-making, in the context of 

the ideas of Lave and Wenger and Adler on transparency is 

discussed. 

Introduction 

The term meaning-making has been used in this work to signify the 

appreciation by pupils of a mathematical situation and their ability to 

move, through social consensus and intervention, to an agreed 

meaning. The term understanding, with its positivist connotations, 
has been deliberately avoided. 

In this chapter I wish to examine this process of meaning-making 

more closely, so that the term in this chapter will signify a bringing 

together of different processes. Schultz (1994) uses the terms'sense- 

making'and 'meaning-making', with sense making seen as something 

which only the individual can do, whilst meaning-making is seen as 

objective, in that the meaning made is socially agreed and 

reproducible within the meaning-making practice of the community. I 
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have used the term'meaning-making' in the rest of this work to 

signify an area covering both these ideas, and I intend to use the term 

'consensus' to cover the socially agreed aspects of the broad topic of 

meaning-making. Readers of Schultz' work will find his use of the 

term 'meaning' to be broadly equivalent to my 'consensus' or 

'consensual meaning', but I hope that the reader of this work will find 

the term'meaning-making' used consistently throughout, and in this 

chapter, the nature of meaning-making examined and levels within it 

distinguished. 

I wish to look at dialogue recorded during the use of the dynamic 

geometry environment, and examine it for evidence of geometrical 

sense-making. I then wish to consider the transfer of this sense into 

agreed consensus and the level at which this consensual meaning is 

agreed. Nor will this transfer be one-way. Sense and consensus move 

backward and forward between individuals and society as they 

engage in activity. The involvement of the teacher in this activity is 

also considered. The resources available to help this process are taken 

to include language, technology and teacher. Furthermore, the 

transparency of these resources, the way in which they can be used as 

transparent windows to agreed meaning or become opaque barriers to 

spontaneous sense making will be considered. 

Sense and Consensual Meaning 

The word `car' has a consensual meaning which is socially related to 

the function of the car. It is contained in the idea of what a car is 
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meant for, personal transport. The car carries with it this objective 

meaning. But the sense of `car' lies in personal perceptions. To 

different individuals, depending on their personal circumstances and 

perceptions, the car may signify social privilege, to someone who has 

no car, status, to someone who has a car they are particularly proud 

of, or a unit of production, to the workers who produce it. The sense 

of a car changes from the individual's perspective. 

If a pupil interprets consensual meaning, that interpretation can be 

true or false of itself. An interpretation of sense depends only on the 

individual who makes it. In the way these terms are used here, and 

applying them to dynamic geometry environments, we want the 

spontaneous sense perceptions of pupils to be transformed into 

agreed mathematical consensus. In a general discussion on the 

teaching of geometry, Mason (1991) speaks of `a sense of mustness' 

and acknowledges that pupils may see no need of justification except 

to assert that they can see that what they are saying is true. 

Children have to be given the opportunity to gain a sense of 

geometrical truth from their exposure to the resource and that sense 
has then to be made into agreed meaning. This meaning-making is 

closely paralleled by, and is a reason for, attempts at the formal 

justification of the geometrical `sense' which has been made. In the 

same work, Mason (1991) suggests that teachers can use pupils' 
discovery of geometrical facts, and `their gradual appreciation of the 

fact that there are facts' to promote learning. 
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For me, the real importance of geometry is as a domain in 

which the fact that there are necessary and inescapable facts 

can be experienced, developed, manipulated to produce new 
facts, and, for those who wish, organised into a deductive 

scheme. 

(Mason, 1991 p. 76) 

The stimulus of sense-making might be any resource in the 

classroom; the language which is used there, the technology or other 

materials. Meira (1995) discusses the importance of representations 
in sense making activity. He sees it as fundamental that 

representations or diagrams are seen as ̀ cultural artifacts, the 

meanings of which are negotiated and recreated by learners in 

activity. ' He argues that an activity consists of the actions carried out 
by agents in a specific social setting, involving prior conceptions, 
interactions with others and the use or production of conventions and 

artefacts. Sense making activity will be bound up in the development 

of representations. 

Making sense and making consensual meaning are bound up in the 

dialectical activity of the practice of the classroom. Consensual 

meaning, as I have mentioned, I see as agreed and objective. It will 

eventually be expressed socially in the formal language of geometry, 

perpendicular, mid point, congruent and so on. It will probably lead 

to further sense making. It might be consolidated by formal argument 

or proof. 
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Sense making and consensus making, then, are bound together in an 
interactive process, the process which in the rest of this work is 

known as 'meaning-making'. Social intervention by the teacher and 

others in this dialectic will be at, or towards, the consensus end of 

this dialectic. Some teachers will be better than others at moving to 

influence pupils', or a pupil's, sense making. Some teachers will 

operate more towards the consensus extreme, using formal 

argumentation. Referent, consensual meaning is the outward sign of 

classroom mathematical activity, but it is bound up with sense 

making, and sense making is a delicate process, easily disrupted and 

much more difficult to promote. Suitably transparent resources, 
including dynamic geometry, can help the teacher to move to sense- 

making. 

Transparency 

As discussed in chapter 4, Lave and Wenger (1991, pp102,103) 

address the issue of the transparency of a resource, and this is further 

examined by Adler (1998, pp8-1 1). They discuss resource use and 

point out that whilst a resource has to be visible in order to direct the 

gaze of pupils, that gaze has to see through the window of the 

resource to meaning-making beyond. 

Adler (1998) develops the ideas of Lave and Wenger on 

transparency, relating them in particular to mathematics classrooms. 
She points out that the transparency of many resources used in the 

classroom can be examined. 
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Most of the resources teachers draw on in hybridised school 

mathematics practice bring the challenge of transparency, 

that is establishing the balance between visibility and 
invisibility. 

(Adler 1998 p. 11) 

The resource in question, in the context of this project, might be the 

language used by pupils, the language used by the teacher, the 

material presented to the pupils, the discussion and interaction going 

on in the group and the technology itself. Clearly the familiarity of 

pupils with technology such as the TI 92 governs its transparent use. 
As pupils become more familiar with the software the teacher will be 

able to introduce the use of more complicated functions without 
losing transparency. However Adler (1998) makes further points 

about the transparent use of resources. She points out that any 

resource, including examples drawn from outside the classroom, can 
be critically examined for transparency. She cites as an example the 

frequently used idea of money in numerical examples, pointing out 

that the use of money brings with it many social factors from outside 
the classroom. She points out that the meaning of money in the 

classroom is often different from its meaning outside, bringing with it 

ideas of the purchasing power of money in real life which could make 
its use non-transparent. In general, bringing `real mathematics', 

examples from a social context, into the classroom is a process which 

requires careful thought from the teacher. The resources which are 
introduced may have different significances for learners than those 
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intended by the teacher, and these significances may be different for 

different learners. There is a possibility of developing a `school 

mathematics' world consisting of frequently used examples, often 

related to examination questions, which mediates in an unsatisfactory 

way between mathematical meaning and the real world. 

The idea of transparency can be widely applied to many classroom 

activities; indeed it can be said to contain in it some fundamental 

aspects of activity theory. Activity involves society and the individual 

acting in dialectic within the practice of the classroom and society 

generally, to make meaning from sense. Initial use of a resource is in 

the area where transparency is needed to allow sense-making activity, 
but this activity will lead to meaning-making, which will in turn lead 

to the possibility of more sense-making. Transparency can be seen as 

an essential part of the process of the use of artefacts to transform the 

socio-cultural consensus, in moving from sense to meaning. 

Language can be seen as a resource which can be analysed in the 

light of ideas of transparency. Sense making will often take place 

when the language in use in the classroom, whether by pupils or 

teachers, is most transparent. Subsequent language, less transparent, 

is often used by the teacher to guide towards meaning-making. 
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Research Tasks Examined 

In the first of the episodes considered here, pupils were asked to draw 

a triangle and reflect it in one side, and to investigate the shapes 

which could be made if the other vertex of the triangle was moved. 

The diagram can be quickly drawn by pupils new to the TI 92 with 

only a few key strokes, but provides a window which directs the gaze 

of pupils to allow sense and consensus making to build mathematical 

meaning-making (see figure 9.1). 

Reflecting a triangle 

fl 

IN 0 DEG AUTO )D 

This diagram is made by reflecting a triangle in one of its 

sides. 
As A moves, what quadrilaterals can we get? How many 
kites? 

When do we get a rhombus? How many rhombuses? 
How many squares? Any other shapes? 

Fig 9.1 
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The transcript below was recorded in school D, an I 1-18 mixed 

comprehensive with average social and economic background, when 

volunteer pupils met at lunchtimes to use the T192. This recording 

was made of the response at one table, of two pupils Barry and Craig, 

aged 12-13 from a lower attainment mathematics set. The teacher- 

researcher is JG. I was directing questions to the whole class of about 

twenty. They had used the T192 for about 40 minutes on a previous 

occasion. 

I JG I asked you to move this point Developing a community 

about. What shape do you all ofpractice 

get? 

2 General A kite 

response 

3 JG I asked you how you could get a Using the OHP tablet to 

rhombus. Look at the screen and display the image to the 

tell me when it is a rhombus class 
A rhombus has four sides equal, 

not just the two pairs 

4 Class Stop 

5 JG How should I move it so it is 

always a rhombus? 
6 B Turn it around or bring it in to Sense ofperpendicular 

the middle- not right in the bisector generated, 

middle though transparent language 

7 JG What line will it be? 

8 B A straight line 

9 C Symmetry Sense ofperpendicular 
bisector 
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10 B Down that line, that line like that Waving hand in air 

11 JG What's that angle called Prompt to language of 

consensual meaning 
12 B What's it called? what's it 

called? A right angle 

Pupil making consensus 

13 JG So what's another name for that 
14 B Ninety 

15 JG Yes ninety degrees 

16 JG There's another word for that Wanting the response 
'Perpendicular bisector' 

17 B Put a line down the middle Returning to transparent 

language, 

but making sense 

T12 

Barry and Craig have made sense of the geometrical invariants in the 

problem. Their sense-making language is transparent (Line 6 and 
lines 9,10) to others in the group (it was accepted and unquestioned). 
Lines 11-17 use more formal language and meaning, in the sense of 

socially agreed consensus, is being made. 

In the next example of classroom observation, using the material first 

outlined in chapter 7 later in the same session (see figure 9.2), the 

`Hide and Show' function was demonstrated to the class and they 

were asked to choose diagrams from a sheet of examples and to 

construct them. To do this they needed to decide what construction 
lines had been hidden. 
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Try these 

+ 

2 

+ 

+ 

3 

1 The line moves round the circle, always touching it. 

2 The `ball' moves down the hill. 

3 The circle always touches the two lines, no matter where 

they move. 

Fig 9.2 
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The following is a transcription of conversation between two pupils 

and their teacher. The pupils, Andrew and Ben were aged 12-13, 

again from a low attainment group. They were working in a group 

with their teacher, TT and in this case decided to try the first 

example. 

18 A I want to know how to do that one, me Line moves round circle, 

example 1 

19 TT And how are you going to do that? 

20 A I know where the line is what he's 

hiding 

21 A It's on that big circle there 

22 TT Go on then 

23 A Ninety degrees Sense of importance of 

perpendicular radius 

24 B No he's hiding the line, the line what Sense making is happening 

goes across from its end 
25 TT The line moves around the circle 

26 B So it's at a 45 degree, no, 90 degree Moving to consensual 

angle to the line, the line in the circle meaning, with more formal 

language 

27 TT Right, go for it, try to draw it. TT has realised that sense 

OK escape, clear all your pictures. has been made. 

What do you need first? 

28 B Circle sir, I've done it They went on to draw the 
diagram 

T13 
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In this example we see how language is used as a transparent 

resource in the activity of these students. In the extract their teacher, 

TT, was aware enough to see that sufficient sense had been made to 

allow progress. The activity of the pupils was then sufficiently 

engaged by their use of the technology as a transparent resource, so 

that progress could be made. They were creating cultural artefacts, 
both at the level of the screen and at a more fundamental level, which 

were used in a social setting to make first sense, then meaning. 

Jones (1997) has pointed out the importance of the role of 
intervention by the teacher in the use of technology such as this, and I 

suggest that the analysis above provides a possible structure to the 

processes behind such intervention. The teacher needs to be 

sympathetic to the process of sense making, which is sensitive and 
fragile. The intervention of the teacher in the episode described above 
is just enough to allow the pupils to move from sense towards some 

agreed meaning, but still allows them to use the language which they 
find transparent enough to allow them to make progress. In classroom 
incidents of this kind, teachers are aware of the need to place their 

interventions judiciously in the dialectic between sense-making and 

consensual meaning-making, using just enough formalising language 

to move forward pupils' meaning-making. They are using themselves 

and their language as well as the technology as transparent resources, 
being careful that the window which opens onto meaning-making is 

able to direct, but not obscure, the gaze of pupils. 

189 



Chapter 10 

Back to the Classroom 

190 



Chapter 10 

Back to the Classroom 

This chapter looks at the way work on an apprenticeship model of 

learning has been used in the literature to develop criteria for the 

promotion of local communities of mathematical practice. The way 

other theoretical standpoints can be used within these criteria are 

examined. The use of material developed for classroom use with 

dynamic geometry software in this project is reported and examined 

in the light of the same criteria. 

Introduction 

In previous chapters I have outlined thinking in the literature and 

evidence from classroom observation of the importance of social 

meaning-making in the use of dynamic geometry. I now want to look 

at the way this meaning-making can be fostered by the classroom 

teacher; the way classroom observation can inform the analysis of 

social meaning-making. 

I referred in chapter 4 to sources in the literature which bear on 

classroom dynamics in a socio-cultural learning environment. Some 

of the work in this project has been detailed analysis of the meaning- 

making of individuals and small groups. Such work is valued for the 

light it throws on the detail of individual and social aspects of the 
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learning process. However it is equally evident that school based 

learning will take place by the medium of teachers working in 

classrooms with (in terms of the size of group often addressed by 

researchers) large numbers of children. Having developed a view of 
learning in general as a social phenomenon, it seems that research 

should have something to say about the way theories of socio-cultural 
learning are relevant with larger groups. This chapter presents the 

work of Lave and Wenger (1991), Lave (1996) and Winbourne and 
Watson (1998) as a framework for analysis of social practice in 

classrooms, and locates other theoretical standpoints within this 

framework. 

Situated Learning, Legitimate Peripheral Participation 

Elsewhere in this work I have referred to bodies of current research 

which consider, from different perspectives, the dynamics of social 

meaning-making in classrooms. Lave and Wenger's (1991) 

monograph, which has the same title as this section heading, sees 

learning as situated in the wider society and taking place by 

legitimate peripheral participation in communities of practice. 

Lave and Wenger deliberately moved away from the classroom to 

consider learning in non-school communities. They refer to a wide 

range of learning communities, tailors in Liberia, non-drinking 

alcoholics and meat trade operatives in the USA, and midwives in 

Yucatan. Later work (Lave 1996) refers to Islamic law schools in 

Cairo. Lave and Wenger see as a common factor the way these 

learning communities depend on forms of apprenticeship. They see 
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learning as situated in these communities, as a part of the background 

which constitutes these societies. 

In the concept of situated activity we were developing ...... 
the situatedness of activity appeared to be anything but a 

simple attribute of everyday activity or a corrective to 

conventional pessimism about informal, experienced based 

learning. Instead, it took on the proportions of a general 

theoretical perspective, the basis of claims about the 

relational character of knowledge and learning, about the 

negotiated character of meaning and about the concerned 

(engaged, dilemma-driven) nature of learning activity for the 

people involved. That perspective meant that there is no 

activity that is not situated. It implied emphasis on 

comprehensive understanding involving the whole person 

rather than "receiving" a body of factual knowledge about 

the world; on activity in and with the world; and on the view 

that agent, activity, and the world mutually constitute each 

other. 
(Lave and Wenger, 1991, p. 33) 

Lave and Wenger consider learners as participants in the society of 

which they are a part. The participation of members of the society as 

learners is legitimate in the sense that both new-comers and old- 

timers recognise and accept their place in the learning community. 

Learning is peripheral in the sense that newcomers operate on the 

edges of the learning process but are gradually drawn in to the 

community, and begin to see themselves as members of that 

community, fully participating in it. 
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In later work Lave develops these ideas further (1996). Lave begins 

Why pursue a social rather than a more familiar 

psychological theory of learning? To the extent that being 

human is a relational matter, generated in social living, 

historically, in social formations whose participants engage 

with each other as a condition and precondition for their 

existence, theories that conceive of learning as a special 

universal mental process impoverish and misrecognize it. 

(Lave 1996 p. 149) 

In this paper Lave advances her studies on forms of apprenticeship 
(in this paper she refers to communities of Liberian tailors and to an 
Islamic school in Cairo) as examples of her ideas on social learning. 

She restates her position that learning is a defining characteristic of 

society and that decontextualised learning cannot be seen as a 

sensible goal. She contends that abstract, general knowing cannot be 

'powerful knowing', that learning must be constituted in the practice 

of society. She challenges 'assumptions that decontextualization is the 

hallmark of good learning' and questions 'the abstract and general 

character of what constitutes "powerful" knowing' (ibid p. 151). 

Whenever people engage for substantial periods of time, day 

by day, in doing things in which their ongoing activities are 
interdependent, learning is part of their changing 

participation in changing practices. This characterization fits 

schools as well as tailor shops. (Lave 1996 p. 150) 

Lave sees learning societies as mutually constituted by teachers and 
learners, and sees teachers themselves as members of the learning 
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community, learning alongside their pupils. She sees evidence in the 

communities in which she worked of an exemplar role for teachers, 

indicating to pupils what it is they will become. She sees this 

becoming as a fundamental process in social learning and suggests 

that a telos, a direction of change in learning, is present in this 
becoming. 

The telos of tailor apprenticeship in Liberia and legal 

learning in Egypt was not learning to sew or learning texts, 

not moving towards more abstract knowledge of the law or 

separation from everyday life into specialization of 

production skills or special generalization of tailoring 

knowledge. Instead, the telos might be described as 
becoming a respected, practicing participant among other 

tailors and lawyers, becoming so imbued with the practice 

that masters become part of the everyday life of the 

(tailoring) Alley or the mosque for other participants and 

others in turn become part of their practice. This might even 
be a reasonable definition of what it means to construct 
"identities in practice. " It seems that the tailors and law 

participants, as subjects, and the world in which they were 

engaged, mutually constituted each other. (Lave 1996 p. 
157) 

Within schools Lave sees teaching and particularly classroom 
instruction, as a subsumed and auxiliary part of the learning which is 

going on and the division and distinction which may exist between 

teachers and learners as impeding the social learning process. She 

emphasises the role of teachers as learners: 
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Great teaching in schools is a process of facilitating the 

circulation of school knowledgeable skill into the changing 
identities of students. Teachers are probably recognized as 
"great" when they are intensely involved in communities of 

practice in which their identities are changing with respect to 

other learners through their interdependent activities. 
(Lave 1996 p. 157) 

The significance of Lave's observations for local communities of 
(mathematical) practice is examined next. 

Local Communities of Practice and Telos 

The situated nature of learning and the idea of `local communities of 
(mathematical) practice' is taken up by Winbourne and Watson 

(1998). Mentioning further work by Lave (1993), they identify 

features of a local community of (mathematical) practice, originally 

quoted in Chapter 3. 

" pupils see themselves as functioning mathematically 

within the lesson; 

" within the lesson there is public recognition of 

competence; 

" learners see themselves as working together towards the 

achievement of a common understanding; 

" there are shared ways of behaving, language, habits, 

values and tool-use; 
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" the shape of the lesson is dependent upon the active 

participation of the students; 

" Learners and teachers see themselves as engaged in the 

same activity. (Winbourne and Watson, 1998, p. 183) 

Winbourne and Watson use these ideas to examine classroom 
interactions in terms of local communities of practice and take up the 

idea of telos. This sees the learning of the community as aligned over 

time, so that members of the community, coming to the practice from 

different histories, and leaving it in their own directions, are aligned 
for a time in their participation in the local community of practice. 
For Winbourne and Watson telos is a unification of small-scale 
`becomings' by which many learners join a community of practice. 

Telos allows the pupil to be 

'someone who is legitimately engaged in mathematical 

practice, as someone, in other words, who is becoming a 

mathematician. ' (Winbourne and Watson 1998, p. 183). 

Other theoretical standpoints referred to in this thesis can be 

subsumed into the framework offered by Winbourne and Watson. 

(1998 p. 183), as can the thinking behind much of the detailed 

classroom practice. Some of the other work referred to in the thesis is 

reviewed briefly now, and later related to Winbourne and Watson's 

six points. 
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The Zone of Proximal Development 

I first want to recall the work of researchers who have applied the 

idea of the zone of proximal development to the wider classroom. 

The zone of proximal development has been defined in many ways 
(see chapter 2), but here I want to look at the way it can be viewed as 

a space in which the principles of social development proposed by 

Vygotsky can act (Lerman 1998). Lerman suggests that the zone of 

proximal development can be seen as belonging to the classroom, or 

to the researcher, as a'tool for analysis of the learning interactions in 

the classroom (and elsewhere)' (p. 71). 

Whole Class Zone of Proximal Development 

Of particular interest here is a definition of the zone of proximal 
development which includes the classroom as a whole, in this case 

incorporating the teacher, the pupils and the technology. Hedegaard 

(1990) has reported in terms of the development of a whole-class 

zone of proximal development rather than the consideration of an 

individual's learning. She made a three year study 'in a Danish 

elementary school, and developed over this time a teaching method in 

'This study has sought all along to emphasise the primal importance of teacher involvement in 
promoting social learning. However it is worth pointing out that this importance is emphasised by 
the long term nature of many of the research projects referred to (Hedegaard, 1990, Yackel and 
Cobb, 1996). These workers report on involvement, over time, with particular groups of pupils 
and teachers. This points to the importance of the long term generation of a learning climate by 
teachers. Adler (private communication) has referred to the vital importance of teaching and 
learning styles in school improvement, even in grossly underprivileged rural schools in South 
Africa. Equally, the successful use of technology is dependent on teaching methods and 
classroom cultures which may take the teacher considerable time and effort to generate. These 
will depend on the whole school climate and investment in them, in terms of commitment and 
effort over time, will be just as relevant as financial investment in technology. 
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which the children, the resources and the teacher were all seen as part 

of the same zone of proximal development. She describes the shared 

activities which enabled personal knowledge to be gained by each 

child. 

In the same paper Hedegaard reports a shift in motivation, with 

children's focus moving from an interest in the concrete to 

interest in the derivation of principles which can be applied to 

the concrete. She acknowledges the individuality of children, 

but advocates that whatever children have in common should 

be nurtured in school, together with a willingness to join in 

interaction and communication. She maintains that 'instruction 

must be based on development of common knowledge' 

Consequently the zone of proximal development must be 

used as a tool for class instruction, In our teaching 

experiment, we saw that it is actually possible to make a 

class function actively as a whole through class dialogue, 

group work, and task solutions. The teaching experiment 

differed from traditional instruction in that children were 

constantly and deliberately forced to act. ........ 
We can 

conclude, therefore, that we have succeeded in building a 

common basis for the children in the class from which future 

teaching can be developed. (Hedegaard, 1990, p. 192) 

This work by Hedegaard suggests the usefulness of the idea of a 

whole-class zone of proximal development and the way all the 
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activities of the classroom can be incorporated into it. Other workers, 

considered next, have provided insights into this process. 

Socio-mathematical Norms 

Cobb and Yackel (1996) have analysed mathematics classrooms in 

terms of the negotiation and maintenance of social and socio- 

mathematical norms. Social norms such as expecting and listening to 

explanations of responses, valuing the contributions of all members 

of the classroom community and a willingness to enter into 

discussion are not peculiar to the mathematics classroom and will be 

promoted in the school culture as a whole. 
Socio-mathematical norms including perhaps agreement on whether 

two proposed solutions are equivalent or whether a proposed solution 
is complete and valid will be specific to the mathematics classroom. 
Cobb and Yackel see these norms as negotiated over time by the 

teacher and the pupils, so that a classroom culture emerges. They 

distinguish between socio-cultural and emergent perspectives of 

classroom learning. In their view the socio-cultural approach involves 

the teacher mediating between pupils' personal meanings and socially 

established cultural meanings. The emergent perspective takes as its 

point of reference the local classroom community, rather than the 

mathematical practice of a wider society, so that classroom norms are 

more important. Cobb and Yackel acknowledge, however, that their 

emergent perspective can be said to be better suited to some types of 

analysis and that it is complemented by socio-cultural approaches 

which they see as more pertinent when a wider view is taken. 
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It is difficult to consider the culture of the classroom without seeing it 

as situated in a wider society and I would argue, with Lave and 
Wenger (1991) and Apple (1992), that the practice of the classroom 

must be seen as related to the wider context of the practices of school 

and society in which the classroom is situated. Negotiation of social 

and socio-mathematical norms will inevitably be done in this context. 

Argumentation 

In a related work, Yackel and Cobb (1996) apply the ideas of socio- 

mathematical norms to the topic of argumentation in the classroom. 
They refer to the work of Toulmin (1969) as developed by 

Krummheuer (1995). Krummheuer sees argumentation as a social 

rather than a logical process, a way of moving forward the body of 
knowledge which is socially accepted by the classroom practice, the 

'taken as shared'. Yackel (1998) sees argumentation as a way of 

clarifying the relationship between individual pupils and the 

classroom culture and practice and, by seeing how reference points 

change over time, as a way of looking at the process of moving 
forward the 'taken as shared'. Argumentation from class example is 

seen as made up of conclusion, data, warrant and backing (See Fig 

10.1) 
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Because 

SO 
Data Conclusion 

Since 

Backing 

Fig 10.1 (from Krummheuer, 1995) 

According to this analysis, data, which is provided by warrant and 

supplemented by backing, is used to arrive at a conclusion. Yackel 

(1998) has demonstrated that what constitutes data and warrant 

changes over time, as the 'taken as shared' advances. This process is 

not unlike that of the relationship between scientific and everyday 

concepts advanced by Vygotsky (1962). Conclusions reached, 

becoming'taken as shared', will then be available for use as warrant 

and backing to supply further data. 

Thus argumentation is seen as a social, rather than a logical process, a 

means of establishing that which is held in common about the topic in 

question and moving forward the 'taken as shared' by classroom 

interaction. Voigt (1995) discusses the reflexivity between learning 

and interaction and speaks of this reflexivity contributing to a 

Warrant 

On account of 

Backing 
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classroom microculture which in turn affects the meaning-making 

which is taking place. 

Collection and Discussion of Data 

The pattern followed was for the class to generate and discuss a 

simple dynamic image, and to record the result in exercise books as a 
diagram after the dynamic image had been appreciated. The hand- 

held nature of the T192 is particularly suitable for pair discussion and, 
indeed, as noted previously, for consigning to a corner of the desk 

when work on paper is preferred. 

2# jý h 5, ý. 6 7Ni0 0"Mq 

2.83GM2 

MAIN Z DEG AUTO FUHC 

Fig 10.2 

The class was a lower attainment year 9 (13-14 year old) group from 

school C, an 11-16 community college with a wide rural catchment 

area and an above average ability entry. 

I was concerned to present material which was appropriately 

transparent to these pupils who had not used the T192 before. The 

screen used could be generated by these students, helped by 

worksheet description and overhead projector demonstration, by only 
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a few key-presses. However it led rapidly to an opportunity for 

spontaneous meaning-making. The class was asked to draw a circle 
and a triangle with its vertices on the circle, then to measure the area 

of the triangle. A diagram such as that in figure 10.2 was presented 

on a worksheet (appendix XI) and the pupils were shown how to 

draw it on their own machines by using the overhead projector 

version. They were then asked to investigate the effect of dragging 

one of the vertices, and to look for the maximum area of their 

triangle. This led to opportunities for class meaning-making about, 

among others, perpendicular bisectors, isosceles triangles and 

symmetry. In jointly exploring the same screen in this way, but each 

on their own machine, a telos is created and students are aligned in 

the domain provided by the technology. They are operating in a local 

community of practice. 

The classroom interactions between teacher/researcher (JG) and the 

pupils, Anne, Belle and Charlotte were audio recorded and 

transcribed. 
The following dialogue ensued. 

1 JG What area have you got? 

2 Class General response There was no restriction 

on the original diagram, 

a wide range of areas 

was possible. 

3 JG Why do we all get different 

answers? 
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4 A Because we all used different Use of 'we'suggests the 

circles possibility of a local 

community of practice. 

5 B And different points 

6 JG Look at mine while I move the 'What can we all say? ' 

point. Tell me when it will be used to promote the local 

greatest. What can we all say community of practice 

about our diagrams? and the generation of a 
common direction to 

learning, telos. 
7 B It's across from the centre Later discussion showed 

that Belle could 
demonstrate to the class 

the idea of the co- 
linearity of the midpoint 

of one side of the 

triangle, the centre of the 
8 JG Yes, good. circle and the other 

Anyone else? vertex. Charlotte pointed 

out that the triangle was 
9 C It's in the noddle 

isosceles 

T14 

Here the technology could be said to be driving along the local 

community of practice. Spontaneous concepts are developed by the 

participants by looking at the dynamic image, which can then be used 
by the teacher to interact with scientific concepts (see chapter 7). The 

use of the resource is sufficiently transparent for mathematical 
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meaning to be made, and expressed in transparent language by the 

community (lines 7 and 9). 

HDW i'ý 

65 ý0ý 
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Fig 10.3 

Another exercise which is available after only the briefest of 
introductions to the technology is based on a diagram such as figure 

10.3. Here pupils, aged 13-14 years, again from school C, but from a 
high attainment group, were asked to define and measure an angle in 

a circle as shown and to investigate the effect of dragging any one of 

the defining points along the circumference of the circle. Again this 

was the first time they had used a dynamic geometry environment 

and it was felt that the screen and the process of generating it was 

sufficiently transparent to provide a window to mathematical 

meaning-making. In this case the work demonstrated that the angle 

on a chord is constant and that opposite angles of a cyclic 

quadrilateral are supplementary. Moving one of the non-vertex points 
leads to the observation that the angle in a semi-circle is a right angle. 
This work was used later with the same pupils to proceed to develop 

argumentation and explanation about circle theorems, after the angle 

at the centre had been drawn. 
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Transcription of classroom audio recordings resulted in the following 
dialogue. The teacher/researcher is JG and the pupils were Denise, 

Ellie, Fraser, George and Henry. 

10 JG Does anyone want to tell me 

what they have found? 

11 D As you move this down it stays If the vertex is moved Conclusion 

the same angle until you reach round the circle until it 

this point, then it changes to a passes one of the other 

completely different angle and points, the angle in the 

stays the same. other segment, the 

supplement of the first, 

is measured 
12 E Oh yeah! Wonderingly Drawn into 

a community 

of practice 

13 JG Will you come and show us? In order to demonstrate Public 

the OHP version of the recognition 

machine had to be of 

used. competence 

14 D It might not work you know... 

it might just be because of the 

shape of this one 
15 F It will work. I got it to work Supporting 

the 

community 

of practice 
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16 JG Watch while she drags this. Dragging one of the 

Watch the angle. Moving up non-vertex points 

..... angle getting bigger 

17 E If you change the middle one, Now a more 

watch the middle one, it stays assured 

the same and after a certain member of 

point it changes the practice 

18 JG What's going to happen now? Dragging the vertex 

point 
19 All Stays the same 
20 E Until you pass the point, then it 

will stay the same again 
21 JG Look at the angle, it stays at 

52.77 degrees. Now changes 

to........... 127.23 

Can you make it flip between 

those two angles? to D affront 
What can you tell me about 
those two angles? to class 

22 G Does it add up to 180? conclusion 

23 H Ooo realising 

T15 

Referring to criteria mentioned earlier for a local community of 

mathematical practice (Winbourne and Watson, 1998), here pupils 
can be said to be sharing tool use and purpose by being aligned in the 

task and their use of the technology. Ellie is drawn into the 

community of practice and gradually becomes more assured in that 
community (Lines 12,17 and 20). Fraser, at line 15, supports the 
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community. All the pupils reported, together with others, are 
functioning and participating mathematically and recognising the 

competence of others. There is also, in this dialogue, a sense of telos, 

in which the pupils are aligned by the technology in a way which 
drives forward the meaning-making of the community. 

Conclusions, Warrant, Data and Backing 

In the passage quoted above there is evidence of two 'conclusions' 

(Yackel, 1998 p210) being reached (as indicated, at lines 11 and 22), 

without oral evidence of warrant and backing. However it appears 

that, in this dynamic geometry environment, warrant and backing are 

supplied by the shared experience of data generated by the 

technology. The taken as shared of the classroom is moved forward. 

In follow up work the angle at the centre was drawn and measured, 

and a worksheet (Appendix XII) used to reinforce argumentation by 

asking pupils to explain how the other circle theorems already 

observed and verified can be argued from the angle at the centre 

theorem. This process of argumentation, used socially in the 

classroom, is treated by Yackel (1998), when she speaks of 

... mathematical explanation and justification as an inter- 

actional accomplishment and not as logical argument. The 

focus is on what the participants take as acceptable, 
individually and collectively, and not on whether an 

argument might be considered valid from a mathematical 

point of view. (Yackel, 1998 p. 209,210) 
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Social Learning 

In chapter 2I described an approach to the analysis of learning based 

on the work of Vygotsky, placing learning in society. Vygotsky 

(1962) proposed a social background to learning and formulated the 

Genetic Law of Cultural Development, with learning moving from 

the social to the personal. He took up the idea of the Zone of 
Proximal Development as the area where interaction between the 

individual and the social leads to development. Within this 

background, a number of sources were discussed at the beginning of 

this chapter and it is useful to quickly revisit them here. 

Hedegaard (1990), from a background in activity theory and socio- 

cultural development, sees the possibility of developing over time a 

zone of proximal development which includes the teacher, the class 

and the material. Lerman (1998) has emphasised the wide 

applicability of the concept of the zone of proximal development. In 

this chapter I show how the viewpoints of these workers can be 

developed to inform the use of technology in the classroom. 

Further, in this study I have identified the social nature of some of the 

functions of proof and the way in which the sense-making of the 

individual can be brought to consensual meaning. I have emphasised 

the social all through the previous chapters. It is important that the 

principles used so far, and those of researchers who have looked at 

socio-cultural classroom dynamics, are applied to analyse and inform 

what happens in the classroom use of technology such as dynamic 

geometry as available on the T192. 
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Cobb and Yackel (1996), whilst acknowledging ideas of socio- 

cultural learning as influenced by tool mediation (for example 
Davidov and Radzikhovski, 1985, Leontiev 1978), propose a 

perspective which takes account of the emergence of a cultural 

climate in the classroom. They refer to the idea of social and socio- 

mathematical norms, and suggest (Yackel and Cobb, 1996) the 

importance of argumentation as a vehicle for learning. 

It is helpful here to consider the points suggested by Winbourne and 
Watson as important in the establishment of local communities of 

mathematical practice and to identify ways in which the work of 

these authors can be located within these points. 

Criteria for local communities of mathematical practice 

1. Pupils see themselves as functioning mathematically within 
the lesson 

There are two parallel aspects to this statement which make this a 

powerful way of looking at local communities of practice; the idea of 

pupils 'seeing themselves' and analysis of what might constitute 
'functioning mathematically'. Pupils' own examination of the learning 

community in which they find themselves, and their ability to do this, 

is a valuable part of the practice of the community. Indeed it can be 

seen as a responsibility of both teachers and learners to critically 

examine the learning which is going on in the community. The 

facility of pupils to do this is fostered by the teacher as guardian of 
the local community of practice, while at the same time she critically 

examines her own practice. 
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An awareness of what constitutes 'functioning mathematically' is also 

fostered in their pupils by teachers. Geometrical proofs, rigorous 

constructions, arguing and reasoning are all made available within the 

medium of dynamic geometry. It is part of the thinking behind the 

material that mathematics is readily available, that the technology is 

used to help pupils to function mathematically, rather than as an end 

in itself. To this end, screens were kept simple, so that the class could 

draw a simple diagram and then use it to move forward 

mathematically. 

Pupils who critically examine their own and others learning, and see 

themselves as functioning mathematically then, is the ideal here. The 

teacher acts as guardian of the practice and develops over time a 

classroom climate which promotes these values. 

2. Within the lesson there is public recognition of competence 

Pupils need the opportunity to demonstrate their mathematical 

competence, to demonstrate their progress to fuller participation in 

the mathematical community of practice. In the work done in this 

chapter the pupils were able to demonstrate their ideas to the whole 

class using the overhead projector version of the TI 92. Pupils could 

collectively recognise their progress to mathematical meaning- 

making using the technology, demonstrating to themselves and others 

their mastery of new ideas and technology. Printouts of screens were 

made available to teachers for display. 
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Pupils also need the opportunity to participate in a wider classroom 

community and to be recognised by their peers and the teacher as 
socially competent in the community. 

3. Learners see themselves as working together towards the 

achievement of a common understanding 

The idea of a telos, of alignment in meaning-making of individual 

students for a period of time, is advanced by Lave and taken up by 

Winbourne and Watson. Hedegaard's idea of a whole class zone of 

proximal development is similar, and Cobb and Yackel describe the 

way classes can establish shared knowledge by argumentation. They 

describe the way in which argumentation can be used to move 
forward the accepted knowledge of the class, the 'taken as shared. ' In 

the example of classroom activity presented above, the way in which 
Ellie is drawn into the practice, and the promotion of a shared 

practice by the use of class discussion to take forward the 'taken as 

shared' promote this approach. This aspect is reinforced by the use of 

the first person plural in referring to the community. 

4. There are shared ways of behaving, language, habits, values 

and tool-use 

Cobb and Yackel refer to the development of norms, social and 

socio-mathematical, in the classroom. These social norms are 
developed within and outside the classroom and school, and will be 

developed over time and often outside the influence of formal 

education. Watson (1998) has emphasised the need to consider, 
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alongside any mathematical learning, the social learning which is 

happening in the classroom, about the positioning of individuals in 

the practice, their relationships with the teacher and their peers. The 

values of the school and of the society in which it operates will be 

central in setting social norms. Socio-mathematical norms will also 
be set over time, but perhaps be more dependent on the work of the 

mathematics teachers which pupils come into contact with. Within 

the material used with classes in this thesis, public discussion and 

argumentation, supported by the use of dragging in dynamic 

geometry is seen as furthering these aspects of the community of 

practice. The use of a common tool in the technology also brings 

individuals into the practice. 

5. The shape of the lesson is dependent upon the active 

participation of the students 

Participation in the community of practice is central to the ideas of 
Lave and Wenger (1991) and Lave (1996). In the communities they 

investigated they noted the way such participation led to individuals 

accepting and being accepted to their place in the learning 

community. The material used in classrooms in this study fostered 

participation. The work used in classrooms in the project was 
designed to be easily available to all pupils after a few key-presses 

and all students had their own machine so that they could generate 
individual images. Pupils then participated in drawing collective 

conclusions from their individual work in group and class 
discussions. 
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6. Learners and teachers see themselves as engaged in the same 

activity 

This last criterion proposed by Winbourne and Watson might seem 

problematic if teachers see themselves as involved in the transfer of 

objective knowledge to their pupils. However, if we go back to an 

apprenticeship model of learning, with pupils aware of their role as 
becoming mathematicians, it is not difficult to see the practice of the 

classroom community, pupils and teacher, as that of critically 

examining the progress of learning and collectively moving forward 

the 'taken as shared'. If this is seen as an objective of the practice, 

pupils, individually and in groups, can be encouraged to see their 

contributions to argumentation and discussion as a valid part of the 

peripheral participation which is contributing to the learning which is 

taking place. 

Winbourne and Watson (1998) introduce a note of caution into their 

discussion of the ideas of telos and local communities of 

mathematical practice. They suggest that local communities of 

practice, defined by aligned learning of the classroom community, 

may not occur often. However, with them, I believe that the criteria 
discussed here are a useful indication to teachers of ways in which 

such a community can be fostered and monitored. I consider that the 

nature of the material used in the classroom in this project also works 

towards the development of a classroom climate which allows the 

development of the learning community. 
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Summary 

This chapter has looked at how criteria for the establishment of local 

communities of mathematical practice, as advanced by Winbourne 

and Watson (1998), can be approached using the classroom material 

and theoretical background developed in this project. The way 

perspectives from the literature including ideas of socio-mathematical 

norms, whole class zone of proximal development, and particularly 

an apprenticeship model of learning, can be used within a framework 

of the criteria in the establishment of a local community of 

mathematical practice is examined. I consider this reflects the 

concern I have had from the outset to have something to say about 

what happens in classrooms: about how the teacher can promote a 

classroom dynamic which uses the resources available, in this case a 
dynamic geometry environment, to advance the meaning-making of 
individuals within that classroom. In the next and final chapter I will 
draw together the strands of this thesis in order to take a view on how 

the work as a whole has been able to indicate and, to some extent, 

address the complexity of the classroom. 
In this chapter, then, the classroom is analysed from a socio-cultural 

perspective, making reference to the viewpoints referred to above, 

and seeking to illuminate the ways in which pupils in classrooms 

make mathematical meaning in areas such as construction and proof, 

and the ways in which it is possible for the teacher, as guardian of the 

local community of mathematical practice, to influence and drive 

forward the meaning-making of the community at an individual and 

collective level. 
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Chapter 11 

Local Communities of Practice 

An Analysis of Social Learning in the Classroom Use of Dynamic 

Geometry 
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Chapter 11 

Local Communities of Practice 

An Analysis of Social Learning in the Classroom Use of Dynamic 

Geometry 

This chapter draws the findings of the study together into a 

consideration of how the various phases of the work indicate how the 
development of local communities of mathematical practice can be 

encouraged, using the approaches developed from the literature. The 

way in which technology, class pupils, teachers and subject content 
interplay in the community of practice is modelled. 

Introduction 

This study into the use of dynamic geometry technology in 

classrooms has moved from considering individual meaning-making 
in a social context to the wider study of classroom dynamics from a 

socio-cultural view. The way in which the various theoretical 

analyses of classroom learning can be placed into the overall 
background of a local community of mathematical practice have been 

identified. 

The particular influences on the development of a local community of 

mathematical practice are divided into two categories, those which 
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have a long-term influence on the practice and those which affect the 

shorter-term meaning-making of the class and the individuals in it. 

1. At the level of the individual situated in society, these are: 

" Spontaneous and scientific concepts 

" Sense-making and meaning-making 

" Proof as social explanation 

" Intuition, conviction and proof 

" Construction and proof 

The mediation and intervention of the teacher (assisted by the 

technology) is seen as vital in all these processes. Most of the 

categories above are seen as dialectic processes in which teachers can 

use the technology, together with their own input and the input they 

can generate from the class, to influence the meaning-making which 
is taking place as pupils move in these dialectics. 

2. At the level of the longer-term development of the classroom 

community, these are: 

" Whole-class zone of proximal development 

" Negotiated classroom cultures 

" Social argumentation 

Here again the role of the teacher is seen as vital, but that role here 

will be a more long term one, concerned with the generation within 
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the classroom of a dynamic of learning, and within the pupil 

community of a self-examining atmosphere. 

Local communities of practice as introduced by Lave and Wenger 

(1991) and Lave (1996) can be seen as an over-arching concept into 

which all these elements can be placed. Winbourne and Watson 

(1998) provide more detailed analysis of what might constitute a 
local community of mathematical practice, including telos, the way in 

which more transitory alignments of meaning-making bring together 

those in the classroom so that together they constitute a community 

of practice. These ideas were discussed in Chapter 10 and constitute 

an important background to the findings of this project. 

Summary of the Course of the Project 

The initial parameters of the project were set as being involved with 
dynamic geometry use on the T192. An emphasis on applicability of 
the results to whole class interactive teaching was brought from the 

outset, and in developing this aspect it was decided to concentrate on 
lower secondary age pupils (aged 11-14 years). 

The project began with reading in the literature of socio-cultural 
learning, dynamic geometry use and the nature of proof. This initial 

reading was needed to locate the project in the literature. As the 

project developed, these sources were revisited, and others were 
introduced, but the relation with the literature became more nearly a 
dialogue with other workers. 
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After a decision to concentrate on the areas of construction and proof, 

a pilot study with a class of year 7 pupils (aged 11-12) was carried 

out, introducing the pupils to the use of the drag function and 

experimenting with data recording methods. The first phase proper 

was a further introductory session with the same pupils, introducing 

whole class geometry exercises. This work was formative, 

constructive and developmental. However, it was decided to 

concentrate in the next phase on examining the meaning-making of 

smaller groups, as an attempt to illuminate processes at this level 

which might inform a wider view. The third phase looked at 

considerations of construction and proof, working with small groups 

and whole classes. The fourth phase involved analysis of further 

work in classrooms, looked at from the viewpoint of activity theory. 

The fifth and final phase of data gathering and analysis was 

concerned with applying ideas from the literature on whole class and 

group dynamics to previous classroom experiences and to further 

developments of the approaches and materials used in previous 

observations. 

In each phase of the study, particular areas of the literature were most 

relevant, and these areas and elements from the general background 
have been discussed at the beginning of the description of the phase. 

Summative Findings: the Classroom in Society 

I was concerned from the outset to relate the findings of this project 

to classroom teaching. Learning is situated in society and much of 
human activity outside the classroom is learning. Conversely there 
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are many societal influences which impinge on the activity of the 
learning society which is the classroom. From the point of view of 
this study, we are looking at ways in which the ideas of a society of 
learners can be brought to bear on what happens in classrooms. 
Looked at from this perspective we might welcome the fact that 

teaching happens in classrooms. Socio-culturally, researchers 

embrace this, seeing learning as situated in society. But teachers want 

rather more than this from researchers, and as researchers we need to 

recognise that some more practical conclusions are demanded. 

Research into learning is most useful when its relevance to classroom 

practice is demonstrated. Research into the process of learning which 

considers the meaning-making of small groups and individuals is 

valuable. Many of the chapters in this thesis have looked at how 

technology can take its place in this learning. But researchers need to 

take account of the fact that children are taught in classes more as a 

concession to efficiency rather than because we view the classroom 

as a learning community. Children would be taught in classes 

whether or not a socio-cultural perspective pointed towards the 

importance of social learning. Accepting this, we need to consciously 

apply socio-cultural thinking to the classroom, rather than viewing 

the classroom as a fortunate opportunity to further our ideas. 

I see the school classroom and the learning community situated in it 

as the predominant element in educating children, with the teacher as 

an ever more proactive member of this community, using technology 

to drive forward meaning-making. The teacher must be aware of the 

place of the classroom learning community within the school and the 

wider society. However reflective teachers will wish to be thoughtful 
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about the activity of the classroom learning community and 

researchers need to address the classroom dynamics of this situation. 

I brought to this project some thirty years of classroom experience 

and fifteen years experience of collaboration in writing for a major 

mathematics scheme. This led to my wish to relate the work to 

classroom practice from the outset. I had some idea of what I 

regarded as good practice and had been able to try out this practice 

and attempt to influence others to adopt it. The ideas of the 

importance of pupils being brought to making meaning in 

mathematics by social involvement in what was happening in the 

classroom and the value of technology in helping with this were parts 

of the background to these ideas of good practice. In adding the role 

of researcher to that of practitioner, I have not necessarily set out to 

answer questions. Rather I have been able to find in the literature 

descriptions of classroom phenomena and discussions of processes 

which I consider to be relevant to the illumination of good practice. I 

hope that I can consider these in my own practice and that other 

reflective practitioners may find some of the ideas valuable. 

The findings of this study are broadly divided into two categories, 

related firstly to the broad classroom culture and secondly to the 

closer relationships between teacher, class pupil, the technology and 

the subject content. We could differentiate them as macro level 

strategies and micro level techniques, both areas informed by the 

need to draw all the protagonists in the classroom into the community 

of practice. The strategic elements of whole-class zones of proximal 
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development, social and socio-mathematical norms and the 

acceptance of argumentation as a learning tool are ways of looking at 

the long-term classroom relationships which the teacher will 

consider. They are ways of developing a long-term learning climate 

in the classroom. Together with the concept of transparency which is 

used to look at the way resources are used, these considerations can 

be thought of as long-term and overarching, strategic. They are 

methods of looking at the ways teachers locate their classroom within 

the learning community of the school and society. 

Tactically, we can look at ways in which the teacher, the technology 

and the subject content interact with the class pupils. In this area this 

thesis offers the ideas of spontaneous and scientific concepts, sense 

and meaning-making, and, in the specific area of geometry, intuition, 

conviction and proof, explanation and social proof, and construction 

and proof. These are concerned with meaning-making at the level of 

the group and the individual, are involved with the specific subject 

content being presented. They operate at a specific moment in time 

but are enabled by the over-arching learning climate generated in the 

classroom society. 

The local community of practice is constituted by the culture of 

school and society and affects the overall classroom climate. Local 

communities of practice have also been used in this work and 

elsewhere to look at the way in which the teacher and pupils develop 

and respond to more transitory learning alignments in the practice. 
Both these interpretations are used in this work when considering 
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how various elements of theory can be used to analyse the learning 

community of the classroom. 

The involvement of the teacher in both the strategic and tactical areas 

defined above is seen as paramount. Technology in the classroom 

may change the role of the teacher, but does not diminish it. 

Figure 11.1 is intended to illustrate the interrelation of these 

findings. This represents a tetrahedron, with vertices composed 

of teacher, subject content, technology and class pupils. These 

four elements are seen to act on each other within the meaning- 

making activity of the classroom community. This activity is 

seen to involve the intentional engagement of the members of 

the community, teacher and pupils, using social interaction to 

further meaning-making. The criteria developed for analysing 

local communities of mathematical practice by Winboume and 

Watson (1998) are available to provide further insight into the 

complex interplay of general factors which operate in the 

mathematics classrooms and in particular the way in which 

dynamic geometry can be incorporated into mathematical 

meaning-making. As discussed in chapter 10, Winboume and 

Watson suggest six factors which might affect the 

establishment of a local community of mathematical practice: 

" pupils see themselves as functioning mathematically 

within the lesson; 
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" within the lesson there is public recognition of 

competence; 

" learners see themselves as working together towards the 

achievement of a common understanding; 

" there are shared ways of behaving, language, habits, 

values and tool-use; 

" the shape of the lesson is dependent upon the active 

participation of the students; 

" Learners and teachers see themselves as engaged in the 

same activity. (Winbourne and Watson, 1998, p. 183) 

These ideas have been taken forward in the present study and 

combined with other analysis methods as detailed in previous 

chapters. They are advanced as a selection of possible tools for the 

analysis of the complex interaction which is taking place in 

mathematics classrooms where dynamic geometry technology is 

being used, with the hope that involved and thoughtful practitioners 

will find applications outside the immediate subject content. 

226 



O 
Ü 

cd 

U 
ý aý cir 

v ti 
o p 

V 

e 0 

OO 
W 

ÖL C a 
ý _ r 

CC 

W L ß 

cu 49 li r. 
x *W 

ö ý7 
ý 

Q 

L 

cm 

E 
W 

\ ý Üä 

0 
0 
C 

S 
U 
U 
Eý 

1- (3j f. J 

bý V ö 
D 

U 
.Y 

U 
w 
cl) 

U U 

N 

I 

VO ]O / 

N 
N 



The complexity of the way in which the local community of practice 
is affected in long and short-term ways is indicated by the nature of 

this diagram, which can only be said to address some of the issues. 

School classrooms are complicated social units and mathematics 

learning may be only one of many things happening there. I have 

already quoted Watson (1998) in chapter 2, but it is worth recalling 
her reminder that we can look at classrooms as.... 

social communities in which all sorts of things are being learnt 

(how to behave in a way that is valued by the teacher, how to be 

accepted by one's peers, what writing implements are 

fashionable.... ) which are not the focus of the teaching. To 

describe what goes on in a classroom fully one must consider all 

the actions, thoughts, feelings and environmental aspects within 
it. (Watson 1998 p. 2) 

In further applying the ideas used here, seeking to look in more detail 

at the way they may be applied to the classroom, it is as well to 

remember that we are seeking to focus on the detailed activity of a 

community, and a wider view would look at the influence of much 

wider socio-cultural factors. With this proviso I go on to look in more 
detail at-the areas where some of the methods of analysis used in this 

thesis may be more relevant than others. 
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Fig 11.2 

One face of the tetrahedron indicated by figure 11.1 is that composed 

of Teacher, Subject Content and Class Pupils (fig 11.2). Adler 

(private communication) has remarked on the significance of 

teaching and learning styles, even in disadvantaged schools in South 

Africa, and, dealing with UK schools, the Hay McBer report (2000) 

identified a variable which it defined as 'classroom climate', which 

led to high expectations and an atmosphere in which they could be 

met. This thesis, in turn has identified ways in which argumentation, 

socio-mathematical norms and the development over time of a whole 

class zone of proximal development can lead to a classroom where 
individuals feel secure. The development of such a climate, where in 

the words of Winbourne and Watson (1998) pupils see themselves as 
'becoming mathematicians' is a long term process, but the sources 

referred to in this thesis offer ways of developing such a classroom 
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community. In the immediate meaning-making within the community 

of practice, Winbourne and Watson also offer ideas which will be 

more closely related to the subject content in question. Even here 

they suggest a principle of generating a telos, which they describe as 

a momentary alignment of the meaning-making of the class. This 

thesis has shown how Winbourne and Watson's principles can be 

combined with other authors' to offer teachers ideas on how dynamic 

Fig 11.3 

Following these ideas we can place the elements indicated in figure 

11.3 as shown, with some very much in the area of interaction 

between teacher and class pupils, independent of subject content, 

with others involved in the meaning-making of class and pupils about 
the immediate subject content, but with others operating in the 
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interplay between all three. These placements are arbitrary, and 

cannot be considered as the only elements affecting the classroom 

and what is going on in it at any particular time. The importance of 

these and other elements will depend on emphases and strategies 

emanating from the teachers, and within their control and many other 

factors over which they have little or no influence. 

The six criteria advanced by Winbourne and Watson (1998) are 

particularly directed at the long and short-tem development of a local 

community of mathematical practice, and it is possible to combine 

them into the picture already developed. 
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Winbourne and Watson's criteria can be added to the diagram 

above (figure 11.3) indicating interaction between teacher, 

class/pupils and subject content. Figure 11.3 might be 

amended thus, with many of the factors observed more easily 
in the area of interaction between class/pupils and teacher. 

Solo-mathematical 
norms 

CA, 
gumentation Whole-class 

ZPD 

Telos/ alignmeN 
Rveloping self- 

", cal-'y 
, 

Sense/Meaning- 
making 

)( Spontaneous/ fic scientific 

1 

1. pupils see themselves as functioning mathematically within the lesson; 

2. within the lesson there is public recognition of competence; 

3. learners see themselves as working together towards the achievement of a common 

understanding; 

4. there are shared ways of behaving. language, habits, values and tool-use; 

5. the shape of the lesson is dependent upon the active participation of the students; 

6. learners and teachers see themselves as engaged in the same activity. (Winboume 

and Watson, 1998, p. 183) 

(Winbourne and Watson were careful to emphasise that no particular order was implied, 

the numbers added above are for identification only) 

Fig 11.4 
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In this work the 'subject content' is geometry as available in a 

dynamic geometry environment, and factors specific to 

geometry which operate in this area have been identified. 

Fig 11.5 

These might be incorporated as shown, but again it must be 

emphasised that placement of these factors is arbitrary, and the 

intention of this thesis is to identify some of the influences on 

the local community of practice. Their identification and 

influence in specific circumstances within particular 

classrooms when using dynamic geometry, and, perhaps more 

important, the interplay between them is seen as highly 

significant. However it is not intended to present this as 

anything more than an insight into a dynamic situation which, 

while relevant to general questions about the development of a 
local community of practice, may have little to say about the 

relative importance of the various influences in other 
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classrooms, or indeed in the same classroom at a different 

time. 

Whilst many of the factors identified as important in this thesis 

are independent of the technology used, some specific points 

involving the use of such resources, and especially a dynamic 

geometry environment have been identified. They too can be 

discussed alongside the criteria developed by Winbourne and 

Watson. (See fig 11.6) 

0 
For key to Winbourne and 
Watson criteria see fig 11.4 

Transoarencv 

Explanation 

eacher 

Construction 
and proof 

Intuition, 
conviction and 
proof 

(71 

Fig 11.6 

Class pupils 

\. ' 1i 

In the interaction between class pupils and technology pupils will see 

themselves as acting mathematically (4) and will be engaging in 

shared tool-use (1). Explanation will be seen as a movement to a 
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common understanding (3). Teachers will ensure that the use of the 

technology is transparent. Participation (5) using the technology 

available to the pupils and discussed in the class is enhanced, and 

public recognition of competence (2) and the acceptance of the 
involvement of teacher and pupils (6) is part of the learning climate 

already established. Again it is relevant to emphasise that these are 

perceived importances in a particular teaching context, and are 

suggestions only of a snapshot of the relative importance of these 

factors within a dynamic. 

However it is the contention of this thesis that, accepting the 

importance of a list of criteria such as that developed by Winbourne 

and Watson (1998), the various factors identified, both short term and 
long term, can be used by the teacher/researcher to analyse and 
inform the development of a local community of practice. Winboume 

and Watson have suggested criteria by which a community of 

practice may be judged. This thesis suggests ways of analysing the 

community of practice and long and short term strategies by which it 

may be developed and enhanced. It is useful now to summarise the 

findings in an overview of the areas covered by this thesis, beginning 

with the important area of researcher introspection. 

Researcher Introspection 

The teacher is placed initially at the vertex of the tetrahedron 
representing immediate learning, but this is done with some caution. 
Reflective teachers will regard the tetrahedron as regular and 
remember it can rest on any face as base. At different times the 
pupils, the content or the technology may be the driving influence in 
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the classroom, but it falls to the teacher to direct this dynamic, to 

maintain the flow of meaning-making activity along the dialectics 

defined by the edges of the tetrahedron. One of Eisenhart's (1985) 

elements of ethnographic research is researcher introspection. 

Researcher introspection has been a driving force in the development 

of the ideas of this thesis, and it is researcher introspection as 

evidenced by reflective practice which drives the dialectics at the 

edges of the tetrahedron. The reflective teacher is using researcher 
introspection constantly to analyse, and react to, what is taking place 

along the dialectical pathways at the edges of the face defined by 

pupils, content and technology/resources and is, by this introspection, 

addressing the complexity represented by the tetrahedron indicated in 

figure 11.1. As ways of analysing the local community of practice 

constituted by those in the classroom this work offers the ideas of 

spontaneous/scientific concepts, sense/ meaning making, explanation 

as social proof, intuition and conviction and construction as proof as 

ways of analysing the immediate meaning-making when dynamic 

geometry is used in classrooms. In another content area some of these 

may be relevant, some not. However that introspective researcher, the 

reflective classroom teacher, will have other contributions to make to 

the analysis of the meaning-making activity in this and other content 

areas, guided not only by readings in the research literature but also 
by past experience. In this work I have offered five ways to address 
the interaction between the four elements of pupil/class, 
technology/resources, content and teacher. They are all dialectical in 

nature, with the need for cyclical involvement which that implies. 
The immediate context of their application is work with dynamic 

geometry technology, but not all of these ideas come from this field. 
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Two of them, the idea of spontaneous and scientific concepts and that 

of sense and meaning-making, are generic in nature. Of the other 

three, all concerned with social aspects of proof, the notion of 
construction replacing proof comes from applications of dynamic 

geometry as does work on the explanation aspects of proof. The fifth 

element, on the significance of intuition and conviction in proof, 

although concerned with mathematics learning, is not specifically 

founded in the field of geometry. These viewpoints are derived from 

various readings in the literature and are dealt with in previous 

chapters in more detail, as indicated (fig 11.3). 

Sense and Schultz (1994) Chapter 9 

consensual 

meaning-making 

Intuition, proof and Fischbein (1982) Chapter 7 

conviction 

Spontaneous and Vygotsky (1962) Chapter 7 

scientific concepts 
Construction and Hoyles, Healy and Noss Chapter 8 

proof (1995) 

Explanation and De Villiers (1991) Chapter 8 

social proof 

Factors in the shorter-term alignment of the local community of 

practice 
Fig 11.7 

The immediate learning as represented by the area within the 
tetrahedron is seen as taking place in a learning community 
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influenced by environmental factors as shown in figure 11.1.1 have 

looked at four wider influences on the long-term development of the 

practice of the classroom in the use of the T192 and dynamic 

geometry, which I feel may be of value in other areas of technology 

use, not necessarily specific to mathematics classrooms. These are 

consideration of transparency, of argumentation as social, of the 

generation of a whole class zone of proximal development and the 

negotiation of social and socio-mathematical norms. Long-term 

issues such as this will also be dependent on the development of the 

classroom as part of the learning society in which it is located. 

These areas and the sources in the literature from which they are 

derived are listed in the following table and dealt with in the 

following chapters (fig 11.8). 

Transparency Lave and Wenger (1991) Chapter 9 

Adler (1998) 

Socio- mathematical Yackel and Cobb (1996) Chapter 10 

norms 

Argumentation Krummheuer (1995) Chapter 10 

Whole class zone of Hedegaard (1990) Chapter 10 

proximal 
development 

Longer-term and strategic issues affecting the community of 

practice 
Fig 11.8 
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These are longer-term issues, and the original research was 
longitudinal in many cases (Hedegaard, 1990, Lave and Wenger 

1991, Yackel and Cobb, 1996). Such classroom environments are 
built up on a long-term basis by the teacher, and require a 

commitment and involvement from the wider communities of the 

school, the home and society. 

The attraction of these schools of thought perhaps lies in their 

resonance with the way this work has been based on experience and 

an intention to examine ways of philosophically and scientifically 

analysing the practicalities of classroom practice and to find ways to 

work with its complexity. The solution may lie in an integrative 

holistic approach which touches all aspects of this complexity. 

Identified Influences on the Community of Practice 

This project has identified the overall idea of local communities of 

practice, as proposed by Lave and Wenger (1991) and Lave (1996) 

and as their particular application to mathematics classrooms by 

Winbourne and Watson (1998) as a background to the application of 

socio-cultural theory to meaning-making. Against this backdrop, four 

areas in the practice, class/pupils, teacher, technology and subject 
content (in this case geometry) have been located at the vertices of a 
tetrahedron in a model of learning (see figure 11.1). 
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It is useful here to summarise the findings of the study in the four 

areas. 

" Geometry 

  The importance of social results as an indication of 

generalisations- the use of questions such as 'What can we all 

say about our diagrams? ' in situations where the answer might 
be `We all get different triangles, but they are all isosceles. ' 

The teacher can use such results to move forward the meaning- 

making of the classroom community. 

2.83cm 

Fig 11.9 

What can we all say when the triangle has the biggest possible area? 
(See chapter 10) 

Once pupils have been convinced of the general significance of 
the result here, they can move to social explanation and discussion 

of why the result holds. They are moving in a cycle of specialise, 
generalise, conjecture and convince (Mason et al, 1985). 

  Construction in a dynamic geometry environment requires a 
previous rigour in the analysis of the geometrical constraints of 
the diagram required. 
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Fig 11.10 
The line moves round the circle, always touching it. (See chapter 9) 

If pupils produce a dynamic geometry construction which can 
be shown to fulfil required criteria on dragging, this means that 

they have applied geometrical rigour to the problem. They may 

not be operating with formal proof, but they have engaged in 

geometry as the systematic study of invariance and used the 

dynamic nature of the environment to consolidate their 

meaning-making. The technology has been used to produce a 

construction in a way that offers some rigour, even if it does 

not constitute proof. 

" Technology 

  Technology, and indeed any resource used in the classroom, 

can be usefully examined from the viewpoint of transparency. 

A resource should be a window to meaning-making, rather 
than an opaque barrier which stops the gaze of pupils. The 

exercise used in chapter 6, which led to the screen in Fig 11.11 
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was found to be, in the sense of this discussion, too opaque. 

Later screens, such as that used in chapter 10, were more 
transparent (fig 11.12). 

23M 5r. 7HiD 'k 

65 ý0° 

MAIN DEG AU 30 

Fig. 11.12 

  Hand-held technology such as the T192 can be used in ways 

which encourage transparency, by using simple screens and 

drawing out class meaning-making. The hand-held nature of 

the technology itself contributes to this, being easily put to one 

side if another way of working is preferred. One pupil, after 

seeing a screen demonstration, found the exercise described in 

chapter 6 easier on paper: 

I found it easier to draw the parallelogram using a 

compass on paper rather than on the r 192 
(Joe, chapter 6) 
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Dynamic geometry can be used to introduce pupils to a moving 
image, avoiding a static representation and encouraging 

consideration of geometrical invariance. Pupils appreciated 
this: 

I think its verygood, its useful to have a moving image 

rather than drawing it. (Pupil H, from chapter 5) 

The hand-held nature of the particular technology used was 
found to be important in affective issues (again see chapter 5). 

One pupil wrote 

The TI 92 is a very good machine, powerful and personal 

because you can have it in front of you and no body can 

look at it (Pupil M) 

" Pupils and classes 

  Pupils make sense before meaning. Sense of the geometry 

behind a diagram is arrived at before consensual meaning is 

agreed. The sense-making process is delicate and can be 

stimulated by mediation from the teacher and the technology, 

but is easily disturbed by non-transparent use of language or 

resources. 
The following exchange (discussed more fully in Chapter 9) 

illustrates the way a teacher can respond to sense-making and 
take it forward to consensual meaning-making. 
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23 A Ninety degrees Sense of importance of 

perpendicular radius 
24 B No he's hiding the line, the line what Sense making is happening 

goes across from its end 
25 TT The line moves around the circle 

26 B So it's at a 45 degree, no, 90 degree Moving to consensual 

angle to the line, the line in the circle meaning, with more formal 

language made 

27 TT Right, go for it, try to draw it. TT has realised that sense 
OK escape, clear all your pictures. has been made. 

What do you need first? 

28 B Circle sir, I've done it 

  Class use of dynamic geometry can stimulate social meaning- 

making. Asking pupils what they can say about the other 

diagrams in the class, 'What can we all say? ' reinforces the 

general conclusion, and moves forward the learning of the 

whole class. 

From chapter 10: 

3 JG Why do we all get different 

answers? 
4 A Because we all used different The teacher can use `we' 

circles to try to generate a 

general appreciation of 
the result. 
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" Teachers 

  Teachers generate, over time, the learning climate of their 

classroom and locate it within the school and the community. 
In doing this the ideas of socio-mathematical norms, whole 

class zone of proximal development and local communities of 

mathematical practice may be useful. They choose 

appropriately transparent resources which allow a window to 

mathematical meaning-making. 

  In the immediate meaning-making of the class, the reflective 
teacher is offered ways to monitor the activity of the learning 

community. There will be interaction between resources, 

content and class/pupils and the teacher can use sense/meaning 

making and spontaneous/scientific concepts, together with any 
factors which are available from the content (such as the 

opportunity for social explanation in geometry). These will 

operate within the classroom ethos generated by acceptance, by 

all those in the classroom, of their place in a wider community 

of learners. 

The Role of the Teacher 

I make no excuses for returning at the end of this work to this main 
theme. The use of technology does not mean that teachers, and class 
teachers in particular, are redundant. Rather this study has 
illuminated the role of the teacher as that of fostering and stimulating 
local communities of practice, whether pupils are working in groups 
or as a class in discussion with their peers and the teacher. The 
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teacher is seen as the guardian of the local community of practice, 

with the function of leading that community to meaning-making. 

This role of guardian has other aspects. This study has shown the 
importance of looking at mathematics classrooms in terms of social 

and socio-mathematical norms. Social norms of respect for others, 

not shouting out, being prepared to give (and listen to) an explanation 

exist in classrooms and are fostered by the teacher. In the 

mathematics classroom agreement on what constitutes a rigorous 

explanation and a valuing of a sufficient argument will be among the 

socio-mathematical norms pursued by the teacher. These socio- 

mathematical norms will be used in the classroom to give direction 

and thrust to the development of argumentation, seen as a social, as 

well as a logical, process, in which that which is `taken as shared' is 

moved forward. 

When children are socially involved in mathematical meaning- 

making they need to see through the immediate resource to the 

mathematics beyond. Resources used in the classroom, where the 

idea of a resource is seen to be very wide, including the language and 

explanations used as well as teaching materials and technology, can 
be profitably analysed from the point of view of transparency. 

The teacher will be involved in long-term efforts in fostering local 

communities of practice and developing classroom cultural norms. 
The reflective, self-critical attitude of pupils to their learning which is 
developed is seen as important. 
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The work of this project has placed the teacher firmly, if not 

physically, at the front of the classroom. It proposes indicators for 

practice, or at least guidelines for the analysis of practice. The 

technology can be used transparently to stimulate intuition and to 

promote the social aspects of proof. The teacher is seen as crucial in 

setting the social and socio-mathematical norms which prevail. 
Having chosen an appropriately transparent resource, this role is seen 

as stimulating and leading local communities of practice, whether 

group or whole class, where social learning is fostered, where 

argumentation and discussion, overseen by the teacher, are used to 

give direction and thrust to whole class meaning-making. Mediation 

by the teacher is seen to stimulate the dialectics of sense with 

meaning-making, intuition/conviction with proof and spontaneous 

with scientific concepts. 

So what does my ideal classroom look like, what happens there? The 

teacher promotes, guides and learns from discussion between pupils 

and with the whole class, children's work is displayed and practical 

activities are used to bolster a social dimension to learning. This 

classroom is a place where the contribution of each child is valued, 

and where children think about their own learning, about their place 
in the community of those who are becoming mathematicians. 

Successful classroom practice such as this is easily recognised when 
it is encountered, but is somewhat problematic to a reproduce. I 

consider that this thesis has shown, in the various chapters, ways in 

which good practice in the use of dynamic geometry software can be 

analysed and promoted. It may be that many of the ideas advanced 
247 



from the literature and identified in the discussions in the work can be 
found to have application, not only in mathematics education but also 
more widely. 

Future Work 

Engeström (1991) has reported on various models for the interaction 

of community, pupils, content and resources, in a way which suggests 

some commonality with the notion of the faces of the tetrahedron in 

figure 11.1. It may be that the development of a synthesis of the ideas 

of this thesis with some of those of Engeström would provide a basis 

for addressing ideas relevant to whole-class interactive teaching. The 

immediate vehicle for this might be an action research based project 
for serving teachers, using material developed to foster the 

approaches suggested in this work. 

A further area has not been fully developed. Figure 11.1 refers to the 

promotion of a self-critical attitude in pupils, so that they undertake 

self-examination in their own learning. The work of Mercer (1998), 

on exploratory talk and how it can be used in conjunction with the 

use of technology to develop a self-examining attitude in learners, is 

relevant here, and would merit incorporation into any future 

developments. 

It has been a theme of this work to relate to classroom practice, and 
the audience for the findings has been taken to be reflective teachers, 

as well as members of the research community (as addressed by the 

papers in the appendix). It is for the writer to be aware of audiences, 
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however, and it is here that work seeking to relate to classroom 

practice must be carefully weighed. Teachers in England at present 
have little time to incorporate a multitude of initiatives into their 

work. They are rightly resistant to formal, academic papers, with 

their many references. Such papers are, for one reason or another, 

mainly addressing the research community. Reflective, sympathetic 

teachers are more likely to respond to a vignette of classroom 

practice with a lightly sketched background of theory which they can 

assess for its relevance to their own classroom. However writing such 

as this, which may not be suitable for submission to academic 

journals, is not always the first objective of academic researchers. 

Also, there is a reluctance on the part of schools and teachers with 

serious time demands to become involved in research. A number of 

initiatives have addressed this problem. One such (Moseley and 

Higgins, 1999) uses a collection of vignettes, as outlined above, 

drawn together and discussed in total as a piece of academic research. 

The accounts of individual classrooms stand on their own and address 

the reflective teacher, the whole is seen as a viable entity in the 

research field. 

Trainee teachers, those studying for PGCE and those in their 

induction year, are a powerful influence for change in schools. Their 

school based teacher/mentors, encouraged to examine their own 

practice in applying it to their mentoring, are themselves a powerful 

catalyst for development. Together these beginning teachers and their 

in-school mentors constitute a community where small-scale action 

research projects can be used to develop classroom practice based on 

the theoretical analyses developed in this thesis and to test classroom 
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resources and materials designed to promote pupils' perceptions of 

themselves as members of a community of learners of mathematics. 
An initiative based in a cluster of schools and advised by a university 

mathematics education department would enable the development of 

materials and practice in the content area of geometry and elsewhere, 

calling on both traditional and technology based resources. This 

thesis has indicated ways in which criteria for the development of a 

local community of practice can be identified, and ways in which 

classroom practices based on the research literature can be used to 

develop these communities. A project which took this forward would 

see this thesis and the work involved in it impacting on the 

classroom, which is where teachers, pupils, society and learning 

come together. 
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Abstract 

This paper considers how the use of hand-held dynamic geometry 
software can contribute to the development of pupils' understanding of 
ideas associated with construction and proof. In adopting a socio- 
cultural perspective, the technology is seen as a mediating tool and 
intellectual development as a complex, dialectical process. Classroom 
research is reported on involving a group of Year 8 pupils (aged 12-13) 
in a mixed urban comprehensive school in the North of England during 
the autumn term of 1997. The data analysis is undertaken with 
particular reference to Vygotskian notions of `spontaneous' and 
`scientific' concepts. It is suggested that such a perspective helps to 
illuminate the potential of the technology in supporting the complex and 
dialectical process of developing ideas of construction and proof. 
Introduction 

The classroom research reported on in this paper is part of a wider study 
with the aim of investigating the potential of hand-held dynamic 
geometry software in the secondary school classroom. The research and 
development has taken place using Cabri on the Texas TI 92 calculator. 
The focus of the paper is on how the use of such technology can 
contribute to the development of pupils' understanding of ideas of 
construction and proof. 
Background literature 

Dynamic geometry software, seen as a mediating artifact, provides an 
environment, which supports mathematics learning as highlighted by 
Jones (1996). The TI 92 has the particular characteristic of enabling the 
development of a desktop environment in which the dynamic geometry 
environment (DGE) can be one mediating artifact used alongside more 
traditional tools. 
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Healy et al (1994a) illuminate the way in which dynamic geometry can 
be introduced using the drag function to emphasise the difference 
between drawing and construction, and proceed to consider constructions 
in particular further (1994b). Hoyles et al (1995) consider the 
interdependence of construction and proof and the replacing of proof by 
construction in a dynamic geometry environment. 
In developing the use of the DGE in this study, the drag function and the 
idea of a construction invariant under drag have been central. The 
associated classroom materials, which have been developed are directed 
at making a distinction between drawing and construction, and at seeking 
an understanding of concepts such as that of using a circle to preserve 
length (Healy et al, 1994a, 1994b). Pupil fluency with the technology 
has been a further central consideration as highlighted by Goldstein et al 
(1996). 

The work of Fischbein (1982) is considered to be relevant to this study. 
He identifies three forms of conviction; formal, arising from argument, 
empirical arising from a number of practical findings, and an intuitive 
intrinsic conviction, which he calls `cognitive belief. It is suggested that 
the DGE can reflect these ideas through dragging to test constructions, 
dragging to provide empirical proof and also through children's intuitive 
ideas which are triggered by the use of the DGE. 

Theoretical Framework 

This study is framed within a Vygotskian perspective. Such a perspective 
places emphasis on the idea of mediation by a variety of tools, as 
highlighted by Jones (1996) in a similar environment, within the zone of 
proximal development (Vygotsky, 1962). Vygotsky originally defined 
the zpd in terms of development whilst more recent definitions, found to 
be relevant to this study, have related the zpd to activity theory 
(Engestrom, 1987) and to the teacher and class as a whole (Hedegaard, 
1990). 

The interplay between everyday and scientific is also considered 
relevant: 
In considering the notion of development, Confrey (1995) highlights this 
as follows: 

`Development conceived of as a complex, dialectical process 
characterised by a multifaceted, periodic timetable ... by a complex 
mixing of external and internal factors, and by a process of adaptation 
and surmounting of difficulties. ' 

III 



Confrey argues the need for an historical analysis and that one must 
examine the growth of higher mental functions in order to understand 
them. 
Methodology 

From a Vygotskian perspective it could be said that methodology should 
not only be all-pervasive in a study, it should be the study. 

"The attempt to categorize Vygotsky, to `dualize' him as either a 
psychologist or a methodologist, contradicts, ironically, not only 
Vygosky's life-as-lived, but his self-conscious intellectual revolt 
against dualism" (Newman and Holzman, 1993, p 16). 

Vygotsky can be seen as a methodologist/ psychologist in the sense that 
his all-embracing view of the science of learning brings in the Marxist 
historico-cultural dialectic and the ideas of revolutionary activity and 
practice. It provides a methodology, which informs and pervades a study 
and is available to constantly influence the conclusions drawn and the 
direction of future progress. 
This methodology is echoed in the idea of "tool-and-result" outlined by 
Newman and Holzman (1993 p38), who draw a distinction between tools 
such as hammers and screwdrivers (tool for result), and dies and jigs 
(tool-and-result). Hammers and screwdrivers are bought and used as 
needed, dies and jigs are tools designed and refined by the worker. 
Vygotskian methodology is a `tool-and-result'. Like the jig, it is bound 
up in its result. 
Found to be consistent with such an approach have been ideas drawn 
from Grounded Theory (Strauss and Corbin, 1990). This involves the 
systematic process of review and refinement to allow the simultaneous 
development of theory and collection of data and for a progessive 
focussing on the emerging issues. 

Data Collection 

The classroom research so far has taken place in two phases. In the first 
phase the teacher/researcher taught a class of 30 Year 7 pupils (aged 11- 
12). The second phase involved working with a group of Year 8 pupils 
(aged 12-13). Both phases were carried out in mixed urban 
comprehensive schools in the North of England during 1997. The 
classroom research has involved the development of materials, which 
have the aim of releasing the potential of the dynamic geometry software 
and which, at the same time capitalise on the hand held nature of the TI 
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92. The development of the materials was guided by the ideas of 
Hedegaard (1990) and in particular the notion of a `whole class zpd' in 
which the role of the teacher in relation to the class as a whole is 
emphasised. This development has been against a backdrop of the 
desktop environment where a hand-held DGE has been shared between 
pairs of pupils in order to stimulate collaboration and interaction. 

Data Analysis 
This paper reports on the second phase of the classroom trials. The 
pupils had not used the TI 92 before and met with the teacher/researcher 
in their lunch breaks. After a brief period of familiarisation, they were 
given a task of constructing a square, which was stable under drag. The 
following fragments from the resulting dialogue are presented below. 
The three pupils involved are Ryan, David and Joanne and the 
teacher/researcher is JG. 

The pupils had been allowed to take the machines home and Ryan had 
seen the `Regular Polygon' option, which allows 'construction' of a 
square directly. This extract is from the following session. 
1. D Does anyone know how to draw a square? 
2. R Polygon, Regular Polygon 

The `Regular Polygon' option offers a hexagon first and it is not 
immediately evident how to draw a regular polygon with fewer sides. In 
this case the use of the technology was not that helpful in assisting pupils 
to develop their ideas about construction. 
Joanne also had taken a machine home and her explorations had led in 
another direction, towards the `measuring' menu. 
3. J I'm doing it on normal polygon it's a lot easier and you can 
always 
4. measure your lines. 
5. D It's hard to get it a proper square. 
6. J But afterwards you can measure your lines. 

TR Yeah you can can't you 
8. DI know! You could do it two triangles, two right angled triangles 
next to each 9. other and merge them, then it'd be a proper square. 
10. RI think I've got a perfect square here. 
11. J See, I've just figured out mine's not right, cos one of my lines is 
12.1.91 cm and the other is 2.03 cm 
13. J There's also area; you can do the angle and see if the angle's a 
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14. right angle, as well. 
15. R Well you can tell if it's a right angle. 
16. J Yeah but you can't for definite 

17. DI think it is regular polygon. 
All three went on to use regular polygon successfully and dragged their 
squares. 
Joanne's investigation led her towards attempts at simply drawing the 
square. However the development of ideas of construction as distinct 
from drawing become evident from this interaction. For example, David 
makes reference to a `proper square' at line 9 and Ryan talks about a 
`perfect square' at line 10. These examples could be viewed as evidence 
of these pupils' spontaneous conceptions of the idea of construction (of a 
square in this particular case). The discussion at lines 15 and 16 centres 
on different levels of conviction. For example, Ryan suggests that `you 
can tell if it's a right angle' which Joanne counters with the comment 
that `but you can't for definite'. 

In the second part of the exercise the group were asked to carry out the 
same task, but not to use polygon or regular polygon. David (Figure 1) 
and Ryan (Figure 2) both used a circle, a radius and a perpendicular 
through the centre, as a starting point. Ryan had defined a point where he 
estimated the other corner of the square to be and drawn two rays 
through that point. David had drawn two segments, again by eye, to 
complete his square. Dragging showed him that the point was not 
defined. Ryan drew two angle bisectors, which coincided originally but 
separated if he dragged the undefined corner of the square 

Figure 1 (David) Figure 2 (Ryan) 
This conversation followed. 

18. D I'm trying to do an angular bisector... cos if the angular bisectors 
19. make a right angle in the middle then that'll mean it's a square, but I 
can't get it to do them. 
20. JG How do you know that the angle bisectors will meet in the middle 
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21. in a right angle? 

22. D Well I don't know that they will in a right angle 
23. R They will 
24. D If it's a proper square then it'll be in a right angle because you'd 
25 be chopping. the square like diagonally 

26. R There'd be four triangles 
27. D There'd be like four triangles and they'd all be right-angled 
triangles 
28. R There'd be two 45° angles 
(Shown how to draw angle bisector) 

29. D Yes!! Now that looks like its going at a 45° angle right through. 

30. That meets in the other corner there, so I think that means it's a 
square. 
Once again, it is suggested, there is an interplay between different levels 
of conviction and mathematical argument. In the passage from lines 22- 
28 a sufficient definition of a square is arrived at eventually, only to be 
abandoned at line 30 for the germ of a new approach. 
Joanne used a different starting point. She began by drawing a line 
segment and was wondering how to continue. 
31. JG So you've got one line like that.... What would help you to draw a 
32. square? 
33. J It would have to be parallel 
34. JG So you want to draw a line parallel to this... 

35. J Yes 

36. JG and where does it have to be? 

37. J It has to be the same length as that down 

38. JG Like that? So how would you draw it? What shape would help 
you draw 39. that down to there? 
40. JA triangle 
41. JG Look on F3 
Joanne chose the circle option and went on to successfully draw a square 
(Figure 3) 
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Figure 3 (Joanne) 

There followed an attempt to probe understanding of geometrical 
isometries. This conversation refers back to Figure 2. 

42. RI dunno. If I try dragging this ray, because the rays not secure at 
the point, 43. that ray'd drag around wouldn't it? 
44. But if that was a perpendicular to that ray....... 
45. JG So this circle is a good starting point isn't it 

46. If you have that circle and that ray, how many sizes of square can 
you draw? 

47. R just one 
48. JG as soon as you've drawn that and that 
49. R Once you've drawn the circle then you've got the size 
Ryan went on to construct a square by drawing a circle (Figure 4), a ray 
from the centre and a perpendicular through the centre, followed by two 
perpendiculars where the first two lines intersected the circle. 

+ 

Figure 4 (Ryan) 

Pressing the grab key when the cursor is away from the diagram makes 
the independent points in the diagram flash. This useful facility allows 
pupils to explore geometrical isometries. 

50. JG What flashes? 
51. R That corner there. (The centre of the original circle) 
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52. Does that mean that's the only corner that can be dragged? 

53. JG That's the only point that can be dragged. Tell me what you drew 
first. 

54. RI drew the circle first 

Ryan went on to discover that he could grab the circumference of the 
circle as well as the centre and so alter the size of the square, and alter 
the orientation of the diagram by dragging the original ray. By a similar 
process Joanne realised that the original line segment in her diagram 
completely defined her square. 
Discussion 

In observing this classroom activity and in analysing this interaction, 
there is a clear interplay between ideas of drawing and construction and 
also between notions of necessary and sufficient conditions (for 
construction). It is argued that this interplay reflects that between pupils' 
spontaneous concepts and their developing ideas related to scientific 
concepts, which in this case are associated with ideas of construction and 
proof. These pupils can be seen to be operating in a dialectic between 
their spontaneous conceptions of proof, informed by their ideas and the 
insights available to them via the mediating role of the DGE and other 
desk top tools, and the scientific concepts of construction and proof. The 
second episode in particular provides a rich illustration of how everyday 
(spontaneous) concepts `create a series of structures necessary for the 
evolution of a concept's more primitive, elementary aspects, which give 
it body and vitality' and hence how scientific concepts `in turn supply 
structures for the upward development of the child's spontaneous 
concepts toward consciousness and deliberate use' (Vygotsky, 1962). 
By the end of this episode, it is suggested that both Ryan and Joanne 
have displayed evidence of an appreciation of the idea of construction 
and that they have had at least an elementary introduction to ideas 
associated with geometrical isometries. 

It is further suggested that this development can be seen to parallel 
Fischbein's (1982) three forms of conviction; formal, arising from 
argument, empirical arising from a number of practical findings, and an 
intuitive intrinsic conviction or `cognitive belief. 

It is also suggested that this interaction is illustrative of development 
`conceived of as a complex, dialectical process characterised by a 
multifaceted, periodic timetable ... by a complex mixing of external and 
internal factors, and by a process of adaptation and surmounting of 
difficulties' (Confrey, 1995). 
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In considering this process of development, the role of the teacher within 
the zpd has been found to be an essential element in assisting pupils to 
move from their spontaneous/everyday conceptions towards more 
scientific concepts. This echoes the findings of Jones (1996) who argues 
the need for a significant input from the teacher when pupils are working 
within a DGE. 

A further aspect of the wider study, for which there is little room in this 
paper, to consider in any great depth has been the interplay in the desk- 
top environment between the DGE and the traditional tools such as 
pencil and paper. 
A final observation in relation to the aims of the wider study is of the 
undoubted potential of such hand-held dynamic geometry environments 
to promote the development of pupils' understanding of notions of 
construction and proof. 
Thanks are due to pupils and staff from King Edward VII School, 
Sheffield and Mossley Hollins School, Tameside. 
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"What can we all say? " Dynamic geometry in a 
whole-class zone of proximal development. 

John Gardiner, Brian Hudson, Hilary Povey 
Sheffield Hallam University, UK 

This paper first considers aspects of the literature relevant to class and 
group teaching in a social context. Ideas ofsocio-mathematical norms 
and argumentation, on the significance of local communities of practice 
and on the development of a whole-class ZPD are examined. These ideas 
have been used to influence classroom approaches to the use of dynamic 
geometry (Cabri II on the TI92 with 11-14 year old pupils in the UK) 
and analysis of classroom observation is presented. Conclusions are 
drawn about the interaction of these ideas with the technology and how 
the alignment of mathematical meaning-making might be promoted. 

Introduction 
There are bodies of current research which consider, from different 
perspectives, the dynamics of social meaning-making in classrooms. 
Cobb and Yackel (1996), Winbourne and Watson (1998), and Hedegaard 
(1990) and Lerman (1998) all have viewpoints which can be used to 
inform an analysis of classroom interaction. This paper reports on the 
development and use of classroom material using dynamic geometry on 
the T192 in lower secondary classrooms (age 11-14) in the UK. 
Classroom dialogue from lessons taught by the researcher was 
transcribed from audio recordings. This dialogue is analysed from a 
socio-cultural perspective, making reference to the viewpoints referred to 
above, and seeking to illuminate the ways in which students make 
mathematical meaning in areas such as construction and proof. 

Literature and Theoretical Background 
Vygotsky(1962) proposed a social background to learning and 
formulated the Genetic Law of Cultural Development, with learning 
moving from the social to the personal. He took up the idea of the Zone 
of Proximal Development as the area where interaction between the 
individual and the social leads to development. Lerman (1998) says of 
the ZPD `it provides the framework, in the form of a symbolic space 
,...... for the realisation of Vygotsky's central principle of 
development. '(p71) 
Of particular interest here is a definition of the ZPD which includes the 
classroom as a whole, in this case incorporating the teacher, the pupils 
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and the technology Hedegaard (1990) has reported in terms of the 
development of a whole-class ZPD rather than the consideration of an 
individual's learning: 

This activity, in principle, is designed to develop a zone of proximal 
development for the class as a whole, where each child acquires personal 
knowledge through the activities shared between the teacher and the 
children and among the children themselves (p 361). 

Hedegaard reports in the same paper a motivational shift in children's 
focus, from an interest in the concrete to interest in the derivation of 
principles which can be applied to the concrete. Lerman (1998) takes the 
discussion further. 

The ZPD is the classroom's, not the child's. In another sense it is the 
researcher's: it is the tool for analysis of the learning interactions in the 
classroom (and elsewhere) (p 71). 

Insights into factors which might influence meaning-making in a whole- 
class or group ZPD can be drawn from the literature and indicate socio- 
cultural vectors which may operate for meaning-making. These include 
Local Communities of Practice, Socio-mathematical Norms and Choice 
of Materials. 

Local Communities of Practice and Telos 
Drawing on work by Lave and Wenger (1991) and Lave (1993), 
Winbourne and Watson (1998) have used the idea of `local communities 
of (mathematical) practice'. They identify features of a local community 
of (mathematical) practice : 

" pupils see themselves as functioning mathematically within the 
lesson; 

" within the lesson there is public recognition of competence; 
" learners see themselves as working together towards the achievement 

of a common understanding; 
" there are shared ways of behaving, language, habits, values and tool- 

use; 
" the shape of the lesson is dependent upon the active participation of 

the students; 
" Learners and teachers see themselves as engaged in the same 

activity. '(p 183) 
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They examine classroom interaction in terms of such a community and 
go on to discuss the idea of `telos', of the meaning-making of the whole 
class being aligned in directions generated by social interaction. They 
see telos as a unification of small scale ̀ becomings' by which many 
learners join a community of practice. They see: 

a link between our notion of LCP and the situated abstraction of Noss 
and Hoyles (1996). Just as they claim the computer provides domains 
which support students' abstraction, so we claim LCPs support students' 
growing image of themselves as someone who is legitimately engaged in 
mathematical practice, as someone, in other words, who is becoming a 
mathematician. (p 183) 

Socio-mathematical Norms and Argumentation 
This approach is echoed in the work of Cobb and Yackel (1996), who 
have analysed mathematics classrooms in terms of the negotiation and 
maintenance of social and socio-mathematical norms. Social norms 
include 

" insistence on explanation of answers 
" respecting the contribution of others 
" making clear agreement as well as disagreement. 

Socio-mathematical norms would include 

" some notion of what constitutes a valid, complete solution 
" agreement on the worth of alternative solutions 
" negotiated agreement between teacher and students on the mutual 

acceptability of solutions. 

Social norms will exist in all classrooms, and will bear a direct 
relationship to the society in which the classroom is situated. Because 
social norms will affect the negotiation of socio-mathematical norms, 
Apple (1992) has argued that the classroom is firmly situated in the 
wider context of the practices of school and society. Yackel and Cobb 
(1996) discuss the influence of socio-mathematical norms on 
argumentation in the classroom. They draw on the ideas of Toulmin 
(1969) as developed by Krummheuer (1995), seeing argumentation as 
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made up of conclusion, data, warrant and backing. Yackel (1998) says of 
argumentation: 

it clarifies the relationship between the individual and the collective, in 
this case between the explanations and justifications that individual 
children give in specific instances and the classroom mathematical 
practices that become taken-as-shared. As mathematical practices 
become taken-as-shared in the classroom, they are beyond justification 
and, hence, what is required as warrant and backing evolve. Similarly, 
the types of rationales that are given as data, warrants and backing for 
explanations and justifications contribute to the development of what is 
taken-as-shared by the classroom community, that is to the mathematical 
practices in the classroom. (p210) 

Thus argumentation is seen as a social, rather than a logical process, a 
means of establishing that which is held in common about the topic in 
question and moving forward the 'held in common' by classroom 
interaction. Voigt (1995) discusses the reflexivity between learning and 
interaction and speaks of this reflexivity contributing to a classroom 
microculture which in turn affects the meaning-making which is taking 
place. 

Choice of Material 
Lave and Wenger (1991, pp102,103) address the issue of the 
transparency of a resource, and this is further examined by Adler (1998, 
pp8-11). A resource used in a mathematics classroom can be so visible to 
students that it obscures the mathematics and prevents meaning making. 
At the same time some visibility is necessary. We want the resource to 
be visible in the sense that it should direct the gaze of students, so 
enabling their meaning-making. 

Invisibility of mediating technologies is necessary for allowing focus on, 
and thus supporting the visibility of, the subject matter. Conversely, 
visibility of the significance of the technology is necessary for allowing 
its unproblematic- invisible -use. This interplay of conflict and synergy 
is central to all aspects of learning in practice: it makes the design of 
supportive artifacts a matter of providing a good balance between these 
two interacting requirements. (Lave and Wenger, 1991 p103) 

Clearly the familiarity of students with technology such as the TI 92 
governs its use, in a way which is informed by arguments such as this. 
As they become more familiar with the software the teacher will be able 
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to introduce the use of more complicated functions without losing 
transparency. 
It is proposed here that these approaches, of a whole class ZPD, of a 
recognition of local communities of practice, and of negotiated socio- 
mathematical norms and argumentation have much to offer in looking at 
how technology, appropriately transparent, can be used in the classroom. 
In this study such approaches are used, in particular, to analyse social 
meaning-making in the area of construction and proof using Cabri with 
the TI 92 hand-held computer with lower school (11-14 years) pupils. 

Methodology and Data Collection 
A qualitative and ethnographic approach to research has been adopted, 
with case studies used to provide instances of rich incidents for 
subsequent analysis. These were subjected to microethnographic 
interpretive procedures (Erickson, 1986 and Voigt, 1990) Classroom 
interaction between teacher/researcher and individuals in whole class 
and group situations was audio recorded and the transcriptions of these 
recordings analysed. In addition, field notes of memorable incidents 
were recorded. 

Each student had a TI 92 hand-held computer and used the dynamic 
geometry environment Cabri as available on this machine. An overhead 
projector version was available for demonstration by pupils and the 
teacher to the whole class. The following examples were an attempt to 
set up possibilities for whole class meaning-making with the minimum 
of previous knowledge of the T192. The pattern followed was for the 
class to generate and discuss a simple dynamic image, and to record the 
result in exercise books as a diagram after the dynamic image had been 
appreciated. The hand-held nature of the TI92 is particularly suitable for 
pair discussion and, indeed, for consigning to a corner of the desk when 
work on paper is preferred. 

Collection and Discussion of Data 
2 3L 4S fi 7HiD 

-SHOW 
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Fig 1 
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1. The class was asked to draw a circle and a triangle with its vertices on 
the circle, 

then to measure the area of the triangle (Fig 1). They were then asked to 
investigate the effect of dragging one of the vertices, and to look for the 
maximum area of the triangle. In jointly exploring the same screen in 
this way, but each on their own machine, a telos is created and students 
are aligned in the domain provided by the technology. 

The following dialogue ensued. ' 

JG What area have you got? 

Class General response There was no restriction on the 
original diagram, a wide range 
of areas was possible. 

JG Why do we all get different answers? 

Alison Because we all used different circles Use of 'we' suggests the 
possibility o fan LCP 

Barry And different points 

JG Look at mine while I move the point. 
Tell me when it will be greatest. What 
can we all say about our dia ams? 

Barry It's across from the centre Later discussion showed that 
Barry appreciated the co- 
linearity of the midpoint of one 

JG Yes, good. side of the triangle, the centre of 
Anyone else? the circle and the other vertex. 

Leanne It's in the middle Leanne had realised that the 
triangle was isosceles 

Here the technology could be said to be driving along the LCP. 
Spontaneous concepts are developed by the participants by looking at the 
dynamic image, which can then be used by the teacher to interact with 
scientific concepts (Gardiner and Hudson, 1998), so that that which is 
`taken as shared' is moved forward. 

1 Throughout this paper the teacher/researcher is JG and pseudonyms are used for pupils. 
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Fig 2 

2. Another exercise which is available after only the briefest of 
introductions to the technology is based on a diagram such as Figure 2. 
Here pupils were asked to define and measure an angle in a circle as 
shown and to investigate the effect of dragging any one of the defining 
points along the circumference of the circle. 2 Transcription of classroom 
audio recordings resulted in the following dialogue. 

JG Does anyone want to tell me 
what they have found? 

Sonia As you move this down it stays In this version of Cabri, if 'conclusion' 
the same angle until you reach the vertex is moved round 
this point, then it changes to a the circle until it passes 
completely different angle and one of the other points, the 
stays the same. angle in the other segment, 

the supplement of the first, 
is measured 

Nigel Oh Yeah (Wonderingly) Drawn into a 
community of 
practice 

JG Will ou come and show us 
Sonia It might not work you know... In order to demonstrate 

it might just be because of the the OHP version of the 
shape of this one machine had to be used. 

Tom It will work.. I got it to work Supporting the 
community of 
practice 

JG Watch while she drags this. Dragging one of the non- 
Watch the angle. Moving up vertex points 
..... angle getting bigger 

Nigel If you change the middle one, Now a more 
watch the middle one, it stays assured 
the same and after a certain member of the 
point it changes practice 

2 An idea suggested by Geoff Wake of Manchester University 
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JG What's going to happen now? Dragging the vertex point 
Chorus Stays the same 
Nigel Until you pass the point, then it 

will stay the same again 
JG Look at the angle, it stays at 

52.77 degrees, doesn't matter 
that the line goes through the 
centre, stays at 52.77. Now 
changes to........... 127.23 
(to Sonia atfront)Can you 
make it flip between those two 
angles? 
(to class)What can you tell me 
about those two angles? 

Anne Does it add up to 180? conclusion 
David Ooo (realising) 
JG Check that those results are 

true for your diagram 

Referring to criteria mentioned earlier for an LCP (Winbourne and 
Watson. 1998), here pupils can be said to be sharing tool use and 
purpose by being aligned in the task and their use of the technology. 
They are functioning and participating mathematically and recognising 
the competence of others. There is also, in this dialogue, a sense of telos, 
in which the pupils are aligned by the technology in a way which drives 
forward the meaning-making of the community. 
Socio-Mathematical Norms and Argumentaion 
In the passage quoted above there is evidence of two 'conclusions' 
(Yackel, 1998 p2 10) being reached (as indicated), without oral evidence 
of warrant and backing. However it appears that, in this dynamic 
geometry environment, warrant and backing are supplied by the shared 
experience of data generated by the technology. 

Conclusion 
This research has indicated how, with a background of individual and 
class development within a Zone of Proximal Development, the ideas of 
local communities of (mathematical) practice, telos, socio-mathematical 
norms and argumentation can be used to indicate how mathematical 
meaning making in the classroom might be analysed. In particular it 
demonstrates the benefit of suitably transparent use of technology in 
promoting alignment of pupil becomings within a whole-class ZPD. 

Thanks are due to pupils and staff at Hope Valley College, Hope, Derbyshire 
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ASPECTS OF CONSTRUCTION AND PROOF IN A 
HAND-HELD DYNAMIC GEOMETRY ENVIRONMENT 

John Gardiner, Brian Hudson, Hilary Povey 
Mathematics Education Centre, Sheffield Hallam University 

This paper considers how the use of dynamic geometry software (Cabri 
II on the TI 92) can contribute to the development of pupils' ideas of 
construction and proof. Classroom research is reported involving a 
group of Year 8 pupils (aged 12 to 13) in a mixed urban comprehensive 
school in the North of England. Two perspectives are combined in 
analysing the classroom activities. Socio-culturally, the technology is 
seen as a mediating tool and intellectual development as a complex, 
dialectical process. A second perspective considers the elements of proof 
and concludes that, whilst verification and conviction have an 
importance, it is in explanation that proof becomes social. It is suggested 
that this combination may indicate the potential of the technology in 
supporting the development of ideas of construction and proof. 
Introduction 

The classroom research reported on in this paper is part of a wider 
study3with the aim of investigating the potential of the use of dynamic 
geometry software on hand held machines in the lower secondary school 
classroom (age 11 to 14). The research and development have taken 
place using Cabri Geometre on the Texas TI 92 calculator. Classroom 
activities were audio recorded and the transcripts analysed. Field notes 
were used to record the screens the pupils had generated. An attempt is 
made to combine two approaches in the analysis of the data. From a 
socio-cultural perspective, the activities of the pupils can be seen as 
exemplifying ideas of interplay between spontaneous and scientific 
concepts (Vygotsky, 1962, p. 109). De Villiers (1991) has emphasised the 
diverse nature of proof and it is suggested that explanation, as a social 
aspect of proof, can be identified in the classroom incidents recorded 
here. This indicates how the use of technology might combine with 
social interaction from peers and the teacher to contribute to the 
development of pupils' understanding of ideas of construction and proof. 

Background Literature 
Dynamic geometry software, seen as a mediating artefact, provides an 
environment which can support mathematics learning. The TI 92 has the 
particular characteristic of enabling the development of a desktop 
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environment in which the use of dynamic geometry software can be one 
mediating artefact used alongside more traditional tools. 
Healy, Hoelzl, Hoyles, and Noss (1994a) illuminate the way in which 
dynamic geometry software can be introduced using the drag function to 
emphasise the difference between drawing and construction, and proceed 
to consider constructions in particular further (1994b). Hoyles, Healy 
and Noss (1995) consider the interdependence of construction and proof 
and posit the replacement of proof by construction in a dynamic 
geometry environment. This partly draws upon the idea of proof 
operating in a domain 'wide enough to include the visual aspects of 
mathematical intuition and reasoning' (Davis, 1993, p. 333). 
In developing the use of the dynamic geometry environment in this 
study, the drag function and the idea of a construction being invariant 
under drag have been central. The classroom materials as developed are 
directed at making a distinction between drawing and construction and at 
seeking an understanding of concepts such as that of using a circle to 
preserve length (Healy et al, 1994a, 1994b). Pupil fluency with the 
technology has been a further central consideration as highlighted by 
Goldstein, Povey and Winbourne (1996). 
Fischbein (1982) identifies three forms of conviction: formal, arising 
from argument; empirical, arising from a number of practical findings; 
and an intuitive intrinsic conviction, which he calls 'cognitive belief. It is 
suggested that the dynamic geometry environment can reflect these ideas 
by providing a background for pupil/pupil and pupil/teacher discussion, 
by allowing dragging to provide empirical proof and also through the 
way in which it triggers children's intuitive ideas. 
De Villiers (1990) proposes various elements of proof. He identifies the 
areas of verification and conviction, of explanation, of systematising and 
communication and of discovery. He notes that empirical examples often 
lead to conviction/verification; similarly, one of Fischbein's (1982) 
forms of conviction is empirical conviction arising from a number of 
practical findings. Mason (1991), referring to the power of computers to 
present a dynamic image under the control of the user, calls for 
acceptance of a form of proof afforded by a large number of examples. 
He writes: 

I predict that one of the long-term effects of computers will be to establish a 
mode of certainty which lies between the too-easy acceptance of a 
generalisation from one or two cases and the rigour of mathematical proof. 
Programs like Cabri-geometry enable the user to experience a huge range of 
particular cases, and by appeal to continuity, an infinite number of cases. 
This plethora of confirming instances will be highly convincing for many, if 
not most, people. I find this entirely reasonable. (p. 87) 
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Empirical example is a powerful vehicle for conviction and, with 
dynamic geometry software, may lead to a form of verification; however 
such verification and conviction do not in themselves constitute 
meaning-making. Indeed the reaction of pupils to a visual or empirical 
demonstration intended to convince is often lack of interest. De Villiers 
(1991) claims that, in contrast, it is possible to excite pupils' motivation 
for and satisfaction from the deductive explanation of a proof, to engage 
what Mason has called'this sense of mustness' (1991, p. 86). 

Theoretical Framework 
From a Vygotskian perspective, emphasis is placed on the idea of 
mediation by a variety of tools, within the learner's zone of proximal 
development (ZPD) (Vygotsky, 1962). The contribution of a dynamic 
geometry environment as such a mediating artefact is highlighted by 
Jones (1997), who also emphasises the importance of the contribution of 
the teacher. Vygotsky originally defined the ZPD in terms of 
development whilst more recent definitions, found to be relevant to this 
study, have related the ZPD to activity theory (Engeström, 1987) and to 
the teacher and class as a whole (Hedegaard, 1990). 

The interplay between everyday and scientific is also considered relevant: 
In working its slow way upward, an everyday concept clears a path for the 
scientific concept in its downward development. It creates a series of 
structures necessary for the evolution of a concept's more primitive, 
elementary aspects, which give it body and vitality. Scientific concepts in 
turn supply structures for the upward development of the child's 
spontaneous concepts toward consciousness and deliberate use. (Vygotsky, 
1962, p. 109) 

Confrey (1995) discusses Vygotsky's views on development as informed 
by ideas of dialectical and historical materialism and notes that he refers 
to development 

as a complex, dialectical process characterised by a multifaceted, periodic 
timetable ... by a complex mixing of external and internal factors, and by a 
process of adaptation and surmounting of difficulties. (Vygotsky, 1978, p. 
151) 

Confrey argues the need for an historical analysis and that one must 
examine the growth of higher mental functions in order to understand 
them. This approach can be combined with an analysis of the importance 
of explanation as the social element of proof. 
In offering a reconsideration of the nature of proof, De Villiers (1991) 
writes 
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not with the intention of sacrificing any fidelity in mathematics merely for 
pedagogical expediency, but actually the contrary: the encouragement of 
greater fidelity with respect to the variety of reasons behind proof. (p. 26) 

He quotes Chazan (1990) as calling for the 
inclusion of exploration and conjecturing; presentation of demonstrative 
reasoning as explanatory; treatment of proving as a social activity; and 
emphasis on deductive proofs as part of the explanatory process, not its end 
point. (p. 9) 

It is argued here that consideration should be given to the importance of 
this explanatory process. With the availability of dynamic geometry 
software, conviction and verification may often be readily achieved. 
However, the explanation delivered by a proof brings it firmly into a 
social dimension, into an area which is open to mediation by others, in a 
way which the more intuitive functions of conviction and verification do 
not. Of course, explanation, conviction and verification are often inter- 
linked. Explanation may lead to conviction or the individual may need 
first to be convinced in order to be stimulated to produce a deductive 
explanation; and empirical verification can support the kind of 
conjecturing required to frame an hypothesis before trying to explain it: 
`you have to guess a mathematical theorem before you prove it' (Polya, 
1954, p. vi). However, explanation and justification, whether conducted 
alone or communally, seem inherently social activities, deriving their 
purpose from the existence of a community of mathematical meaning 
makers. When explanation in the classroom becomes a social activity, it 
takes its place in the dialectic of proof and begins to lead to students 
making mathematical meaning. 

Methodology and Data collection 
The methodology of this study is qualitative and ethnographic, using 
case-studies to provide material for analysis. The classroom research so 
far has taken place in two phases. In the first phase the teacher/researcher 
taught a class of 30 Year 7 mixed ability pupils (aged 11to12). The 
second phase involved working with a group of Year 8 pupils (aged 12 
to 13). These pupils were volunteers working in their own time, and were 
from the upper band of two. Both phases were carried out in mixed 
urban comprehensive schools in the North of England during 1997. The 
classroom research has involved the development of materials which 
have the aim of releasing the potential of the dynamic geometry software 
and which, at the same time, capitalise on the hand-held nature of the TI 
92. The development of the materials was guided by the ideas of 
Hedegaard (1990) and in particular the notion of a `whole class ZPD' in 
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which the role of the teacher in relation to the class as a whole is 
emphasised. This development has been against a backdrop of the 
desktop environment where a hand-held dynamic geometry environment 
has been shared between pairs of pupils in order to stimulate 
collaboration and interaction. 

Data analysis 
This paper reports on the second phase of the classroom trials. The 
pupils had not used the TI 92 before and met with the teacher/researcher 
in their lunch breaks. After a brief period of familiarisation, they were 
given a task of constructing a square which was invariant under drag. 
Fragments from the resulting dialogue are presented below. The three 
pupils involved are Ryan, David and Joanne and the teacher/researcher is 
JG. 
The pupils had been allowed to take the machines home and Ryan had 
seen the `Regular Polygon' option, which allows construction of a square 
directly. This extract is from the following session. 

1. D Does anyone know how to draw a square? 
2. R Polygon, Regular Polygon 

The `Regular Polygon' option offers a hexagon first and it is not 
immediately evident how to draw a regular polygon with fewer sides. In 
this case the use of the technology was not very helpful in assisting 
pupils to develop their ideas. 

Joanne also had taken a machine home and her explorations had led in 
another direction, towards the `measuring' menu. 

3. J I'm doing it on normal polygon it's a lot easier and you can always 
4. measure your lines 
5. D It's hard to get it a proper square 
6. J But afterwards you can measure your lines 
7. R Yeah you can can't you 
8. DI know! You could do it two triangles, two right angled triangles next 
9. to each other and merge them, then it'd be a proper square 
10. RI think I've got a perfect square here 
11. J See, I've just figured out mine's not right, cos one of my lines is 1.91 
12. cm and the other is 2.03 cm 
13. J There's also area; you can do the angle and see if the angle's a right 
14. angle, as well 
15. R Well you can tell if it's a right angle 
16. J Yeah but you can't for definite 
17. DI think it is Regular Polygon 
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All three went on to use ̀ Regular Polygon' successfully and dragged 
their squares. 
Joanne's investigation led her towards attempts at simply drawing the 
square. However the development of ideas of construction as distinct 
from drawing become evident from this interaction. For example, David 
makes reference to a ̀ proper square' at line 9 and Ryan talks about a 
`perfect square' at line 10. These examples could be viewed as evidence 
of these pupils' spontaneous conceptions of the idea of construction (of a 
square in this particular case). The use of the qualifiers `proper' and 
`perfect' suggests a spontaneous idea of a square as an idealised 
mathematical object and a readiness to search after a representation of 
this ideal rather than to draw an approximation to it. Later on (line 30), 
the word `square' is not qualified, possibly because the idealised form is 
now more deeply embedded in the pupils' conception. The discussion at 
lines 15 and 16 centres on different levels of conviction. For example, 
Ryan suggests that `you can tell if it's a right angle' which Joanne 
counters with the comment that `but you can't for definite'. Hoyles et al 
(1995) examine the case for construction replacing proof in a dynamic 
geometry environment and it is possible to identify in the above passage 
elements of proof as explanation in lines 8 and 9. 

In the second part of the exercise the group were asked to carry out the 
same task but not to use ̀ Polygon' or `Regular Polygon'. David (Figure 
1) and Ryan (Figure 2) both used a circle, a radius and a line 
perpendicular to that radius through the centre as a starting point. Ryan 
had defined a point where he estimated the other corner of the square to 
be and drawn two rays, back to the relevant points on the circle, through 
that point. David had drawn two line segments, from the points on the 
circle, again by eye, to complete. his square. Dragging showed him that 
the point of intersection was not defined as the last corner of a square. 
Ryan drew two angle bisectors which coincided originally but separated 
if he dragged what he had intended to be, but was not, a defined comer 
of his square. 
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Figure 1 (David) Figure 2 (Ryan) 

This conversation followed. 
18. D I'm trying to do an angular bisector... cos if the angular bisectors 

make 
19. a right angle in the middle then that'll mean it's a square ... 
20. JG How do you know that the angle bisectors will meet in the middle in 
21. a right angle? 
22. D Well I don't know that they will in a right angle 
23. R They will 
24. D If it's a proper square then it'll be in a right angle because you'd be 
25. chopping the square like diagonally 
26. RThere'd be four triangles 
27. D There'd be like four triangles and they'd all be right-angled triangles 
28. R There'd be two 45° angles 
(Shown how to draw angle bisector) 
29. D Yes! Now that looks like its going at a 45° angle right through 
30. That meets in the other corner there; so I think that means it's a square. 

Once again, it is suggested, there is an interplay between different levels 
of conviction and mathematical argument. In the passage from lines 22- 
28 a sufficient definition of a square is arrived at eventually, only to be 
abandoned at line 30 for the germ of a new approach. Again, the 
proving role of explanation and justification can be seen at work, 
stimulated by the students' social engagement with the process of 
construction. 

Joanne used a different starting point. She began by drawing a line 
segment and was wondering how to continue. 
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31. JG So you've got one line like that.... What would help you to draw a 
square? 

33. J It would have to be parallel 
34. JG So you want to draw a line parallel to this... 
35. JYes 
36. JG and where does it have to be? 
37. J It has to be the same length as that down 
38. JG Like that? So how would you draw it? What shape would help you 
39. draw that down to there? 
40. JA triangle 

However, Joanne chose the circle option and went on to draw a square 
successfully (Figure 3). 

'4 

Figure 3 (Joanne) 

Ryan was asked to consider more fully the possibilities of dragging 
elements of his diagram (Figure 2). 

42. RI dunno. If I try dragging this ray, because the ray's not secure at the 
43. point, that ray'd drag around wouldn't it? 
44. But if that was a perpendicular to that ray,...... 
45. JG So this circle is a good starting point isn't it 
46. If you have that circle and that ray, how many sizes of square can you 

draw? 
47. R just one 
48. JG as soon as you've drawn that and that 
49. R Once you've drawn the circle then you've got the size 

Ryan went on to construct a square by drawing a circle (Figure 4), a ray 
from the centre and a perpendicular through the centre, followed by two 
perpendiculars where the first two lines intersected the circle. 
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Figure 4 (Ryan) 

Pressing the grab key when the cursor is away from the diagram makes 
the independent points in the diagram flash, allowing further exploration. 

50. JG What flashes? 
51. R That corner there (The centre of the original circle) 
52. Does that mean that's the only corner that can be dragged? 
53. JG That's the only point that can be dragged. Tell me what you drew 

first 
54. RI drew the circle first 

Ryan went on to discover that he could grab the circumference of the 
circle as well as the centre and so alter the size of the square and that he 
could alter the orientation of the diagram by dragging the original ray. 
By a similar process, Joanne realised that the original line segment in her 
diagram completely defined her square. The importance of a deductive 
explanation of the geometrical constants, incorporating `the fact that 
there are facts' (Mason, 1991, p87), in the constructions produced by 
Joanne and Ryan is discussed later. 

Discussion 

In observing and analysing this classroom activity, there is a clear 
interplay between ideas of drawing and construction and also between 
notions of necessary and sufficient conditions (for construction). It is 
argued that this interplay reflects that between pupils' spontaneous 
concepts and their developing ideas related to scientific concepts, which 
in this case are associated with ideas of construction and proof. These 
pupils can be seen to be operating in a dialectic between their 
spontaneous conceptions of proof, informed by their ideas and the 
insights available to them via the mediating role of the dynamic 
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geometry environment and other desk top tools, and the scientific 
concepts of construction and proof. The second episode in particular 
provides a rich illustration of how everyday (spontaneous) concepts 

`create a series of structures necessary for the evolution of a concept's more 
primitive, elementary aspects, which give it body and vitality' (Vygotsky, 
1962, p. 109) 
and hence how scientific concepts 

`in turn supply structures for the upward development of the child's 
spontaneous concepts toward consciousness and deliberate use' (ibid). 

By the end of this episode, it is suggested that both Ryan and Joanne 
have displayed evidence of an appreciation of the idea of construction 
and that they have had, at least, an elementary introduction to ideas 
associated with geometrical isometries. 

This development can also be seen to parallel Fischbein's (1982) three 
forms of conviction: there is a sense, early on, of an intuitive intrinsic 
conviction; dragging provides experience of a number of practical 
findings; and finally we see the initial stages of a formal approach 
arising from argument. This last is not yet a formal proof as accepted 
within academic mathematics; but we see the beginnings of the use of 
explanatory chains of reasoning. 
This interaction is also illustrative of development understood as subtle 
and interactive: we see the interplay of external and internal factors as 
putative solutions are posited, discovered to be flawed and adapted and 
the difficulties encountered eventually overcome. In considering this 
process of development, the role of the teacher within the ZPD is 
observed to be a key element in assisting pupils to move from their 
spontaneous/everyday conceptions towards more scientific concepts. 
Mason, reflecting on aspects of Bruner's (1986) work on Vygotsky, has 
written of `the role of the teacher as being a vicarious consciousness, 
able to hold onto global aims and themes when pupils' attention is 
diverted to detail. ' (Mason 1991, p. 90) 
We see, in the episode above, a complex mixture of elements with 
mediation by both teacher and technology in the furtherance of pupils' 
meaning-making. This echoes the findings of Jones (1997) who argues 
the need for a significant input from the teacher when pupils are working 
within a dynamic geometry environment. 
It can perhaps be said that whilst conviction and verification have been 
identified as elements of proof it is in explanation that proof and 
construction acquire a fundamentally social dimension and begin to 
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impinge on meaning-making. Explanation is the area of proof which is 
most available for mediation in the Vygotskian sense. Images may be 
able to convince, dynamic geometry may provide a form of verification, 
but it is when explanation begins that proof moves into a social 
dimension. 
However the form of communication which we call explanation has 
many layers to it and we can identify various shades of meaning. Indeed 
the imprecise nature of what we understand by explanation suggests that 
it contributes in various forms to the process of proof. Davis and Hersh 
(1983, p. 73) describe mathematical argument as ̀ a human interchange 
based on shared meanings, not all of which are formulaic. ' De Villiers 
(1990) refers to the unique role of proof in the `explanation, 
systematisation and verification of results, something which is not 
possible to the same degree using only intuitive and/or quasi-empirical 
methods' (p. 23). 

Explanation as a communication process has an object and it is 
instructive to analyse the episodes recorded here in a way which 
identifies these objects. We explain to ourselves (lines 42,43), to others 
(lines 3-17), to pupils, to teachers. Scaffolding provided by the teacher 
(lines 42-49), as dialogically pupil and teacher construct a connected 
chain of reasoning, is often key to building on the conviction which is 
already present through dynamic geometry or otherwise, with logical 
deduction leading to richer meaning-making. Because explanation, 
through communication, draws proof out of the intra-psychological, it 
can give pupils ownership of their mathematics and provide motivation. 
Another intuition may lead to further discoveries, which may be verified 
on the screen, but it is when a deductive explanation can be produced 
and proof acquires a dialectical social element that it reaches its potential 
as an important part of meaning making. 

It is proposed that these episodes, when considered from theoretical 
standpoints such as the dialectic of proof and the interplay between 
spontaneous and scientific concepts, complemented by explanation as 
the engine-room of proof, driving forward meaning making, may 
indicate a framework for a classroom approach. The study appears to 
indicate the potential of hand-held dynamic geometry environments to 
promote the development of pupils' understanding of notions of 
construction and proof. The environment provides opportunities for 
mediation by pupils, the teacher and the technology. It is suggested that 
it is the explanation aspect of proof which the teacher can use to 
motivate and help give pupils a sense of themselves as the makers of 
mathematical meaning. 
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Thanks are due to pupils and staff' from King Edward VII School, 
Sheffield and Mossley Hollins School, Tameside. 
Notes 

1A further aspect of the wider study, not discussed in this paper, 
concerns the interplay in the desk-top environment between hand- 
held dynamic geometry technology and traditional tools such as 
pencil and paper. 

2 See also Rotman (1994) for a further critique of conventional notions 
of proof and the anticipated impact of computers on our 
understanding of them. 
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Area and shape in Year Five 

A description of a lesson and some discussion of background reading. 

Catherine Gardiner, Ash Tree Primary School, Kippax 

John Gardiner, Sheffield Hallam University 

Catherine invited me to come to talk to her Year Five class, and suggested that an 

introductory look at area might be possible. I had been looking at the way resources, 

including both low tech and the T192, can be used in class teaching in secondary 

schools [1] and was interested to get involved at primary level. 

  The class of 26 9-10 year-olds were divided into mixed ability groups of four or 

five. We used a brief warm-up on factors and factor pairs, with answers agreed in 

groups and written up on boards before being held up for the class to see. 

Catherine writes: 

I had put some thought into the make up of these groups, taking into 

account both ability and personality. I have tried to promote an 

atmosphere of helping each other and I was not surprised that all the 

groups worked well together and were very co-operative about taking 

turns to record and hold up the boards. 

We had a brief talk about area, using the example of painting surfaces to 

introduce the idea, before moving to the first activity, which was intended to 

emphasise the fact that area does not depend on shape. 
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  Each child had a coloured tissue paper circle, which was cut into two semicircles. 

(Two acetate semicircles on the OHP showed them what to do. ) They had to 

overlap their semicircles so that they could see two light-coloured and one darker 

coloured shape, and talk in their groups about the areas they could see. After a 

time some groups were able to explain to the class that the two light coloured 

areas in everybody's diagram were equal in area. Children of all abilities joined 

in finding an explanation of why this had to be so. 

Picture here of partly overlapping semicircles of tissue paper. 

Sam wrote 

The two light areas are the same because the dark bit 

came from both of the semi circles so the areas of the 

light bits are the same. 

Stuart wrote 

The two light areas are equal because the two semicircles 

are equal. So when you cover up part of the other in a 

way there both losing the same area 

  We moved on to look at what the TI 92 could do to help us with first ideas on 

area. I drew a circle and a triangle with its corners on the circle on the machine 
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connected to the OHP, and measured its area. Each child had a T192 and 

reproduced this diagram, then tried to move one corner of their triangle to make 

the area as big as possible. We discussed results and I followed their instructions 

and advice as to where I ought to move one corner of my triangle to get 

maximum area. I was quickly corrected when I claimed that my answer was right 

and everyone should get the same, and the question: 

All right then, what can we all say about our diagrams? 

provoked some useful discussion. 

2" 345, ý+" i7 fý Y 

1.84cm2 

Victoria 
" Sam 

Sophie 
Joseph 
Rebecca 

MAIN DEG AUTO FANG 

Rebecca wrote about this screen: 

To make the circle press F3 key then we moved the pencil 

outwards and clicked on the place where the pencil was 

and it made a circle. To make the triangle we pressed F3 

key and made sure that the point of the triangle was 

exactaly on the edge of the circle. To measure the area 

press on the F6 key and moved the point of the triangle 

round so that it made the greatest area. At the end of 

the lesson my triangle was an isosceles triangle 

Other accounts mentioned mirror lines and right-angles, and the mid point of the 

`base'. 
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Catherine writes about her thoughts on the lesson and what happened later: 

John's lesson promoted much valuable discussion the next day. By having 

the concrete example with the tissue paper, even the children who have 

SEN in mathematics could explain the concept of the two light areas 

being equal. I was very impressed with their explanations having 

previously thought that the thinking required to see area as distinct 

from shape would be difficult, and appreciating the general nature of the 

result, how it must apply to everyone's diagram, would also be challenging 

for the children. 

As might be expected, during the lesson some children had `cottoned on' 
more quickly than others. The explanations then offered by these 
children enabled others to build up their meaning-making. I think the 
group activity here is fostered by the way I have tried to use questions 
like "Can you explain how you did that? " in numeracy and in all our 
work. 

Each group chose a screen which they thought showed what they had 

learnt and some days later, using a printout of this screen, prepared a 

report on what they had done. 

The Russian psychologist LS Vygotsky [2] proposed that learning takes place 

through social interaction and within what he called the Zone of Proximal 

Development, that space between what the child can achieve unaided and what can 

be achieved with the intervention of `adults or more capable peers'. Later Jean Lave 
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and Etienne Wenger [3) saw learning as being situated in social practice, in what 

they called Legitimate Peripheral Participation. Learning, as opposed to teaching, 

takes place by newcomers taking their place in a community of practice. Drawing on 

this work by Lave and Wenger, Peter Winbourne and Anne Watson [4] have used the 

idea of `local communities of (mathematical) practice'. They identify features of 

such a community: 

" pupils see themselves as functioning mathematically within the lesson; 

" within the lesson there is public recognition of competence; 

" learners see themselves as working together towards the achievement of a 

common understanding; 

" there are shared ways of behaving, language, habits, values and tool-use; 

" the shape of the lesson is dependent upon the active participation of the students; 

" Learners and teachers see themselves as engaged in the same activity. [5] 

They examine classroom interaction in terms of such a community and go on to 

discuss the idea of `telos', of the meaning-making of the whole class being aligned in 

directions generated by social interaction. They see telos as a unification of small 

scale ̀ becomings' by which many learners join a community of practice. By taking 

part in the abstract nature of the activities on area, the children in Catherine's class 

were becoming mathematicians. 

The theme of learning being more important than, and perhaps independent of, 

teaching runs through Lave and Wenger's work, However we consider that this 

thinking, while subordinating teaching to learning, places more, not less importance 
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on the role of the teacher. It does not mean that, in a more technological classroom 

teachers, and class teachers in particular, are redundant. Rather it would see the role 

of the teacher as that of fostering and stimulating local communities of practice, 

whether pupils are working in groups or as a class in discussion with their peers and 

the teacher. The teacher is seen as the guardian of the local community of practice, 

with the function of leading that community to meaning-making 

This role of guardian has other aspects. Yackel and Cobb [5] have looked at 

mathematics classrooms in terms of social and socio-mathematical norms. Social 

norms of respect for others, not shouting out, being prepared to give (and listen to) an 

explanation exist in classrooms and are fostered by the teacher. In mathematics in 

particular, agreement on what constitutes a rigorous explanation and a valuing of a 

sufficient argument will be among the socio-mathematical norms pursued by the 

teacher. Catherine had worked to promote these norms in the community of learners 

we were working with. Yackel and Cobb argue that socio-mathematical norms can 

be used in the classroom to give direction and thrust to the development of 

argumentation, seen as a social, as well as a logical, process, in which that which is 

`taken as shared' is moved forward. 

When children are socially involved in mathematical meaning-making they need to 

see through the immediate resource, be it a chalkboard, or a computer or an example 

presented by the teacher, to the mathematics beyond. The idea of transparency is 

seen by Lave and Wenger as valuable when analysing the use of any resource in the 

classroom. In the work we did the activity with the tissue paper seemed to us to be 

more transparent than the work with the TI 92 (note Rebecca's preoccupation with 
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button pressing in her account), but this was the first time these children had ever 

seen the machine! More transparent use of technology follows familiarity. 

These ideas from the literature seem to us to place the teacher firmly, if not 

physically, at the front of the classroom. The teacher sets the social and socio- 

mathematical norms which prevail, and having chosen an appropriately transparent 

resource, will be working to stimulate and lead local communities of practice, 

whether group or whole class, where social learning is fostered, where participation, 

argumentation and discussion, overseen by the teacher, are used to give direction and 

thrust to whole class meaning making. 

In a review in MT168 Anne Watson pointed out that we could probably foster good 

practice such as this by videoing our lessons, talking to colleagues or watching them 

teach. Perhaps teachers will recognise their own successful practice in the outlines of 

activities and approaches described here. Analysing success is more problematic, 

reproducing it even more so. Ideas from researchers such as those we have quoted 

here have helped us to see how we might change our approach or, hopefully, 

sometimes, why our own practice works. 
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Appendix V 

Details of the TI 92 calculator 
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Details and notes on the 'I'1 92 

Figure V. 1 

The TI 92 is a small hand-held computer/calculator. It measures about 
21cm x 12cm x 3cm and the screen is 9cm x 5cm. It weighs about 
500gm and runs on four AA batteries. It has, in the present version, a 
500K memory, although the machines used in this study were an earlier 
version. To anyone used to running Cabri or other geometry packages on 
PC the graphics (in monochrome) are coarse and, as soon as the screen is 
at all complicated, very slow to drag. However, as the students had not 
met a dynamic geometry package before, and as the diagrams were 
relatively uncomplicated for reasons of transparency (see the body of the 
thesis), these considerations did not limit the study. 

The keyboard is more like that of a miniature computer than a calculator 
(figure V. 1), but children seem to take to it readily. The dynamic 
geometry function is controlled by drop-down menus (figure V. 2) via the 
function keys to left of the keyboard, and the cursor is controlled, for 
moving about the screen and for dragging, by the circular pad at top 
right. 
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There is a socket to allow connection of the T192 to a PC for 

sxsss M§7, " A sip 

1: Perpendicular Line 
2: Paralle1 Line 

Id point 
ng e Bisector 

6: Macro Construction º 
71Vector Sum 
8: CoMpass 
9: Measurement Transfer 
A: Locus 
B: Redefine Point 

TYPE DR USE **t4 i [ENTER)=DK AND [ESC)=CANCEL 

Fig V. 2 

programming and other functions, used here to download screens. This 
socket also allows transfer of information between two machines, so that 
a class set of machines can be pre-programmed. Another socket on one 
machine allowed connection to a tablet which sits on an overhead 
projector, allowing the class to see the screen of this machine (newer 
versions all have this feature, which would enable all children to show 
the class their individual work). 

A large poster of the keyboard was used in class to indicate particular 
buttons when the machine was introduced, and the `Useful Keys' sheet 
(appendix VI) was always available. 
In general children of all abilities throughout the age range studied (11- 
14 years) found little difficulty with the machine and with assistance 
came to terms with it quickly. 
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Appendix VI 

Useful Keys Sheet 
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Useful keys 

To get to dynamic geometry APPS 8 

To start New and type a variable name then ENTER twice 

Dragging Use the 'Hand' Key (lock) Keep it pressed and when 
the cursor changes to a hand you can grab and drag 

Segment Is on F2 

To measure an angle Use F6 and angle. You tell the machine the angle 
you want by pressing enter on one arm, then the 
vertex, then the other arm, in that order. 

Compass Is on F4. 'Open' your compasses by using the two 
points you need; then go to the centre point and 
press enter to draw the circle. 

Circle ) On F3 
Triangle ) 

Hide/Show ) 
Thick ) On F7 
Label ) 

Perpendicular ) 
Perpendicular Bisector ) On F4 
Midpoint ) 
Angle Bisector ) 

To scroll 2nd and cursor 

To correct F8 D undoes the last object created 
ESCape undoes the last keypress 
F8 8 Clears the screen (You lose your work) 
Highlight an object and Delete 

To transform Rotate and dilate are on FS. 
To put a number (angle or dilation factor) on the 
screen use Numerical Edit on F7 6 
Define a vector on F2 
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Appendix VII 

Sources of Dynamic Geometry Software (last visited 26`h August 2001) 

Cabri 
http: //www. cabri. net/index-e. html 

Geometer's Sketchpad 
http: //www. keypress. com/sketchpad/ 

Geometry Inventor 
http: //www. riverdeep. net/math/tangible math/tm_activity_pages/geometry_inventor/ 
c atn. activityi_8 00174. j html#top 

Dr Geo 
http: //ofset. sourceforge. net/drgenius/ 

The first three sites provide teaching ideas and extension material, and 
details of commercial sources and free trials. Dr Geo is a part of Dr 
Genius and is available for free download. 
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Appendix VIII 

Initial Exercise (see chapter 5) 
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Pudsey 

This is Pudsey. He is in demo, 
ýface2. 

HOW 
TTTTT   ' T 

ej 
T NOW T- 

MAIM DEG AUTO FUNC 

Try to find things on the face that you can drag. 

You can use a copy of the diagram to draw on. 
You can write a list 
You might use a diagram drawn in your book. 

Write down anything you notice about what happens when you drag. 

Now change your face (remember how you did it! ) 

Swap machines with your partner. 
Try to change your partner's screen back to a proper Pudsey face. 
If you cannot do it, ask them how to, but do not let them do it for you! 
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Appendix IX 

Further Exercise, see chapter 5 
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Two Squares 

These two squares are in demo, square. 

SIi 
2D a 
4OW 117 

lqr 

9v wr  . 9r 
NOW 4r 

MAIN DEG AUTO FUNC 

Are they drawn in the same way? 
Try dragging points on the screen. 

Show your partner what you have found, talk about it and record it in 

your books. You will need to draw diagrams to show what you have 
found. 
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The TI 92 can remember how the squares were drawn. Use F7, 
Hide/Show. 

z45 bim 
9r " T . w 

Talk to your partner about how the square is drawn. 

Draw a sketch in your book of the way the square is drawn using 
right angles and part of a circle. 

Draw a square on your screen, in a new file of your own. You might use 

F2 Segment F4 Perpendicular line F3 Circle 

Remember to show your partner and check theirs by dragging. 

Use a setsquare and a pair of compasses to draw a square in your book. 

Find out how to use a rope with thirteen 
equally spaced knots to mark out the 
base for an Egyptian pyramid. Do it! 
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Appendix X 

Worksheet discussed in chapter 10, page 197 onwards 
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Triangles in circles 
Draw a triangle in a circle and measure its 
area 

z aý ti sý6ýý aý 

2.69cr1 z 

MAIN a) DEG AUTO 3D 

Move B round the circle and watch the area of 
the triangle change. 
When is it the most? What can everyone say 
about their triangle when the area is most? 

Write about this, and try to explain to each other why this is. Write down the 
explanation you agree on. 
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Appendix XI 

Worksheet discussed in chapter 10, page 202 onwards 
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Explaining 
z3r sý+ iý o-ýq 

^ABC 75.79° 

^HDC 104.21° 

C+ 
D 

O 

MAIN DEG APPRD% FOR 

If the corners of a quadrilateral 
lie on a circle, opposite angles 
add up to 180° 
Opposite angles of cyclic quadrilaterals 
are supplementary 

zar 5- f7i 

^ABC 47.19° 

0 

^AOC 94.38° 
C+ 

MAIN DEG APPRO FUNC 

Angle AOC is a/ways twice angle 
ABC 
The angle subtended by an arc at the 
centre of a circle is twice the angle 
subtended at any point on the rest of the 
circumference. 

:rs... sr si- 

71.98° 

"C 

IMAIN 

DEG A/ RO rule 

If B stays on one side of AC, angle 
ABC is always the some size 
Angles in the same segment are equal 

C "ABC 90.00° 

+ 
^ROC 180.000 

If AC is a diame ter, angle ABC is 
900 
The angle in a semicircle is a right angle. 

Do you think that all these statements are true? If you do, how do you know? You only need 
to know that one of them is true- the others can then be explained. Talk about which diagram 
is which and explain to each other the steps in the argument. 

21Y Lý+ i7 1"ý 

MAIN E 11P/ROM N 

Now try to use isosceles triangles to explain why angle AOC is twice 
angle ABC 
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Appendix XII 

The researcher has been a member of writing teams involved in the production of the 
following works, all for SMP and published by Cambridge University Press. 

Using Software (1990) 

Using BASIC (1990) 

G9 Book (1994) 

Revised Space booklets to NC criteria (1995) 

SMP Interact (2000 and on-going) 
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Appendix XIII 

Collected data gathered in the course of the project. 

The data recorded here is referenced in the body of the text as 

Pupil Diaries 

DI, 2,3 etc 

Field Notes, including Scribble Pads 

F1,2,3etc 

Transcripts of Audio Recordings 

Ti, 2,3 etc 

LXII 



Pupil Diaries 

(as scanned) 

Scanned extracts from pupil diaries are reproduced here. Where they 
have been referred to in the text page references are given. Other 
extracts are given for interest only. 
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From School A 

._ __ ý_ý nom, -r. +ý ý 
ýi 

º, ý, a, c 

ýJý o""c rl"t 
. 

f3 

Pupil A D1, p 107 D4, p 107 

Dý-W hs OF 
rr F' ,30 r- :L e- sv cF. S 

phDoi 
5ubt ý&? Orn, d. ý dem 

rýntý aS, st ec- O rl 

we ý= 3-( Coo ctý: cv, sn 
lýrcýý2 c>n 
0`1., 

a 
-4- )n 

-ý Gýd 1P. il 

kk) ßc`ä 3n{, S de S 
C>, (-)(i &- eo rneasurQn cý 
the S4Cý-S -&, o cl 

Pupil B D2 p107 
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`r 

ýctU vý 

r ,. 
E Yýi . tC 

wr .. 
ý C 

.. " o- `4 

Pupil C D3, p 107 

2 bu 

l. Jl. 2 r" 0. pre i-V k \. Q-V2,0 ý, i q 
iJD ýý s1 Ä. 

ý C\ 

rvýy . JO('k GJ: 7 c. ý. ýný 11ývý 

Pupil D D5, p 108 
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Initial Reactions from School B, 

1/7/98,2/7/98 

Pupils' reactions from a lower attaining Y9 group (ages 13-14) 

The first exercise involved measuring the area of a triangle drawn 
with vertices on a pair of parallels, and seeing how the area changed 
as the vertices were moved. The second involved investigating the 
change in area of triangle drawn in a circle as one of the vertices was 
moved round the circle. 

2.2cmI 
2.83cm 

I 
l1u. Jc ! ýcý }ýu 

corýýu, ltr is wýeýul , 
bý. ý 1 ý, w1c1 I, kc 1c kýaý iwv� {e o 

b h. jý 
4'w, rnort unQ if, ýr, a b1x, Ebowd 

pe ace ,ý . Q. 

`d°, to la do /1.. 1T 
coo ato, a, d rd Lcoývý a kocl a,. lr,,, E J9u,,, 

Pupil E D6 p 110 
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r¢-allý 
good beet u. se. Iý 
In les GI Mpc0, r wRoe 
yov do-thl . qs ywý 
ýcw. jf- is mMCh 
how vvoyk , 4(5 
4 ffi akae "teS N vig 
ýntý(ýocNys a (OT eat ilýla, n ý, tvý it otý 

. 
ý, (1 {QO. fviý'd 

ýýt, ýß Gt id +-ýbGcWj 

V%'ý0 

hw1- lt' Wcý Sý-ý11 

Pupil FD7p 110 
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ßäCc 

l t' titiý- ý1 , 

ri 

pupil GD8, p111 Dll, p112 D12, p112 

sý/tKR 
yEin 

ý, Lls 
&4, 

bW 
". lß'1 fC'�aGäý !i/w- ; "0,3, Q 1.1�4- 

. vti vSt 
ý ý" J 

------------- 

baa+. 
ýI s*r V 

ar 
gyp. 7i Z 

L t^ ýKp 

pupil 11 D9, p 111 
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ýS 
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f 
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k Stý ý ý Hou 

Pupil ID 10, p 112 

-T f4ý býle,,; 
WOO 

-tout CCCYIe ýt cki ýr v Oll UJ O 

go r. Zko QrGrr- L , cam 
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Tnv. V3 4 0-ý4 . 
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Pupil J, p 112 
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o %o Jr 

PupilK, D 14, p 112 

Further Extracts from Pupil Diaries 

sail loon 
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ýS+ 
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School A 

Joe's work 

The episode to which these extracts relate is discussed on page 126 
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Field Notes and Scribble Sheets 

referred to in the text are reproduced here 

Field notes and Scribble Sheets 
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F1 
Reflecting a triangle in one side, and discussing the condition for 
getting a rhombus. See Preface. 
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PIP77 

F3 
Rob on drawing a square (pupil's name obscured) 
Refer to page 144 
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F4 

Rotating Triangles about the mid point of one side. What is the 

condition for a rectangle? 
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Annotated File of Transcription Records 

This appendix lists passages of transcribed audio-recorded dialogue 
Details of the schools involved are noted and reference is made to page numbers 
in the text where these passages are discussed. 
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T1 See page 109 School B 

Transcription of Pupil/ Pupil instructions 

Pupil A had used a brief instruction sheet and taken the TI 92 home to 
experiment 

A Press Apps (Applications) and we're going to go on to Geometry so you 
press 8 
B 8? 
A Yeah, and you've already got a file, so you go down to 2 which is open 

Press enter, enter, right? 
And then go down from Main. Oh you've only got one file, I've got two 
Right I'm on my file. Now, what do you want to draw? 

B Errm, can you only draw shapes or can you draw anything? 
A You can only draw shapes. 
B Right a circle. 
A Circle. So you go onto F3 and it says ̀ Circle, Arc, Triangle, Polygon or 

Regular polygon. So you press 1 cos that's what number the circle is. 
B Yeah I've got it here 
A And then you can draw a circle. So you press enter where you want the 

middle of your circle to be. You use your arrow keys to come out and 
draw your circle. It comes out as you bring your arrow key out. 

B And then do you press enter when you've drawn your circle? 
A Yes press enter. 
B Yes I've done 
A Right, now what do you want to draw? 
B Er. A rectangle 
A Right go onto F3 and we'll do polygon cos that's just like a shape with all 

joined together 
B4 
A Yeah 4 enter 

And you press enter, and you can go across and you get a line and once 
you're happy with the line what you've drawn, you press enter again so 
that means you've got one line and then you can say go across or down 
and you can draw shapes with these different points what you've got. 
Do you get that? 

B Mmmm yeah 
A Tell me if you don't get it 
B Ido get it 
A And then once you've finished your shape you do enter, enter and it 

draws your shape in bold. Right? 
B Mmmm My rectangle's going to fall apart 
A That's alright, look at mine it's not even a rectangle, that's just a shape. 

Right you can go on F4 and that's all sorts of different lines and points, 
you can have compass, you can measure, what line you've done, 
measure, you know the length of your line. On F5 that's translation, 
rotation, that means you can flip it over, you can make it the same on 
both sides, and stuff like that. 
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F6 is mostly for measuring, you can measure the distance and length, you 
can measure the area. 
So do you want to measure the area of your square what you did? So you 
press F2,2 

B 2, then enter? 
A No you just press 2 and it should do it 
B Yeah, it's done it. 
A And you go onto the shape what you done in the middle like, no, not in 

the 
middle, on the line, and it should say this polygon, or this circle or whatever you 

want to do. 
Yeah this circle and when it's got that you press enter and it tells you 4.25 
centimetres squared, that's what mine is. 

B 8.787 centimetres squared 
A Good ennit? 
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T2 Page 136 recorded comments on properties of squares (Darren) 

We were probably about five, six maybe seven, no younger than that, we were 
probably four, when we learnt that it has four sides and corners and that they are 
all the same but we were probably about six when we learned the word right 
angle. 

T3 Page 137 School B 30/9/97 

The group were given some cut-out cards, which all looked square, but only one 
of which was a square within the limits of accuracy used to make them. The 
pupils were asked to identify the square. 
D Sir is this definitely a rectangle, the big piece of paper? 

JG That's a good question! (retreats) 
D Well because these are rectangular that means the corners are all right 

angles so we can see these corners..... 
T How do you know that one's a rectangle 
D Cos I've asked him. So we can use the corners 

T Do you mean this one? 
D No this is 

So we can see... we can rule out some of them by working out that they've 
not got all right angles. 
This one isn't. 
Put the ones that definitely aren't there 

That's got a right angle 
This is definitely g right angle. 

T That one is 
Ah that one's not 

D That one's definitely all right angles 
T Yeah that one's all right angles 

D But we don't know if it's a square though, right 

T Lets have some more 

D I've tested them, T, they're not totally right angles. 
So now we've got these that are definitely rectangles of some sort but we 

need something to measure the sides against. 
We're not allowed to use a pen or anything are we? 

R A ruler 
D I know. This er tape box 

So that's the length that way, then these should match up 
they don't so this is a rectangle but not a square 
Right next 
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T It's fairly obvious, it's a rectangle but not a square 

D Well a square is a type of rectangle 

T How? Well yeah, yeah I knew that 

D Right, there's the length, there's the width 
That is definitely a square. 
And finally this one, hang on, there's the width, no this one isn't 
So the only square one is this one. 

Drawing a square by regular polygon T4 p 138 and T5 p 140 School B 
6/10/97 
Also discussed on p 169 and p 171 

Square by regular polygon 

Rob, Janine, Darren 

Draw a square which stays a square when you drag it 

HIS REGULAR MIL 

D Does anyone know how to draw a square? 
R Polygon, regular polygon 
D Regular polygon is .... R number 5 on F3 
J right now just draw it..... no it doesn't work, go on to just polygon. 
R Yes it's working 
J I'm doing it on normal polygon it's a lot easier and you can always measure 
your lines 
D It's hard to get it a proper square 
J But afterwards you can measure your lines 
R Yeah you can can't you 
DI know! You could do it two triangles, two right angled triangles next to each 
other and merge them, then it'ld be a proper square. 
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RI think I've got a perfect square here. 
J See, I've just figured out mine's not right, cos one of my lines is 1.91 cm and 
the other is 2.03 cm 

J There's also area, you can do the angle and see if the angle's a right angle, as 
well. 
R Well you can tell if it's a right angle. 
J Yeah but you can't for definite 
DI think it is regular polygon. 

Went on to use regular polygon successfully 

Page 145 T6 Discussion of angle bisectors 

Transcription 
School B 13/10/97 Constructing a square 

SHOW 

THIS PRINT 

MRIN DEG RPPRDX F UN 

THIS 

Darren Rob 

D I'm trying to do an angular bisector .... cos if the angular bisectors make a 
right angle in the middle then that'll mean it's a square, but I can't get it to do 
them. 

JG How do you know that the angle bisectors will meet in the middle in a right 
angle? 
D Well I don't know that they will in a right angle 
R They will 
D If it's a proper square then it'll be in a right angle because you'd be chopping 
the square like diagonally 
R There'd be four triangles 
D There'd be like four triangles and they'd all be right angled triangles 
R There'd be two 45° angles 
Shown how to draw angle bisector 

D Yes!! Now that looks like its going at a 4511 angle right through. 
That meets in the other corner there, so I think that means it's a square. 
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R I've made an arrow head I know that 

P146 T7 School B 
Also on p 174 

Further transcription from 18/10 

JG 
J 
JG 
J 
JG 

JG 

J 
JG 

So you've got one line like that, What would help you to draw a square? 
It would have to be parallel 
You want to draw a line parallel to this? 
Yeah 
and where does it have to be? 

It has to be the same length as that down there 
Like that? So how would you draw it? 
What shape would help you to draw that down to there? 
A triangle 
Look on F3 

V# 

We eventually decide that a circle can be used and J continues 

T8 p 147 School B 

Transcription 25/10 

Rob JG 

R This is what I'm trying to do right 
I've drawn a circle, drawn the centre point, drawn a ray going up there, a 
ray going there 

JG right, so this is a ray is it? 
R Yeah and so is that there, but I've just realised I should draw a ray going 

up there and draw a ray parallel and I've drawn a perpendicular line 
going up there 
So I managed that but it's just one out 

JG What do you think will happen if you drag this ray? 
RI dunno. If I try draggiing this ray, because the ray's not secure at the 

point, that ray'd drag around wouldn't it 
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But if that was a perpendicular to that ray,...... 
JG So this circle is a good starting point isn't it 

If you have that circle and that ray, how many sizes of square can tou 
draw? 
R just one 
JG as soon as you've drawn that and that 
R Once you've drawn the cicle then you've got the size 

T9 p 148 School B 

JG What flashes 
R That corner there. Does that mean that's the only corner that can be 
dragged? 
JG That's the only point that can be dragged. Tell me what you drew first. 
RI drew the circle first 

+ 

T10 p152 School D 29`h April 

Boys A, B, C, D 

We're doing this one 

D Go to the centre, we want 
a line 

C What did we use? Lets try 
segment 

D F2 Enter 

C Then go to the circle 

D Watch this see if this does 
it 
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C Ah you've done it 
You need to draw a 
segment from the centre 

D had tried to draw the I've done it sir. Whoo hoo (circumference point 
circle moving down the What! It gets bigger. defined as on line, but line 
slope not defined as a tangent) 
C Wh does it do that? 

TI I Seep 154 School D 

JG You've told the circle to 
go through that point 
haven't you? How do you 
make that circle roll? You 
don't want it to go through 
that point do you? What do 
you wan t to happen? 

C I want it to roll 

JG So it just has to ? 

JG So you don't want it to go 
past the line, you want it 
just to touch the line 
Can you tell me what 
would help? 
Let's just put a point for 
the centre of the circle. 
How big do you want the 
circle to be? Now where 
will it touch? 

JG Centre there, and it's just 
got to get to......, 

C That point Points to point of contact 

JG Now can you tell me 
exactly where it should be 
Is there a word on the 
board to help? 

C Pen....... Stumbles to read it 

JG That's right, perpendicular 
You've got to use the 
perpendicular 
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T12 Page 184 School D 

Speaker Comment 
JG to class How did you draw a kite? 

General We drew a triangle and then we 
reflected it 

JG I asked you to move this point 
about What shape do you always 
get? 

General A kite 

JG I asked you how you could get a 
rhombus Look at the screen and 
tell me when it is a rhombus 
A rhombus has four sides equal, 
not just the two pairs 

General Stop 

JG How should I move it so it is 
always a rhombus? 

A Turn it around or bring it in to 
the middle- not right in the 
middle though 

T What line will it be? 

A A straight line 

B Symmetry 
A Down that line, that line like that 

T What's that angle called 
A What's it called' what's it called 

a right angle 

T So what's another name for that 

T Yes ninety degrees 

T There's another word for that 
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A Put a line down the middle 

B It's a square box angle 

T13 p 188 School D 

Given intro to hidden lines 
A I want to know how to do that one, me 
TT And how are you going to do that? 
A I know where the line is what he's hiding 

A It's on that big circle there 

TT Go on then 
A Ninety degrees 
B No he's hiding the line, the line what goes 

across from its end 
TT The line moves around the circle 
B So it's at a 45 degree, no, 90 degree angle to 

the line, the line in the circle 
TT Right, go for it, try to draw it 

OK escape, clear all your pictures 
Clear all your pictures 

What do you need first 

A Circle sir, I've done it 
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T14 P204 School C 

1 JG What area have you got? 

2 Class General response 

31 JG 

4 1A 

5 1B 

61 JG 

17 IB 

Why do we all get different 

answers? 

Because we all used different 

circles 

There was no restriction 

on the original diagram, 

a wide range of areas 

was possible. 

Use of `we' suggests the 

possibility of a local 

community ofpractice. 

And different points 

Look at mine while I move the 

point. Tell me when it will be 

greatest. What can we all say 

about our diagrams? 

It's across from the centre 

'What can we all say? ' 

used to promote the local 

community ofpractice 

and the generation of a 

common direction to 

learning, telos. 

Later discussion showed 

that Belle could 
demonstrate to the class 

the idea of the co- 
linearity of the midpoint 

of one side of the 

triangle, the centre of the 

circle and the other 

vertex. Charlotte pointed 

out that the triangle was 
isosceles 

8 JG Yes, good. 
Anyone else? 

9C It's in the middle 
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T15 P 207 

Transcriptions and notes from School C, July 1998 

JG Does anyone want to tell me what they have found? 
Pupil 1 As you move this down it stays the same angle until you reach 

this point, then it changes to a completely different angle and 
stays the same. 

Pupil 2 Oh Yeah Wonderingly 
JG Will you come and show us 
Pupil 1 It might not work you know... it might just be because of the 

shape of this one 
Pupil 3 It will work.. I got it to work 

JG Watch while she drags this. Watch the angle. Moving up 

..... angle getting bigger 
Pupil 2 If you change the middle one, watch the middle one, it stays 

the same and after a certain point it changes 
JG What's going to happen -now? 
Chorus Stays the same 
Pupil 3 Until you pass the point, then it will stay the same again 
JG Look at the angle, it stays at 52.77 degrees, doesn't matter that 

the line goes through the centre, stays at 52.77. Now changes 
to........... 127.23 Can you make it flip between those two 
angles? What can you tell me about those two angles? 

Pupil 4 Does it add up to 180? 
Pupil 5 Ooo 
JG Check that those results are true for your diagram 

JG B.., what do we press now? 
Pupil6 F2 
JG F2 for? 
Pupil 6 Line err segment 
JG Yes you need to use segment, it's line segment, but you have to Tails off.. The 

be a bit careful with the word segment when circles are Explanation 
involved Trap 

JG 
Shows how What can everybody in the room tell me about this? 
to draw and 
measure 
angle at the 
centre 

Much evidence of snatches of conversation of pupils helping each other 
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