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ABSTRACT 

 

This study investigated the ‘latent deficit’ hypothesis in two groups of head-injured 

patients with predominantly frontal lesions, those injured prior to steep morphological 

and corresponding functional maturational periods for frontal networks (≤ age 25), 

and those injured >28 years. The latent deficit hypothesis proposes that early injuries 

produce enduring cognitive deficits manifest later in the lifespan with graver 

consequences for behavior than adult injuries, particularly after frontal pathology 

(Eslinger, Grattan, Damasio & Damasio, 1992). Implicit and executive deficits both 

contribute to behavioral insight after frontal head injury (Barker, Andrade, 

Romanowski, Morton & Wasti, 2006). On the basis of morphological and behavioral 

data, we hypothesised that early injury would confer greater vulnerability to 

impairment on tasks associated with frontal regions than later injury. Patients 

completed experimental tasks of implicit cognition, executive function measures and 

the DEX measure of behavioural insight (Behavioral Assessment of the Dysexecutive 

Syndrome: Wilson, Alderman, Burgess, Emslie, & Evans, 1996). The Early Injury 

group were more impaired on implicit cognition tasks compared to controls that Late 

Injury patients. There were no marked group differences on most executive function 

measures. Executive ability only contributed to behavioral awareness in the Early 

Injury Group. Findings showed that age at injury moderates the relationship between 

executive and implicit cognition and behavioral insight and that early injuries result in 

long-standing deficits to functions associated with frontal regions partially supporting 

the latent deficit hypothesis.  
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INTRODUCTION 

 

 

 

Pathology to anterior brain regions produces a constellation of deficits, although 

diminished self-regulation, poor behavioral insight, and other socio-emotional 

problems are the most incapacitating and resistant to rehabilitative efforts (Ponsford, 

2004; Bach & David, 2006). Behavioral insight refers to the capacity to acknowledge 

and exhibit awareness of functional deficits post-injury and is considered a useful 

marker of more general socio-behavioural problems (Hart, Seignourel & Sherer, 

2009; Flashman & McAllister, 2002). Diminished insight is associated with poor 

rehabilitation outcome, increased maladaptive behavior, heightened caregiver distress 

and reduced goal-directed self-regulatory behavior (Craik et al., 1999; D’Argembeau 

et al., 2005; Oddy, Coughlan, Tyerman & Jenkins, 1985; Sherer et al., 1998; Wise, 

Ownsworth & Fleming, 2005). Importantly, accurate self-appraisal (high behavioral 

insight) contributes significantly to post-injury emotional control and adaptive socio-

cognitive functioning (Schmitz, Rowley, Kawahara & Johnson, 2006). Recent 

imaging data show that self-appraisal accuracy is associated with activity to 

ventromedial prefrontal cortex (Rosen et al, 2010). Although functional recovery is 

deleteriously affected by reduced behavioral insight, injury severity, locus, extent and 

age at time of injury are also important determinants of outcome (Anderson et al., 

2009).  

 

Executive and implicit processes and behavioral insight 

 

Both executive and implicit functions are thought to contribute to insight into one’s 

own behavior, often termed self-evaluative accuracy or behavioral awareness (Morris 



& Hannesdottir, 2004; Toglia & Kirk, 2000; Schmitz et al., 2006). Executive 

functions are super-ordinate processes that operate across, inhibit or initiate other 

cognitive processes to produce integrated sequences of behavior (Miyake et al., 2000). 

Executive deficits are typically associated with pathology to frontal regions and these 

functions may dissociate post-injury with patients showing selective or multiple 

executive function deficits (Stuss & Alexander, 2007; Sullivan, Riccio & Castillo, 

2009). Diverse executive functions have been associated with post-injury awareness 

and include, self-regulation (Bogod, Mateer & MacDonald, 2003), sustained attention 

(O’Keeffe et al., 2007), and planning and mental flexibility (Ownsworth, McFarland 

& Young, 2000). Findings have been difficult to replicate mainly due to the use of 

single and heterogeneous measures of executive function and diverse methodologies 

across studies (Ownsworth & Fleming, 2005).  

 

Implicit processes operate by activating existing knowledge, strengthening links 

between concepts, or encoding new information in the absence of conscious 

awareness of learned information or the acquisition process. Implicit knowledge is 

acquired in parallel in contrast to explicit serial processing, facilitating or biasing 

behavioral responses outside of conscious volition. The term implicit cognition is 

used within the experimental literature to encompass the processes measured by a 

broad range of tasks testing behavioural and brain responses to subliminal, unnoticed 

or unattended stimuli or regularities between stimuli. These processes are thought to 

play an important role in ‘real world’ contexts, facilitating adaptive behavioral 

responses (Lieberman, 2000; Frith & Frith, 2008). Patients with lesions to frontal 

regions show diminished or abolished implicit learning on Serial Reaction Time tasks 

(SRT - Nissen & Bullemer, 1987), and lack of priming on a mere exposure effect task 



(Zajonc, 1980) compared to control data (Beldarrain, Grafman, de Valesco, Pascual-

Leone & Garcia-Monco, 2002; Morton & Barker, 2010), a pattern that maintains in 

patients with frontotemporal lesions (Barker, Andrade, Romanowski, Morton & 

Wasti, 2006).  

 

The SRT is a choice reaction time task incorporating a regular but lengthy sequence 

of targets. Implicit learning is expressed as faster responses to sequence compared to 

random trials, without awareness of the presence of a sequence. In mere exposure 

effect tasks processing of subliminal or unattended stimuli primes a preferential 

response (increased liking) to those stimuli. In models of behavioral awareness 

implicit processes such as these are thought to operate by augmenting metacognitive 

awareness (mediated by executive functions), and by guiding behavioral responses in 

the absence of explicit awareness (Ownsworth, Clare & Morris, 2006; Toglia & Kirk, 

2000; Morris & Hannesdottir, 2004). Absence of priming and inability to acquire an 

implicit sequence suggests disruption to mechanism(s) that might normally guide 

behavior in the absence of awareness (Barker et al., 2006). Whilst models of 

behavioral awareness typically include executive and implicit components, the 

implicit component is generally under-specified with limited explanation of how 

implicit processes modulate awareness, and is not measured experimentally. In 

addition, behavioral awareness models do not account for the possibility that implicit 

processes are disrupted after neuropathology (Ownsworth, Clare & Morris, 2006; 

Toglia & Kirk, 2000; Morris & Hannesdottir, 2004; Schacter, 1990). One aim of the 

present study was to investigate the contribution of implicit cognition to behavioral 

insight and to test whether age at injury affected this contribution. 

 



Neuroplasticity and the ‘latent deficit’ hypothesis 

There is ongoing debate about whether cognitive behavioral effects of head injury 

vary depending on age at time of head injury (Kolb, 1995; Anderson et al., 2009). 

This debate is particularly relevant to individuals with frontal pathology as these 

regions undergo a protracted period of maturation that may confer developmental 

vulnerability to pathophysiological processes (Paus, Keshevan & Giedd, 2008). 

Traditionally, theories of neuroplasticity and age at injury have presented conflicting 

findings of either preserved function after early compared to later injury (Kennard, 

1940), or intractable functional deficits due to abolition of elementary functions 

underpinning cognitive systems (Hebb, 1949). A possible reason for contradictory 

findings is that consequences of early brain injury (to frontal regions in particular) are 

not fully apparent until later developmental periods when cognitive resources driving 

autonomy, independence, goal-directed, prosocial and sexual behavior are most in 

demand (Williams & Mateer, 1992). More data are needed to address this question as 

adolescents and young adults (particularly males) are highly represented in the head-

injured population and frontal and temporal regions are particularly vulnerable to 

trauma after insult due to their position within the skull (Sosin, Sacks & Webb, 1996; 

Kolb & Whishaw, 1990), trajectory of the brain on impact, and proximal and distal 

connections with other brain regions. Early frontal insult may therefore result in 

graver deficits, because the brain is maturing and consequently vulnerable, that are 

latent in the sense that they emerge later in development. Findings from longitudinal 

case studies (Anderson, Catroppa, Morse, Haritou & Rosenfeld, 2005; Anderson, 

Damasio, Tranel & Damasio, 2000; Anderson, Bechara, Damasio, Tranel & Damasio, 

1999; Barlow, Thomson, Johnson & Minns, 2005; Eslinger, Biddle & Grattan, 1997; 

Eslinger, Flaherty-Craig & Benton, 2004; Tranel & Eslinger, 2000), and group studies 



(Ewing-Cobbs et al., 2006) support this ‘latent deficit’ hypothesis  

Morphological maturation of anterior structures 

Morphological studies reveal a phase of steep maturation occurring in late 

adolescence and early adulthood to anterior brain regions. Temporal and spatial maps 

of MRI scans show patterns of maturation from around age 14 to age 26 localised to 

large regions of frontal cortex and lenticular nuclei with little change to other regions 

(Sowell, Thompson, Holmes, Jernigan & Toga, 1999). Gogtay et al., (2004) found 

that changes in gray matter volume follow a non-linear pattern across different brain 

regions, with loss of gray matter density (either through synaptic pruning or intra-

cortical myelination - Paus, 2005) to dorsolateral prefrontal cortex and posterior 

superior temporal gyrus only evident after age 16-17 years in healthy adolescents. In a 

longitudinal study of 8 healthy subjects aged 11 to 17.5 the greatest mean increase in 

white matter volume was found in frontal lobes (ranging from 8.4 - 26.8%) across the 

two time points, indicating rapid maturation of these regions during late adolescence 

compared to other brain regions (Riddle et al., 2008). Subcortical tracts (extending 

into frontal regions) and corticospinal tract continue to undergo change up to age 25 

(Lebel, Walker, Phillips & Beaulieu, 2008), and there is some indication that 

maturational change may continue to age 30 in superior temporal cortex (Sowell et 

al., 2003). 

Morphological changes correspond with socio-cognitive maturation occurring through 

adolescence and early adulthood (Blakemore & Choudhury, 2006). Evidence 

indicates that psychosocial and logical reasoning functions continue to mature until 

around age 25 (Steinberg, 2007). Executive functions follow a similar trajectory, with 

protracted development extending through adolescence into early adulthood 

(Anderson et al., 2001; Huizinga, Dolan & van der Molen, 2006; Levin et al., 1991; 



Lin, Chen, Yang, Hsiao & Tien, 2000; Romine & Reynolds, 2005). The same may be 

also true of implicit cognition. Adults outperformed 7-11 year old children on an 

implicit sequence-learning task, showing a significantly larger learning effect and 

more rapid learning (Thomas et al., 2004; but see Meulemans, van der Linden & 

Perruchet, 1998). Other studies found that schoolchildren performed worse than adults 

on implicit memory tasks (e.g. Vaidya, Huger, Howard & Howard, 2007 but see 

Hayes & Hennessy (1996) for developmental invariance argument), and older adults 

performed significantly better on a symbolic implicit learning task than younger 

adults (Bo & Seidler, 2009). Overall there are little data on the developmental 

variability of implicit processes in later childhood through adolescence to adulthood.  

 

To summarize, patients with frontal lesions show impaired executive function across a 

range of measures and diminished or abolished implicit cognition (measured by SRT, 

HCD and mere exposure effect tasks) across studies. There is evidence that both 

executive function and implicit cognition make separate contributions to behavioral 

insight also impaired after injury (Barker et al., 2006; Schacter, 1990; Morton & 

Barker, 2010). Impaired behavioral insight is thought to be a marker of intractable 

socio-behavioral problems post-injury. Frontal regions show steep morphological 

changes during adolescence extending into adulthood and are consequently vulnerable 

during this period (Paus, 2005). The present study tested the hypothesis that brain 

injury sustained during this period would have graver consequences for executive 

function, implicit cognition and behavioral insight in adulthood than similar injuries 

sustained later in the lifespan. We also tested whether age at injury moderated the 

expected relationships between these variables.  

 



We selected SRT and mere exposure effect implicit tasks to measure implicit 

cognition as they are thought to correspond to mechanisms governing tacit non-verbal 

decoding and encoding of information respectively (Lieberman, 2000), and are 

sensitive to frontal pathology across patient-based studies. We selected a battery of 

standardized executive function tasks to contrast with single measures of executive 

function used in other behavioral insight studies. Behavioral insight was measured 

using the DEX Questionnaire (Behavioral Assessment of the Dysexecutive Syndrome 

– BADS, Wilson, Alderman, Burgess, Emslie, & Evans, 1996) a standardized 

measure widely used in clinical assessment. Though we are not concerned with the 

precise neural substrates of functions measured here imaging data show frontal 

activation during SRT (Seidler et al., 2005; Honda et al., 1998; Wong, Bernat, Bunce 

& Shevrin, 1997) and behavioral insight task performance (Schmitz et al., 2006) 

supporting neuropsychological findings and the assumption that these functions are 

disrupted after frontal pathology.  

 

Two groups of closed head injury patients with pathology mostly confined to frontal 

regions completed the study. Patients who sustained insult during developmentally 

sensitive periods (up to age 25) on the basis of maturational and behavioral data were 

categorized as ‘Early Injury,’ the ‘Late Injury’ group sustained injury from age 28 

onwards. Age- and IQ-matched controls allowed comparison of the extent of implicit 

deficits across the two patient groups. In line with previous work, we predicted that 

patients would be impaired on implicit experimental tasks compared to matched 

controls. 

 

 



METHOD 

We investigated the effect of age at time of head injury in 32 traumatically brain 

injured (TBI) patients with mostly frontal lesions on implicit cognitive tasks, 

executive function ability and a measure of behavioral insight used in clinical 

assessments. For the Early Injury group, imaging data showed pathology to frontal 

and temporal regions in four cases, ten cases had frontal pathology (only identified via 

medical records and clinical presentation for Case 2 and Case 5 as they were 

considered too high risk to transport for scans), Case 3 was acollosal anteriorly, Case 

10 had lesions to anterior corpus callosum, and Case 15 had lesions to centrum 

semiovale (Table 2). In the Late Injury group, 5 cases had frontotemporal pathology, 

only identified by CT and medical records for Case 5 who had an aneurysm clip due 

to a frontal bleed predating a frontal head injury, and Case 14 who had ocular metal 

fragments. Case 1 had bilateral temporal lobe contusions. The remaining 10 had 

frontal contusions, identified by CT for case 8 who could not be scanned due to a 

metal eye socket. Age- and IQ-matched controls completed experimental tasks to 

provide normative data. Using a range of measures allowed us to explore possible age 

of injury effects on severity of functional deficit and contribution of executive and 

implicit processes to post-injury behavioral insight. 

 

Participants 

 Ethical approval was granted by Sheffield South, North, Barnsley and Doncaster 

NHS Research Committee. All participants gave informed consent and were a 

minimum of 18 years of age at test. Time since injury duration varied from two to a 

maximum of ten years post-injury at time of testing to safeguard against measuring 

acute rather than chronic effects of injury (Lezak, 2004). Patients were recruited if 



they had sustained anterior injury at putatively sensitive developmental periods or 

later in adulthood, showed behavioral problems post-injury, and were impaired on at 

least one executive function subtest. Half of the patient group sustained insult in 

adolescence through early adulthood (n = 16 range, 12-25 years: Early Injury group) 

and half in later adulthood (n = 16, range 28-55 years: Late Injury group). All were 

right handed and none had any marked physical disability (see Table 1 results 

section). Patients were predominantly male reflecting regional demography with the 

exception of two females in the Late and one in the Early Injury group so our sample 

may be somewhat skewed. National demographics drawn from NICE (National 

Institute for Clinical Excellence) guidelines 2007 indicate that males constituted 70-

88% of all head-injured hospital admissions in the UK for that year. In relation to our 

sample these figures indicate that at the top of end of the range for a cohort of 32, 2.6 

participants should be female approximately in line with our sample. Regional 

demography may fluctuate due to differences in cause of head-injury, falls being the 

primary cause with assaults as the secondary cause at national levels. For our 

recruitment area assaults were the primary cause of head injury (followed by road 

traffic accidents), which may explain the low female to male ratio in our sample 

(direct.gov.uk). Occupational status was as follows for the Early Injury group at time 

of test: Resident in a rehabilitation unit (n = 5), independent with rehabilitative 

support (n = 10), employed in semi-skilled work (n = 1). Late Injury patients were 

classified as: Resident in a rehabilitation unit (n = 4), independent with rehabilitative 

support (n = 4), employed in semi-skilled work (n = 8). Patients with a history of 

alcoholism, depression, or drug addiction were not included in the study. 

 

All patients were MRi scanned on a 1.5 Tesla Eclipse scanner, Marconi Medical 



Systems (Cleveland, Ohio) unless there were medical or behavioral contraindications 

(e.g. metal aneurysm clips, violent behavior). Scan sequence and parameters were TR, 

TE, TI (fluid attenuated inversion recovery FLAIR only), slice thickness 4mm with 

2mm gap, T2 fast spin echo (FSE) in 3 planes (axial, coronal & sagittal), slice 

thickness 5mm with 1mm gap and T1 volume RF-FAST, slice thickness 1mm. 

Imaging data were analyzed using the Template Method (Damasio & Damasio, 1990). 

Regions were identified on the basis of Brodmann’s Area by the Consultant 

Neuroradiologist (Table 2). Glasgow Coma Scale (GCS) scores at emergency 

admission and Post-Traumatic Amnesia (PTA) duration are also reported (Table 1). 

 

Patients were matched to controls for age, years of education and Full-Scale IQ 

(WAIS III Wechsler, 1997). Controls provided normative data for implicit 

experimental tasks and where possible spouses, siblings or significant others were 

recruited to match for demography. Patients completed the Wechsler Memory Scale-

R (WMS-R Wechsler, 1987) to screen for memory impairments that might account 

for performance deficits, The National Adult Reading Test (NART Nelson, 1991) to 

measure any IQ decline from pre-morbid levels, a range of executive function 

measures with good reliability and sensitivity indices, and a clinically used measure 

of behavioral insight (Table 3). Use of standardized neuropsychological measures 

with published normative data obviated the need to measure control performance on 

these tasks (other than the WAIS III for IQ matching). Early Injury patients (M = 5.7. 

SD, 1.6, range 0-9) and controls (M = 4.8, SD, 2.7; range: 2-11) t (1,30) = .37, p = 

.82, and Late Injury patients (M = 6.5, SD, 2.1, range: 2-10) and controls (M = 5.8, 

SD, 2.8, range: 3-9) t (1,30) = .41, p = .79 two-tailed fell within normal ranges for 

anxiety and depression on the Hospital Anxiety and Depression Scale (HADS 



Zigmond & Snaith, 1983). 

 

Procedure 

Test administration was counterbalanced across participants. Testing typically took 

place across several sessions with rest breaks determined by the participant; some 

patients were only able to concentrate for 15-20 minutes in any given session, others 

completed longer test sessions interspersed with brief five minute breaks. The SRT 

task was programmed with rest breaks hard-wired (duration determined by participant 

key press) after each block of 50 trials. The mere exposure effect task had no rest 

breaks as the task only took ten minutes to complete. 

 

Executive function measures 

The Hayling and Brixton tests measure response initiation, inhibition and rule 

detection (Burgess & Shallice, 1997). The Behavioral Assessment of the 

Dysexecutive Syndrome (BADS, Wilson et al., 1996) provides a composite score 

from a range of executive function subtests measuring temporal sequencing, rule 

shifting, strategy initiation and action plan development, planning and goal-directed 

ability. The Wisconsin Card Sort Test (WCST, Heaton, 1981) measures the capacity 

to shift and maintain set. The C.O.W.A. (Controlled Oral Word Association Test – 

FAS version – Benton & Hamsher, 1989), a measure of verbal fluency, was also 

administered to patients and controls as a filler task between acquisition and test in the 

mere exposure effect task, although we are only interested in patient data here.  

 

Measure of post-injury behavioral insight (DEX – Wilson et al., 1996) 

The DEX is a 20-item scale with scores ranging from 0-4 (4 being the most severe). 



Questions sample emotional or personality change, behavioral change and 

motivational and cognitive changes. It comprises two versions, one completed by the 

patient (Self-rating: DEX-S), and the other by a clinician/ significant other 

(Independent-rating: DEX-I) who has close daily contact with the patient. DEX-I 

ratings are used clinically as a metric of degree and extent of post-injury behavioral 

insight. In line with convention we took correlation between Self- and Independent- 

ratings as a measure of awareness of type of deficit experienced and discrepancy 

score as a measure of degree of awareness of deficit (Hart, Seignourel & Sherer, 

2009). Self-ratings were subtracted from Independent-ratings to produce a DEX-

Insight score, a measure of the patient’s awareness of behavioral, cognitive and 

emotional deficits. This measure is thought to produce a more accurate discrepancy 

score than comparison of Self and Independent rating means because it takes account 

of rating differences by question. 

 

Implicit cognitive tasks 

We used two implicit experimental tasks previously shown to be sensitive to 

neuropathology, a measure of implicit judgment (mere exposure effect task Zajonc, 

1980) and a measure of implicit performance (serial reaction time task-SRT Nissen & 

Bullemer, 1987). Performance on these tasks is thought to recruit the same 

mechanisms that mediate non-verbal encoding and decoding respectively (Lieberman, 

2000).  

 

Serial Reaction Time task 

This task was programmed in Psyscope (Cohen, MacWhinney, Flatt & Provost, 1993) 

and presented on a Macintosh Powerbook 5300. Participants completed a practice 



session before beginning the task. At acquisition, participants responded as quickly as 

possible to a single target circle appearing at one of four screen locations evenly 

spaced in a row. The target was a 1cm diameter closed white circle on a black 

background. Each target location corresponded to a key on the keyboard of the 

computer (v, b, n or m) respectively. Circles disappeared when the appropriate key 

press was made and reaction times (RT’s) were recorded. Response-stimulus interval 

was 200 msec. Locations of the circle on the screen followed a predetermined 10 trial 

sequence, A B C D B C B D B C (see Seger, 1997). Participants were randomly 

assigned to one of two screen assignments to counterbalance the frequency of 

stimulus circle presentation at inner and outer locations. 

Stimuli were presented in six acquisition blocks of 50 trials (five x 10 trial sequence 

repetitions) constituting the learning phase of the task, with rest breaks between each 

block. At test, participants completed three blocks of 50 trials (150 trials in total), two 

random blocks flanking a sequence block. Test phase followed immediately after the 

acquisition phase without warning to participants. Typically, participants respond 

more slowly to random block trials compared to sequence trials at test indicating that 

the sequence has been learned. For random block trials, target locations were hard- 

wired into the programme in a pseudo-random order to ensure that performance 

differences between sequence and random blocks at test did not result from mere 

learning of first order frequency information. A random block of trials was also 

completed at the beginning of the acquisition phase to confound any automatic 

judgment by participants that circles might follow a pattern. 

 

After the task participants completed an explicit knowledge questionnaire (Seger, 

1997). They were informed that circles followed a sequence and rated how certain 



they were of the presence of a pattern, described any pattern that they had noticed, 

then rated (overleaf) how sure they were that the sequence consisted of a) ten 

positions (correct) and b) 12 or more positions. We used Seger's (1997) scoring 

method for the explicit task and her criterion that a score of sixteen or over showed 

explicit knowledge of the sequence. Each of the three test blocks (two random and 

one sequence block) produced 50 reaction time values, divisible as five repeats of ten 

trials. We calculated the median RTs for each of the five repeats of ten trials. The five 

medians for each block were combined to produce three means, one sequence mean 

and one mean for each random block. The two random block means were combined 

to produce a single mean. The sequence mean was subtracted from the random mean 

to provide a single learning score for each participant. 

 

Mere exposure effect task 

The mere exposure effect typically primes a preferential response to targets compared 

to foils. This task assessed participants’ preference for previously heard stimuli over 

foils. Participants listened to one of two lists of fifteen disyllabic Finnish words, 

matched for likeability, recorded on compact disc and presented aurally through 

headphones (see Andrade, Englert, Harper & Edwards, 2001). The word list was 

presented twice at a rate of one word per 1.5 seconds. Use of word lists as targets or 

foils was counterbalanced across participants. After the acquisition phase, the 

C.O.W.A. (Controlled Oral Word Association Test – FAS version – Benton & 

Hamsher, 1989) was administered for three minutes as a distractor task. This task was 

chosen specifically to prevent explicit rehearsal of prime words prior to test stage so 

that any preference effects could be reliably ascribed to tacit processing. Participants 

then heard a test list containing all 30 words, targets and foils, recorded in random 



order with a 4 second inter-stimulus interval. They were asked to guess whether the 

words meant something good or something bad on the basis of their sound, rating 

each word as "very nice/good", "slightly nice/good", "slightly nasty/bad" or "very 

nasty/bad". The aim of this instruction was to imply that there was a correct answer 

on each trial to discourage participants from making a global judgment about the 

sound of Finnish words and consequently rate each word identically. 

 

Task scores  

 

Response sheets were scored as follows: three points for "very nice", two points for 

"slightly nice", one point for "slightly nasty", and 0 points for "very nasty". Individual 

preference priming scores were calculated by subtracting the sum of preference 

ratings for foil words from the sum of preference ratings for target words for each 

participant. A negative or zero score indicated that priming did not take place whilst a 

positive value indicated that previously exposed words were preferred to new words. 

 

 

RESULTS 

 

We analyzed patient group data separately (and compared to matched controls for 

implicit tasks) to determine possible group differences as an effect of age at injury on 

implicit, executive and DEX measures with all other variables held relatively equal 

(IQ, Glasgow Coma Scale scores, etc., see Table 1 and 2). Early Injury patients were 

well matched to controls for IQ, t (1, 30) = .35, p = .72 two-tailed, with no significant 

decline from pre-morbid IQ scores t (1, 15) = 1.0, p = .32 two-tailed (see Table 1 for 



Full-Scale scores). The Late Injury group were also well matched to controls for IQ, t 

(1, 30) = -.73, p = .47 two-tailed, similarly with no decline in IQ from pre-morbid 

levels t (1, 15) = -1.2, p = .24 two-tailed, and IQ scores did not differ for the two 

patient groups t (1, 30) = .65 p = .52 two-tailed. Number of years of education was 

similar for Early Injury patients (M = 11.5, SD 1.3, range: 11-16), and controls (M = 

11.7, SD 1.0, range: 11-14), t (1, 30) = -59, p = .56 two-tailed, and Late Injury 

patients (M = 11.7, SD 1.9, range: 10-18), and controls (M = 11.1, SD 0.8, range: 11-

14), t (1, 30) = 1.2, p = .24 two-tailed. Patient groups did not perform significantly 

differently on the WMS-R (Wecshler, 1987) measure of memory and attention (Table 

3). Early Injury patients were 5.9 (SD 2.6, range: 2-10) mean years since injury, Late 

Injury patients were 4.2 (SD 1.6, range: 2-9) mean years post-injury t (1, 30) = 2.3, p 

= .03 two-tailed with the Late Injury group less far on in the recovery process.  

 

[insert table 1 here] 

 

Neuropathology data 

Glasgow Coma Scale scores t (1, 30) = .56, p = .76 two-tailed, were not significantly 

different for the two groups. There was no significant difference in duration of Post-

Traumatic Amnesia t (1,30) = -1.8, p = .082 two-tailed although the Late Injury group 

had a greater mean duration of PTA than the Early Injury group (Table 1). For ease of 

comparison Brodmann’s regions were categorized as follows: Dorsolateral prefrontal 

cortex (BA 8, 9, 44, 45 and 46), ventromedial prefrontal cortex (BA 10, 11, 12, 13, 14 

and 47), and ‘other’ frontal and temporal regions. Pathology was heterogeneous and 

varied in location and severity within and between groups. In general terms, there 

were no marked differences in degree of pathology at the group level although Late 



Injury patients had greater incidence of bilateral frontal pathology than Early Injury 

patients (Table 2). Data correspond by case across tables for ease of comparison.  

 

[insert table 2 here] 

 

Patient scores on executive function measures and measure of behavioral insight 

Each patient was impaired on at least one executive function subtest (including BADS 

subtest scores) as criterion for inclusion to the study. The Late Injury group performed 

more poorly on the Hayling test of response initiation and response inhibition t (1, 30) 

= 3.0, p = .005 two-tailed, and the Brixton subtest of rule detection t (1, 30) = 2.1, p = 

.048 two-tailed than the Early Injury group (see Table 3 for descriptive data). Group 

means were not different for BADS, WCST, and C.O.W.A. tests of executive function 

(Table 3).  

 

[insert table 3 here] 

Measure of behavioral insight (DEX –Wilson et al., 1996) 

We compared Self-ratings (DEX-S) of the two patient groups to Independent-ratings 

(DEX-I) made by spouses, siblings or significant others. Marked behavioral problems 

and lack of insight into post-injury deficits is typified by higher and contrasting DEX-

I compared to DEX-S ratings across items (i.e. patients may rate themselves as having 

deficits but lack correspondence between Self- and Independent-raters for type of 

deficit(s) identified signifying poor behavioral insight). Early Injury patients rated 

themselves as most affected by ‘lack of insight and social awareness,’ ‘shallowing of 

affective responses,’ ‘distractibility,’ and ‘lack of concern for social rules.’ 

Independent-raters scored ‘impulsivity,’ ‘confabulation,’ ‘euphoria,’ ‘perseveration,’ 



‘restlessness,’ ‘shallowing of affective responses,’ and ‘impaired temporal 

sequencing’ most highly. Total Self- (M = 29.1, SD 17.8, range: 0-71) and 

Independent-ratings (M = 36.1, SD 20.2, range: 3-77) were computed for each person. 

Pearson’s correlation showed no significant relationship between DEX-S and DEX-I 

scores r (16) = .38, p = .13 two-tailed indicating diminished awareness of type of 

deficit exhibited post-injury.  

 

Late Injury patients rated ‘unconcern for social rules,’ ‘shallowing of affective 

responses,’ and ‘aggression’ most highly. Independent-ratings corresponded, but also 

included high ratings for the ‘inability to inhibit responses’ items. Again, total Self- 

(M = 36.9, SD 17.8, range: 3-65) and Independent- (M = 41.2, SD 18.5, range: 1-71) 

ratings were computed for each person. DEX-S and DEX-I scores showed a good 

level of behavioral insight into type of deficit identified as problematic by Late Injury 

patients r (16) = .57, p = .02 two-tailed. Discrepancy between DEX-S and DEX-I 

ratings was measured by calculating a DEX-Insight score for each patient group in 

line with recommendations by test authors and others (Burgess, Alderman, Emslie, 

Evans, & Wilson, 1998; Bennett, Ong & Ponsford, 2005; Hart, Seignourel & Sherer, 

2009). DEX-Insight scores are computed by subtracting Self- from Independent-

ratings. Early Injury patients had a mean DEX-Insight score of 6.9 (SD 20.9, range: -

21-48), contrasted with a mean score of 4.2 (SD 16.9, range: -19-42) for Late Injury 

patients. DEX-Insight scores were not significantly different for patient groups t 

(1,30) = .41, p = .69 two-tailed, although mean DEX-Insight score was higher for the 

Early Injury group. Correlation analysis between time since injury and DEX-Insight 

showed that duration of time since injury was not associated with degree of 

behavioral insight r (32) = .02, p = .96. 



 

Implicit experimental tasks: Patient and matched control data 

Serial Reaction Time task 

Several patients were slower on the sequence compared to random blocks at test 

(Early Injury group = 5, Late Injury group = 5) producing a negative learning score 

that accounts for large standard deviations in both patient groups compared to 

controls. For the Early Injury group, mean learning score was significantly lower for 

patients (9.6, SD 106.5) than controls (96.4, SD 40.5), t (1, 30) = 3.04, p = .005 two-

tailed. Mean explicit measure scores were below the threshold of 16 and similar for 

patients (6.8, SD 4.7), and controls (8.4, SD 3.6), t (1, 30) = -1.05, p = .31 two-tailed; 

explicit knowledge of the sequence did not account for sequence learning differences 

between patient and control groups. In contrast, Late Injury group mean scores (33.1, 

SD 141.8) were not significantly different from control scores (86.7, SD 79.4), t (1, 

30) = -1.32, p = .21 two-tailed although learning scores were lower for the patient 

group. Mean explicit measure scores were also similar for patients (7.8, SD 1.9), and 

controls (8.7, SD 3.1), t (1, 30) = -.87, p = .39 two-tailed. Findings indicate that Early 

Injury patients were more impaired than Late Injury patients compared to matched 

controls on this task. It is unlikely that impaired explicit cognition mediated these 

effects because patient groups were not different from controls in this respect.  

 

Mere exposure effect priming scores were analyzed non-parametrically because 

ratings constituted ordinal data. For Early Injury patients mean prime scores (1.7, SD 

5.7) did not differ from control scores (2.8, SD 2.9), Mann-Whitney U: z = -.89, p = 

.38 two-tailed. However, the difference between target and foil preference ratings 

only reached statistical significance for controls z = -2.76, p = .006 two-tailed, and z = 



-.97, p = .33 two-tailed for patients, showing a mere exposure effect in controls that 

was absent in the patient group. Mean prime scores were different for Late Injury 

group patients (1.1, SD 3.8), and controls (3.2, SD 3.3), z = -1.97, p = .04 two-tailed. 

Wilcoxon Signed Ranks Test confirmed a priming effect for controls, z = -2.94, p = 

.003 two-tailed, but not for patients, z = -.88, p = .31 two-tailed, again indicating no 

mere exposure effect in patients compared to controls. 

 

Classification of WAIS, WMS-R and executive function scores by case. 

 

Group means can sometimes mask the heterogeneity of deficit and sparing across 

individuals so we classified individual test performance for Early (table 4) and Late 

Injury cases (table 5) on IQ, memory and executive function subtests based upon test 

manual scoring criteria (impaired ability typically falls at or below the 5
th

 percentile). 

BADS total score is provided here rather than BADS subtest scores because total 

score was used in subsequent analyses; C.O.W.A. scores are not included because this 

variable showed no relationship with DEX-Insight for either group. Individual scores 

for implicit experimental tasks are not included here because these tasks lack 

sensitivity at the individual rather than the group level. Data show that despite 

heterogeneous performance patterns across cases in both groups there were few 

marked differences between groups. The Late Injury group had several cases showing 

impaired performance on the Verbal IQ (3 borderline/1 impaired) subtest of the WAIS 

not seen in the Early Injury group, and the Early Injury group had a greater number of 

cases impaired on the General Memory measure of the WMS-R (3 impaired/3 

borderline compared to 1 impaired/2 borderline: Early Injury group). The greatest 

distinction between the groups lay in executive function scores, with the Late Injury 



group showing more cases with impaired performance on the Hayling subtest of 

response inhibition (8 cases compared to 4 in the Early Injury group), although groups 

were not significantly different in frequency of impaired ability on this measure c
2
(1, 

N = 32) = 1.33, p = .38. Early and Late Injury groups had the same number of cases 

impaired on the BADS (n = 3) although the Early Injury group had a slightly greater 

number of borderline cases (n = 5) than the Late Injury group (n = 2). Case data were 

not notably different on other subtest measures.  

 

[Insert table 4 and 5 here] 

 

Our previous work (Barker et al., 2006) showed a relationship between executive 

function measured by the BADS (selected because it provides a global score across a 

range of subtests of executive functions) and implicit cognition measured by SRT task 

learning score. Impaired performance on both measures was associated with high 

DEX-Insight scores indicating poor behavioral insight after injury. In the present 

study, we tested whether these relationships varied as an effect of age at injury. For 

the Early Injury group, analyses confirmed that most executive function scores 

correlated negatively with DEX-Insight (high DEX-Insight score indicates poor 

behavioral insight), BADS r (16) = -.65, p .003 one-tailed, WCST r (16) = -.59, p = 

.008 one-tailed, and Hayling r (16) = -.50, p = .02 one-tailed. Neither SRT r (16) = -

.34, p = .10 one-tailed, or mere exposure priming score r (16) = -23, p = .19 one-

tailed, correlated with DEX-Insight for the Early Injury group.  

 

There was no relationship between executive function scores and behavioral insight 

for the Late Injury group, BADS r (16) = .20, p = .23 one-tailed, WCST r (16) = .03, 



p = .45 one-tailed, and Hayling r (16) = .26, p = .17 one-tailed. In contrast to the Early 

Injury group, there were marginally significant correlations between implicit tasks 

and DEX-insight scores, SRT r (16) = .39, p = .06 one-tailed, and mere exposure 

priming score r (16) = -.41, p = .058 one-tailed for Late Injury patients. Results 

suggest a different pattern of relationship between executive function, implicit 

cognition and DEX-Insight for each patient group. To test further whether age at time 

of injury moderated relationships between these variables we conducted hierarchical 

regressions with BADS and SRT scores as predictor variables and DEX-Insight as the 

criterion variable. 

 

Interaction effects: age at time of injury, executive and implicit function and 

behavioral insight. 

 

To preserve predictive power, two separate hierarchical regressions were conducted 

for age at injury, either BADS or SRT variables (see Table 6 and 7), and the 

interaction term (BADS*age at injury and SRT*age at injury, respectively) as 

predictors of DEX-Insight. DEX-Insight served as the dependent variable in both 

analyses. The interaction variables were created as the products of centred versions of 

BADS and SRT variables and the dichotomous age at injury variable consistent with 

recommendations (see Jaccard & Turrisi, 2003). Independent variables were entered 

in three blocks, with the relevant cognitive variable (either BADS or SRT) entered 

first. The second block contained the categorical variable 'age at injury' (Early Injury 

= 0, Late Injury = 1), and the interaction term was entered in the third block. This 

final step computed whether the relationship between cognitive variables and DEX-

Insight was moderated by age at injury, and whether the moderation had predictive 



utility beyond that of the main effects of age at injury and BADS/SRT. Change 

statistics in the first model show that scores on BADS explained 11% of the variance 

in DEX-Insight across both groups, that the injury group variable did not add to the 

variance on its own, and that the interaction between BADS and age at injury 

explained an additional 16% (R
2
-∆ = .16) of the variance in DEX-Insight scores.  

In the final step, the unique regression coefficients (see Table 6) indicate that the 

interaction between age at injury and executive function as measured by BADS scores 

was a significant unique predictor of DEX-Insight. This suggests that age at injury 

was a moderator in the relationship between executive function and behavioral 

insight. There was a strong inverse relationship between BADS and DEX-Insight for 

the Early Injury group r (32) = -.65 p = .006 two-tailed, indicating that low BADS 

scores were associated with low levels of behavioral awareness (high DEX-Insight 

discrepancy scores). There was no relationship between BADS score and DEX-

Insight for the Late Injury group r (32) = .20, p = .45 two-tailed (Figure 1). 

[Insert Table 6 here] 

 

 [Insert Figure 1 here] 

 

The interaction between age at injury and implicit cognition (SRT scores) was only 

marginally significant. The change statistics show that beyond the individual 

contributions of age at injury and SRT scores, the interaction of the two explained a 

further 12.7% of variance in DEX-Insight scores (R
2
-∆ = .127, see Table 7). This is a 

moderate effect with marginal significance p = .052 two-tailed. Simple effect analysis 

showed that the relationship between SRT and DEX-Insight followed a different 

direction for each patient group (i.e., positive for the Late Injury group, inverse for the 



Early Injury group) although neither analyses were significant (Late Injury r (32) = 

.39, p = .14 two-tailed) and r (32) = -.34, p = .20 two-tailed for the Early Injury group. 

 

[Insert Table 7 here]  

 

[Insert Figure 2 here] 

 

Overall, findings from interaction analyses indicate that age at time of injury strongly 

moderates the contribution of executive function to behavioral insight, but that 

moderating effects of age at injury on the contribution of implicit cognition to insight 

is less clear.  

 

DISCUSSION 

Closed head injury patients were assigned to Early and Late Injury groups on the basis 

of age at time of injury. Early Injury patients sustained insult in adolescence and early 

adulthood, a period of rapid morphological change to anterior regions thought to 

correspond with maturation of social and ‘higher-order’ cognitive abilities 

(Blakemore & Choudhury, 2006; Romine & Reynolds, 2005). Late Injury patients 

sustained injury from late twenties through to middle age. Patients were matched to 

controls for age, IQ, years of education and demography and were not different on 

measures of IQ, attention and memory at the group level. There was no significant 

decline from pre-morbid to present IQ status, although most patients showed a small 

decrease in IQ points from pre-morbid levels. Patients were more than two years post-

injury at time of test in line with recommendations that this period represents the 

acute phase of recovery (Lezak, 2004), and differed significantly in this respect. Early 



Injury patients had a slightly longer mean duration of time since injury than the Late 

Injury group, although we found no relationship between time since injury and 

behavioral insight. Imaging data, GCS scores and medical records revealed similar 

loci and extent of brain injury in the two groups, although the Late Injury group 

included a greater number of cases with bilateral pathology, and had greater mean 

duration of PTA compared to Early Injury patients. Both groups were impaired on the 

mere exposure effect task but the Early Injury group alone showed impaired 

performance on the SRT task compared to controls. Both groups had higher mean 

DEX-I than DEX-S ratings typically interpreted as evidence of diminished behavioral 

insight (Flashman & McAllister, 2002; Toglia & Kirk, 2000; Burgess et al., 1998; 

Hart, Seignourel & Sherer, 2009). There was evidence of some residual insight into 

post-injury problems for Late Injury patients shown by corresponding DEX-S and 

DEX-I ratings not seen for Early Injury group ratings. Indeed Early Injury patients 

identified wholly different deficits as problematic compared to DEX-I ratings. Results 

are unlikely to reflect unreliable DEX-I ratings because evidence shows that 

significant others make reliable deficit ratings on the DEX except in acute 

circumstances immediately post-injury when the patient is typically hospitalized 

(Bennett, Ong & Ponsford, 2005; Chan & Bode, 2008). Groups were not different on 

the DEX-Insight discrepancy measure signifying impaired insight into severity of 

deficits in both groups.  

 

Group means were similar across most neuropsychological tests though Late Injury 

patients showed poorer ability on Hayling and Brixton subtests of response inhibition 

and rule detection falling within low average ranges. Poorer performance on these 

tasks by Late Injury patients may be related to impaired inhibitory control reported by 



Independent-raters not identified by Self-ratings on the DEX.  

 

At the individual case level heterogeneous patterns of functional ability were evident 

within groups as would be expected after TBI. However, despite this heterogeneity of 

functional outcome shared patterns of deficit and sparing also emerged across groups. 

A relatively equal number of cases in both groups showed Processing Speed (WAIS-

III) and Visual Memory (WMS-R) deficits on IQ and memory subtests. Both groups 

showed relatively similar patterns of executive function impairment but were 

distinguished by greater number of cases impaired on the Hayling subtest for the Late 

Injury group. There were more cases with impaired General Memory in the Early 

Injury group and more evidence of Verbal IQ deficits in the Late Injury group. It is 

unlikely that higher number of cases with General Memory problems mediated ability 

on executive and implicit tasks in Early Injury patients because executive tasks were 

administered with written instructions visible throughout testing, implicit task 

performance is not dependent on explicit memory processes (Jiménéz & Méndez, 

2001), and groups showed similar levels of impairment on the mere exposure implicit 

task compared to controls. Both groups showed a similar number of cases with 

Processing Speed and Visual Memory deficits but only Early Injury patients were 

impaired on the SRT compared to controls making it unlikely that these deficits 

impeded implicit learning. 

 

To summarize, general cognitive abilities were similar across the Early and Late 

Injury groups, including executive abilities with the exception of performance on the 

Hayling and Brixton subtests. The Late Injury group performed more poorly on these 

two subtests. In contrast, the Early Injury group were more impaired on the measures 



of implicit cognition and showed poorer behavioral insight. Considered together these 

data provide little evidence to support the Kennard principle (1940) that early insult to 

frontal regions results in greater functional sparing than later injuries particularly in 

relation to executive function ability. Likewise these data offer little support to the 

notion that early injuries result in graver functional deficits than later injuries.  

 

Further analyses revealed differences in the pattern of relationships between executive 

measures, implicit tasks and DEX-Insight across groups. BADS, WCST, and Hayling 

executive scores correlated negatively with DEX-Insight scores for Early Injury 

patients (low EF score and high DEX-Insight score equaling poor insight and vice 

versa). There was no significant correlation between implicit task scores and DEX-

Insight despite impaired ability on both implicit tasks in Early Injury patients.  

 

The inverse pattern was seen for the Late Injury group, no significant relationship 

between executive function scores (BADS total score, Hayling, and WCST) and 

DEX-Insight (even though patients were more impaired on the Hayling and Brixton 

than Early Injury patients), and marginally significant relationships between SRT and 

mere exposure scores and DEX-Insight. These results suggest a definitive role of 

executive function to behavioral insight after early injuries. Data are less clear-cut 

about the contribution of implicit cognition to behavioral insight. The Late Injury 

group showed some residual insight into deficits based on DEX-I and DEX-S data, 

although DEX-Insight scores did not differ for patient groups. Late Injury patients 

were not impaired on the SRT task compared to matched controls unlike the early 

injury group, and analyses showed marginally significant correlations with implicit 

task scores and DEX-Insight in the Late Injury group alone. These group differences 

Comment [pa1]: Please check my 
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seem best explained as an effect of age at time of injury as group means were not 

significantly different on neuropsychological tests, DEX-Insight, BADS or 

neurological variables despite within-group variability.  

 

Our earlier work found a significant relationship between BADS and SRT scores and 

impairments on both contributed to behavioral insight (Barker et al., 2006). Results of 

hierarchical regression analyses showed that overall executive ability measured by the 

BADS made a significant contribution to behavioral insight in Early compared to Late 

Injury patients. The magnitude of the interaction term effect was large and was the 

strongest unique predictor of DEX-Insight scores. In contrast, there was no significant 

relationship between BADS and DEX-Insight scores for the Late Injury group. These 

data support the assumption that age at time of injury and executive ability are 

important predictors of behavioral insight after pathology to anterior structures (Hart, 

Whyte, Kim & Vaccaro, 2005; Schmitz et al., 2006). Findings might also shed some 

light on conflicting evidence that executive functions contribute to behavioral insight 

(Bogod, Mateer, & Macdonald, 2003), or conversely show no relationship with 

behavioral insight (O’Keeffe et al., 2007) in studies where age at time of injury is not 

accounted for.  

 

The interaction effect for regression analysis with SRT and DEX-Insight was 

relatively weak and only marginally significant. Regression lines fell in opposite 

directions for the two patient groups, although neither reached significance. However, 

the trend towards an inverse SRT/DEX relationship in the Early Injury group is in line 

with the executive function/DEX relationship also seen in the Early Injury group and 

consistent with predictions based on earlier work (Barker et al., 2006; Hart et al., 



2005; Schmitz et al., 2006).  

 

We can only speculate on the reasons for the difference in relationships between 

cognitive functions and insight as an effect of age-at-injury. Longitudinal case study 

findings show that early frontal injuries result in executive deficits associated with 

severe behavioral problems compared to later injuries (Williams & Mateer, 1992; 

Eslinger & Biddle, 2000; Anderson et al., 2005), though theoretically it is unclear 

why this should be the case: Few interpretations of these data go beyond the 

‘developmental sensitivity’ argument. Behavioral insight is thought to depend upon 

the integration of several functions, including preattentive, metacognitive, implicit, 

executive and regulatory functions (Barker et al., 2006; Morton & Barker, 2010; 

Morris & Hannesdottir, 2004; Schacter, 1990), and somatic physiological markers 

(Damasio, 1996), though constitutive cognitive components of insight need more fine-

grained specification. In normal development these contributory processes may 

cohere into a functional system integrated by executive function control mechanisms 

(Bogod, Williams, & Mateer 2003). Pathology sustained during developmentally 

sensitive periods may render the system vulnerable resulting in poorer functional 

integration. The net effect may be an executive ‘hegemony’ so that when executive 

functions are diminished during developmentally sensitive periods there are fewer and 

less well-integrated compensatory mechanisms in place. Injury to anterior regions in 

early adolescence through to early adulthood is more likely to diminish integrative 

and coordinating rather than ‘elemental’ cognitive functions in an immature and 

consequently inherently vulnerable functional system (Paus, 2005; Johnston, 2009; 

Hebb, 1949). Indeed, research shows that early insult also disrupts integrative aspects 

of language functional systems whilst selective ability may remain intact (Demir, 



Levine & Goldin-Meadow, 2009). Executive functions are also disrupted in later 

injuries but evidence of dissociation between executive ability and behavior suggest 

the effects on behavior may be less severe compared to early injury (Barker, Andrade 

& Romanowski, 2004; Andrés, & Van der Linden, 2002). This hypothesis might go 

some way to explain our findings of a contribution of executive function to behavioral 

insight after early compared to late injury, an effect moderated by age at time of 

injury. More data are needed on the normal developmental trajectory of a range of 

functions and corresponding maturational change to address this possibility. The 

pattern of data for Late Injury patients, no significant contribution of executive 

function or implicit cognition to behavioral insight, indicate a possible contributory 

role of other processes to insight not measured here. This possibility does not 

correspond well with Early Injury group data, but supports the notion of a multi-

componential functional system underpinning insight that may have been more robust 

in the Late Injury group due to normal maturation of anterior regions prior to injury. 

Hence evidence of residual awareness shown in the Late but not the Early Injury 

group.  

 

Individual case data showed that head injury sustained as early as age 12 results in 

enduring deficits to executive and other functions. All patients were a minimum of 18 

at test so most Early Injury patients were well on in the recovery process. This finding 

partially supports the latent-deficit hypothesis though whether early insult results in 

graver deficits than later injuries is difficult to quantify from present data. However, 

functional effects of early head injury were comparable with later injuries even 

though neurological variables showed greater incidence of bilateral pathology, greater 

duration of PTA and less time since injury for Late Injury patients (see also Fay et al., 



2009). This neurological profile predicts more severe head injury and greater 

functional deficits in Late compared to Early Injury patients that may have been 

masked by similar functional outcome in Early Injury patients. It is likely that both 

groups showed some functional recovery since the acute stage but in the absence of 

baseline data immediately post-injury it is not possible to determine whether this 

differed significantly for groups. Overall, the moderating effect of age at time of 

injury on executive, implicit and DEX-insight variables seems less important when 

injury is sustained from late twenties onwards shown by the non-significant effects for 

Late Injury patients in regression data.  

 

There are several limitations of the study that future work might address. Head injured 

groups are intrinsically heterogeneous in functional outcome and pathology making it 

difficult to control for all confounds. In the present study age at time of injury varied 

within groups, as we were unable to recruit sufficient patients who sustained injury at 

the same time. This variability in age at injury may have had differential effects on 

maturational processes although functionally the spread of deficits was similar at the 

case level and early injury patients were more similar in age at time of test than at 

time of injury. Additionally our sample comprised only three females reflecting 

regional variability in head injury demographics. A greater number of female patients 

included in the study might have produced a different pattern of results. 

 

To conclude, present data do not demonstrate greater impairment or greater functional 

plasticity after early compared to later injuries. Instead we found a significant 

relationship between executive function and insight and more impaired implicit 

cognition compared to controls after early compared to later injuries. Age at injury 



moderated the relationship between cognitive processes and behavioral insight. 

Further research aimed at elucidating the interplay between these processes following 

injury should take age at injury into account. Likewise, research into the normal 

development of these processes should consider the development of relationships 

between processes as well as the individual processes themselves. 

 

Our findings show that early injuries result in long-standing deficits to functions 

associated with frontal regions partially supporting the latent deficit hypothesis. 

Although our data speak only indirectly to maturational imaging work, future studies 

might track morphological brain changes and functional ability longitudinally into 

middle adulthood to broaden our knowledge of the relationship between function, 

brain morphology and behavioral consequences of early brain injury. 
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Table 1. IQ, neurological and demographic data of patients and controls. 

 

Full-Scale IQ 

score 

Patients 

Full-Scale IQ 

score 

controls 

Pre-morbid IQ 

Patients 

Age at Injury 

(Yrs: 

months) 

Age at test GCS 

score 

PTA 

(days) 

1. 78 84 76 12.10 20 5 18 

2. 102 103 108 14.11 21 11 4 

3. 88 94 90 14.9 24 4 8 

4. 94 102 101 15.9 21 5 11 

5. 82 96 87 17.8 20 4 30 

6. 104 94 106 17.8 25 8 7 

7. 102 95 90 17.6 26 13 2 

8. 104 109 75 18.10 26 3 8 

9. 105 97 107 18.7 24 6 28 

10. 109 100 102 20.3 23 5 30 

11. 104 104 100 20.2 26 3 120 

12. 87 81 81 20.8 25 5 15 

13. 91 95 96 21.2 31 3 14 

14. 86 102 89 21.1 30 5 7 

15. 110 110 110 22.11 25 6 14 

16. 97 95 87 25.4 28 5 56 

M = 96.4  
(SD 10.0) 

M = 97.6  
(SD 7.8) 

M = 94.1  
(SD 11.3) 

M = 18.6  
(SD 3.3) 

M = 24.7 
(SD 3.3) 

M = 5.4 
(SD 3.1) 

M = 22.1 
(SD 29.7) 

17. 87 90 89 28.11 33 4 3 

18. 109 105 111 30.2 34 3 28 

19. 75 80 78 30.5 33 3 300 

20. 80 90 82 31.2 34 4 32 

21. 99 104 94 33.4 37 13 3 

22. 127 129 127 36.2 40 4 15 

23. 85 80 86 36.1 38 3 69 

24. 105 108 106 38.8 42 3 90 

25. 80 84 82 39.7 43 5 40 

26. 97 95 95 44.4 47 10 8 

27. 87 90 87 46.5 49 6 15 

28. 85 92 87 47.5 56 4 11 

29. 80 85 82 48.2 52 3 18 

30. 104 109 103 49.5 55 3 150 

31. 100 102 102 54.3 59 3 200 

32. 99 112 98 55.1 59 5 18 

M = 93.7  

(SD 13.8) 

M = 97.2  

(SD 13.5) 

M = 94. 3  

(SD 13.1) 

M = 40.6  

(SD 8.9) 

M = 44.4 

(SD 9.5) 

M = 4.7 

(SD 2.8) 

M = 62.5 

(SD 84.7) 

 

 

 



Table 2. Locus of neuropathology for Early and Late Injury groups categorized by 

Brodmann’s Areas (BA)   

 

Patient Right 

VMPFC 

Right 

DLPFC 

Left  

VMPFC 

Left  

DLPFC 

Additional frontal and other 

brain regions 

Early Injury Group 
Case 1 BA (10), (11), 

(13), (14), (47) 

BA (44), 

(45),(46), (8), 
(9) 

BA (10), 

(11), (13) 

 Minimal damage to temporal pole  

BA (38), (21)  

Case 3 Acollosal  Acollosal   

Case 4 BA (47) 
 

BA (8) BA (47)  Bilateral temporal gyrus 

Case 6  BA (44), (45)  (44) Moderate pathology to right temporal 

pole minimal to left 

Case 7  BA (44), (45)    

Case 8 BA  not 
specified (CT 

only) 

 BA  not 
specified 

(CT only) 

  

Case 9 BA (10), (11), 
(13), (14), (47) 

BA (44), 
(45),(46), (8), 

(9) 

BA (10), 
(11), (13), 

(14), (47) 

BA (44), 
(45), (46), 

(8), (9) 

 

Case 10   (10), (11)  

 

Small haemorrhagic cavity in Corpus 

Callosum across both sides anteriorly 

Case 11    BA (8), (9), 

(46) 

 

Case 12   BA (10), 

(11), (13) 

  

Case 13   BA (11), 

(13) 

 Left temporal lobe 

Case 14     Global atrophy and foci of high signal 

to frontal regions 

Case 15     Focal lesion to Centrum 

Semiovale 

Case 16 BA (10), (11)     

Late Injury Group  
Case 1     Middle temporal gyrus 

Inferior temporal gyrus bilaterally 

Case 2     Left frontal lobe lacuna infarcts. 

Case 3 BA (10), (11), 
(13), (14), (47) 

BA (44), 
(45),(46), 

(8), (9) 

BA (10), (11), 
(13) 

 Minimal damage to temporal pole  
BA (38), (21)  

Case 4 BA (10), (11)  BA (10), (11), 

(13) 

  

Case 6 BA (10), (11), 

(12), (13), (14). 

(47) 

BA (46), 

(45) 

BA (10), (11), 

(12), (13), (14). 

(47) 

BA (45) Left and right temporal pole 

Case 7 BA (10),(11), 
(13), (14), (47) 

BA (9) BA (10),(11), 
(13), (14), (47) 

BA (44), 
(45). (46), 

(9),(8) 

 

Case 8 Extensive 
pathology 

(BA not 

specified) 

Extensive 
pathology 

(BA  not 

specified) 

   

Case 9 BA (10), (11), 
(13), (14), (47) 

BA (44), 
(45),(46), 

(8), (9) 

BA (10), (11), 
(13), (14), (47) 

BA (44), 
(45), (46), 

(8), (9) 

 

Case 10   BA (10), (11), 
(13) 

  

Case 11 BA (13), (14), 

(47) 

 BA (12), (13)   

Case 12     Global atrophy excessive for age and 
foci of high signal to white matter in 

frontal regions 

Case 13 BA (10), (11), 
(12) 

 BA (14)   

Case 15   BA (47), (11), 

(12), (13) 

 Left temporal pole 

 

Case 16 BA (10), (11), 
(12) 

 BA (10), (11)  Patchy small vessel ischaemic change 
in right frontal lobe 



 

Table 3. Mean (SD) and range scores on neuropsychological measures for Early and 

Late Injury groups. 

 

Neuropsychological Test Early injury group 

Mean (SD), range 

Late Injury Group 

Mean (SD), range 
WAIS: Subtest scores 

Verbal IQ 

97.6 (11.8) 

Range: 84 -127 

91.8 (15.2) 

Range: 66-119 

Performance IQ 93.2 (13.6) 

Range: 68 - 119 

95.0 (15.5) 

Range: 72-130 

Verbal Comprehension Index 97.2 (12.7) 

Range: 76-124 

93.2 (16.1) 

Range: 67-116 

Perceptual Organisation Index 101.1 (16.9) 

Range: 72-125 

103.8 (18.3) 

Range: 78-148 

Working Memory Index 97.6 (16.3) 

Range: 71-130 

93.6 (14.7) 

Range: 69-126 

Processing speed 81.1 (12.5) 

Range: 60-103 

85.7 (14.1) 

Range: 69-120 

WMS-R Subtest scores 

Verbal Memory 

89.7 (12.8) 

Range: 63-111 

83.3 (13.6) 

Range: 65-107 

Visual Memory 85.2 (23.4) 

Range: 50-138 

84.8 (16.7) 

Range: 50-110 

General Memory 85.8 (17.1) 

Range 55-123 

80.3 (15.8) 

Range: 55-108 

Attention/concentration 95.1 (15.2) 

Range: 67-120 

88.4 (17.7) 

Range: 62-125 

Executive Function scores 

Hayling 

 

5.4 (1.5) 

Range: 2-8 

 

3.5 (1.9) 

Range: 1-7 

Brixton 5.8 (2.1) 

Range: 1-10 

4.1 (2.3) 

Range: 1-8 

BADS total score 85.4 (20.8) 

Range: 43-118 

84.1 (15.3) 

Range: 54-102 

WCST 84.7 (36.4) 

Range: 0-125 

79.1 (28.7) 

Range: 0-124 

C.O.W.A (FAS) 

Total score 

31.7 (8.8) 

Range: 19-45 

33.0 (16.8) 

Range: 14-69 

 



Table 4.  Early injury group individual performance categorizations on WAIS III, WMS-R, and executive function tests. 
 
 

 

WAIS-III subtest WMS-R subtest  Executive function tasks Age at 

Injury 

Case Verbal IQ Performance 

IQ 

Verbal 

Comp. Index 

Perceptual 

Org. Index 

Working 

Memory 
Index 

Processing 

Speed 

Verbal 

Memory 

Visual 

Memory 

General 

Memory 

Attention Hayling Brixton BADS 

Overall  

WCST Yrs:mths 

1. Low Ave.a Low Ave. Low Ave. Ave. Low Ave. Border.b Ave. Ave. Ave. Impaired Impaired Impaired Impaired Border. 12.10 
2. Ave. Ave. Ave. Ave. Sup.c Ave. Ave. Ave. Ave. Sup. Border. Sup. Border. Sup. 14.11 
3. Ave. Low Ave. Ave. Ave. Ave. Impaired Ave. Impaired Low Ave. Low Ave. Ave. Ave. Border. V. Impaired 14.9 
4. Ave. High Ave. Ave. Sup. Ave. Ave. Low Ave. Low Ave. Border. Ave. Ave. Low Ave. Ave. Ave. 15.9 
5. Sup. Border. Sup. Ave. Sup. Border. Ave. Border. Ave. High Ave. Impaired High Ave. V. Impaired Impaired 17.8 
6. Low Ave. Border. Ave. Low Ave. Low Ave. Impaired Ave. Impaired Low Ave. Low Ave. High Ave. Low Ave. Ave. Low Ave. 17.8 
7. Ave. High Ave. Ave. High Ave. Ave. Ave. Border. Ave. Border. Border. High Ave. High Ave. High Ave. Ave. 17.6 
8. Low Ave. Ave. Ave. Border. Low Ave. Impaired Ave. V. Impaired Impaired Low Ave. Ave. Ave. V. Impaired Ave. 18.10 
9. Ave. Border. Low Ave. Ave. Low Ave. Impaired Low Ave. Impaired Border. Ave. Ave. Ave. Border. Impaired 18.7 
10. Ave. Border. Ave. Low Ave. Ave. Border. Impaired Impaired V. Impaired Low Ave. High Ave. Low Ave. Ave. Ave. 20.3 
11. Ave. Low Ave. Ave. Ave. Low Ave. Border. Low Ave. Low Ave. Low Ave. Low Ave. Impaired Ave. Low Ave. Ave. 20.2 
12. Ave. Ave. Ave. Ave. High Ave. Ave. High Ave. V. Sup. V. Sup. Sup. Ave. Ave. Border. High Ave. 20.8 
13. Low Ave. Low Ave. Border. Ave. Ave. Border. V. 

Impaired 

Low Ave. Impaired Ave. Low Ave. V. Impaired Border. Low Ave. 21.2 

14. Ave. High Ave. Ave. Sup. Impaired Ave. Ave. Ave. Ave. Ave. Ave. Border. Ave. Ave. 21.1 
15. High Ave. Ave. Sup. High Ave. Ave. Ave. Ave. Ave. Ave. Ave. Ave. High Ave. High Ave. High Ave. 22.11 
16. Ave. Ave. Ave. Ave. Ave. Ave. Ave. Border. Low Ave. Ave. Ave. Ave. Ave. Ave. 25.4 

aAverage, bBorderline, C Superior 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 



Table 5. Early injury group individual performance categorizations on WAIS III, WMS-R, and executive function tests. 

 
 
 

WAIS-III subtests WMS-R subtests Executive function tasks Age at 

Injury 

Case Verbal IQ Performance 

IQ 

Verbal 

Comp. 

Index 

Perceptual 

Org. Index 

Working 

Memory 

Index 

Processing

Speed 

Verbal 

Memory 

Visual 

Memory 

General 

Memory 

Attention Hayling Brixton BADS 

Overall  

WCST Yrs:Mths 

1. Ave.a Ave. Ave. High Ave. Low Ave. Border.b Low Ave. Impaired Border. Border. Impaired High Ave. Ave. Sup.c 28.11 
2. High Ave. Ave. High Ave. High Ave. Ave. Ave. Ave. Ave. Ave. Ave. Ave. Low Ave. Low Ave. Impaired 30.2 
3. Ave. Low Ave. Low Ave. Ave. Ave. Border. Low Ave. Border. Border. Low Ave. Low Ave. Low Ave. Impaired Impaired 30.5 
4. Border. Border. Border. Low Ave. Low Ave. Low Ave. Low Ave. Border. Low Ave. Impaired Impaired Ave. Low Ave. Border. 31.2 
5. Ave. High Ave. Ave. Sup. Ave. Ave. Ave. Ave. Ave. Ave. High Ave. Ave. Ave. Low Ave. 33.4 
6. High Ave. Sup. High Ave. V. Sup. Sup. Sup. Ave. Ave. Ave. Sup. Ave. High Ave. Ave. Low Ave. 36.2 
7. Impaired Ave. Impaired High Ave. Low Ave. Low Ave. Border. Low Ave. V. Impaired Low Ave. Border. Ave. Border. Ave. 36.1 
8. Low Ave. Ave. Low Ave. Ave. Impaired Border. Low Ave. Low Ave. Low Ave. Border. Impaired High Ave. Ave. V. Impaired 38.8 
9. Low Ave. Border. Ave. Low Ave. Border. Low Ave. Ave. Border. Low Ave. Low Ave. Low Ave. Impaired Border. Ave. 39.7 
10. Ave. Ave. Ave. Ave. Ave. Ave. Low Ave. Ave. Low Ave. Ave. Ave. Ave. Ave. Ave. 44.4 
11. Ave. Ave. Ave. Ave. High Ave. Low Ave. Low Ave. Ave. Low Ave. High Ave. Border. Ave. Ave. Low Ave. 46.5 
12. Ave. Ave. Ave. Ave. Ave. Border. Low Ave. Low Ave. Low Ave. Low Ave. Low Ave. Low Ave. Ave. Average 47.5 
13. Ave. Ave. Ave. High Ave. Ave. Ave. Low Ave. High Ave. Ave. Ave. High Ave. Ave. Low Ave. Low Ave. 48.2 
14. Ave. Border. Ave. Low Ave. Ave. Impaired Low Ave. V. Impaired Low Ave. Ave. Impaired Impaired Impaired Border. 49.5 
15. Border. Low Ave. Border. Ave. Low Ave. Border. Impaired Low Ave. Low Ave. Low Ave. Impaired Impaired V. Impaired Low Ave. 54.3 
16. Border. Low Ave. Border. Low Ave. Low Ave. Impaired Ave. Border. Ave. Low Ave. Border. Impaired Low Ave. Low Ave. 55.1 

aAverage, bBorderline, C Superior 

 
 

 

 
 

 

 



Table 6: Hierarchical regression analysis with BADS score, age at injury and 

BADS/age at injury interaction term as predictor variables and DEX-Insight as the 

dependent variable with all head-injured participants (N = 32).  

 

Independent variables entered R
2
-∆ F-∆ Df  

Step 1: Continuous predictor variable .11 3.68† 1,30 — 

BADS score —  —  —  -.63** 

Step 2: Categorical moderator variable .01 .16 1,29 — 

Age at injury — —  —  -.07 

Step 3: Interaction term .16 6.59* 1,28 — 

Interaction effect between BADS and age at 

injury 

—  —  —  .43* 

Note. Standardized regression coefficients () are shown for the model at step 3. 

† p = .07, * p = .02, ** p < .01  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 7: Hierarchical regression analysis with SRT score, age at injury and SRT/age 

at injury interaction term as predictor variables, and DEX-Insight as the dependent 

variable with all head-injured participants (N = 32). 

Independent variables entered R
2
-∆ F-∆ Df  

Step 1: Continuous predictor variable .00 .03 1,30 — 

SRT score —  —  —  -.44 

Step 2: Categorical moderator variable .01 .16 1,29 — 

Age at injury — —  —  -.07 

Step 3: Interaction term .13 4.11
†
 1,28 — 

Interaction effect between SRT and age at injury —  —  —  .60
†
 

Note. Standardized regression coefficients () are shown for the model at step 3. 
†
 p =.052 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Legend for Figure 1. Interaction between BADS and age at injury on behavioral 

insight 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Legend for Figure 2. Interaction between SRT score and age at injury on behavioral 

insight 

 

 


