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Abstract 
Some issues concerning the development of interactive 3D models for e-learning 
applications are considered. Given that 3D data sets are normally large and 
interactive display demands high performance computation, a natural solution would 
be placing the computational burden on the client machine rather than on the server. 
Mozilla and Google opted for a combination of client-side languages, JavaScript and 
OpenGL, to handle 3D graphics in a web browser (Mozilla 3D and O3D respectively). 
Based on the O3D model, core web technologies are considered and an example of the 
full process involving the generation of a 3D model and their interactive visualization 
in a web browser is described. The challenging issue of creating realistic 3D models of 
objects in the real world is discussed and a method based on line projection for fast 3D 
reconstruction is presented. The generated model is then visualized in a web browser. 
The experiments demonstrate that visualization of 3D data in a web browser can 
provide quality user experience. Moreover, the development of web applications are 
facilitated by O3D JavaScript extension allowing web designers to focus on 3D 
contents generation. 
 
 
1. Introduction 
 
3D imaging has considerable potential for multimedia and e-learning applications as 
the visualization and interactive manipulation of 3D models can significantly enhance 
the learning experience. Some of the advantages of using 3D imaging in an e-learning 
scenario are identified as follows: 
 

• The ability to produce realistic 3D models of objects that are instantly 
recognized as such by the users, 

• A means to provide interactive visualization and manipulation of virtual 
objects on screen, 

• It gives a sense of immersion in a 3D world, 
• It provides a unique opportunity to explore objects and relationships, 
• It gives control to the user over how objects are displayed, 
• It provides a variety of interrogation dialogues as opposed to a fixed script, 
• It provides a better recall of the learning experience from a visual and spatial 

environment. 
 

                                                
1 Book chapter in M.T. de Mello, C.Z. Carvalho Neto, and F.J. Spanhol (Eds) "Hipermidias Interfaces 
Digitais em EAD", Editora Laborciencia Ltd, Sao Paulo, 2009, pp 155-175. 
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Normally, 3D models are created using a 3D modelling package such as 3ds Max or 
Maya or their open source equivalents -- although open source tend to be less 
sophisticated with fewer advanced features. A 3D scene model is created from 
primitive geometric objects such as rectangles, circles, spheres, cones, and cylinders. 
Extrusion is an essential editing operation as it allows one to create a cube for 
instance, from an arbitrarily drawn rectangular flat surface. Any 3D model surface 
can be mapped to a texture file (i.e. a digital photograph) so realistic scenes can be 
created. Once models are created they can be manipulated independently by a 
scripting method allowing the scene to be fully animated. Playing back and 
interacting with the 3D scene requires specialized software to harness the power of 
the underlying processor for quality user experience. 
 
Considering that e-learning contents are normally embedded into hypermedia 
documents, one difficulty with such 3D scenes is their integration into HTML files 
such that other e-learning materials can be incorporated in the usual way. Web 
browsers are not yet designed to deal with the (normally large) 3D data files that 
require vast amount of computational resources and thus, palliative solutions are often 
used. For instance, a common option is to develop a Flash animation from a 3D scene 
but the price is that this is not fully interactive and not as immersive as provided by a 
standalone playback application. Other options exist such as producing “flat” 3D 
environments by taking several pictures covering 360 degrees (from the centre of a 
room for instance) and stitching them together and then playing back in the web 
browser. This is very limited as the end result is simply a series of pictures projected 
on the surface of a cylinder rotating around its centre axis. 
 
It is clear that what we require is the ability to develop full 3D scenes that can be 
manipulated (rotated, translated, scaled) interactively using an input device such as a 
mouse and using a standard web browser. Standards for doing this do not yet exist 
and the technologies are evolving. We have had recent announcements from Mozilla 
in March 2009 that they are working on a specification to be released in early 2010 
(CNET, 2009). Immediately after that, Google announced in April 2009 the release of 
their 3D API interface in a browser plug in (AJAXIAN, 2009). These followed earlier 
announcement from Opera releasing their 3D Canvas in November 2007 (AJAXIAN, 
2007). 
 
It takes some time and effort to digest such proposals and even longer to make an 
informed judgement on what standards might prevail. At this conjuncture, it seems 
that Mozilla and Google proposals are likely to be adopted as standards. Both base 
their specifications on the same underlying technologies: OpenGL interfaced with 
JavaScript. While Mozilla 3D is not available, Google's O3D API is available now 
(O3D API, 2009). We have tested the O3D API and an overview of core technologies 
from the point of view of a web designer who might not have deep knowledge of 3D 
modelling environments is presented in Section 2.  
 
Notwithstanding the ability to visualize and interact with 3D virtual worlds using an 
O3D-enabled web browser, the designer is still faced with the task of generating 3D 
scene models. In principle there are three ways in which this can be achieved: 1) 
using a 3D modelling package, 2) using transform graphs from a programming 
language, or 3) using a 3D scanner. Section 3 provides an introduction to such 
technologies focusing on the main topics of our research, which is the generation of 
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3D models using line projection from a 3D scanner.  Therefore, Section 3 addresses 
the challenging issue of creating realistic 3D structures of complex objects from the 
real world (as opposed to stylised and fantasy worlds and characters such as avatars) 
by presenting a method for fast 3D reconstruction from a single image.   
 
There is ample justification and need for such approach; for instance, modelling a 
human face using a 3D modelling package is a time consuming task that provides 
limited accuracy. For instance, it is unlikely that face proportions (size and shape of 
the nose, eyes, etc.) are the true proportions and likeness of the real person. If a model 
of another person is required, then the process must be repeated and very little can be 
re-used. Providing the ability to take pictures in 3D of arbitrary objects and 
incorporating such models into e-learning contents that can be visualized in a standard 
web browser is an appealing proposition.  
 
Section 4 describes the process of including 3D models in a web application using the 
O3D JavaScript extension. It is shown that once created, 3D models can easily be 
incorporated into web applications. Some of the technologies seem to be ready, and it 
is now a challenge to the e-learning designer to develop 3D contents to be readily 
deployed. Finally, a discussion and conclusion is presented in Section 5. 
 
 
2. Some Core Web Technologies to Handle 3D Graphics 
 
Here we highlight only the core technologies of OpenGL, JavaScript and O3D. A full 
description is outside the scope of this paper and references are provided. These 
technologies depend, in turn, on a large number of other related technologies, which 
are not dealt with in any level of detail in this paper. 
 
2.1 OpenGL 
 
OpenGL stands for Open Graphics Library. The main source of information is the 
OpenGL web site (OpenGL, 2009), which contains news, specifications, tutorials, and 
downloads among other materials. OpenGL was developed by Silicon Graphics Inc. 
in 1992 and has become the industry standard for graphics applications throughout the 
world. Its application programming interface (API) is well developed and is being 
nurtured by the ARB (OpenGL Architecture Review Board) which is an industry 
consortium responsible for steering the evolution of the software (OpenGL, 2009). 
 
The most appealing aspects of OpenGL are its high performance and portability or 
“device independence”. OpenGL comes pre-installed on all major operating systems 
(Windows, Linux, Unix, Mac) and applications can be developed to run in all 
platforms without the need to changing the code. The OpenGL API provides a set of 
rich and highly usable graphics functions allowing learners to produce stunning 3D 
simulations in a short time. 
 
OpenGL code has been written in structured programming style providing easy 
integration to C/C++ applications. Other languages such as Java require a wrapping 
such as JOGL (Java OpenGL) that allows OpenGL functions, which were written in a 
non-object oriented way, to be used in the Java language (JOGL, 2009). The sheer 
power and easy of integration of OpenGL led it to be the graphics engine of choice 
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providing functionality to a large number of current 3D modelling packages and 
graphics and visualization applications. 
 
While OpenGL provides the engine driving graphics applications, it requires a front-
end program to handle the visualization. Unfortunately, web browsers do not 
understand and thus do not interface with OpenGL. Thus, a wrapper is required to 
interface with OpenGL and translate OpenGL graphics outputs into statements that 
the web browser can understand and display. Both Mozilla and Google have decided 
to develop such wrapper in JavaScript. 
 
 
2.2 JavaScript 
 
JavaScript is the most popular scripting language on the Internet. Its main purpose is 
to add interactivity to a web page by embedding JavaScript code into standard HTML 
pages. It is an interpreted lightweight programming language with very simple syntax 
and it is freely available. With JavaScript, web designers can perform a number of 
useful operations such as using dynamic text into an HTML page, write event-driven 
code such as reacting to mouse events, modify HTML elements, validate data before 
submitting to a server to alleviate server load, detect the user browser and load 
appropriate pages designed for that browser, create cookies by storing and retrieving 
information on the user’s computer and more (JavaScript Source, 2009; JavaScript 
Tutorial, 2009). 
 
One of the most useful aspects of JavaScript is the ability to handle events. The 
JavaScript Event Reference lists 21 events that include the various mouse events 
(click, double click, mouse button down and up, mouse motion), keyboard events, 
window events (moved, get into focus, loses focus, resized), loading of a file is 
interrupted, the occurrence of an error, button is pressed, user exits the page and so 
on. Error handling is a strong feature of JavaScript and the designer can make use of 
try, throw and catch statements. Object oriented programming is also supported; in 
addition to the built-in JavaScript objects, it is also possible to access and manipulate 
all of the HTML DOM objects with JavaScript such as Document, Frame, Table, 
Image, Button, and so on. 
 
To help designers writing compatible code for all browsers, JavaScript allows 
browser detection, such that particular code can be written for specific browsers. 
Creating and updating cookies and data validation such as checking whether or not an 
email is valid can also be performed in JavaScript before forwarding to a server. It is 
also possible to create animated images by setting events to load different images as 
the user hover the mouse over the page. Similarly, one can create an image map with 
several clickable areas on the image and define event handlers to react to user input. 
 
If one wishes to access resources residing on the client’s machine (such as OpenGL) 
and display the outputs of the computation using a web browser, a client-side 
programming language would be a preferred choice such as JavaScript. If a server-
side language were to be used (such as ASP or PHP) this would place undue load on 
the server and on the network, resulting in performance degradation especially for 
demanding applications such as 3D graphics. However, the standard JavaScript 
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language is not designed to interface with OpenGL so that an extension is required, 
and this is provided by O3D JavaScript – and, in the near future, by Mozilla 3D. 
 
 
2.3 The O3D API 
 
The O3D is an open-source JavaScript API that allows interactive 3D graphics 
visualization in a web browser (O3D API, 2009). Thus, O3D can be seen as an 
extension to JavaScript providing an API for 3D graphics using standard event 
processing and callback methods. Since it is not part of the standard JavaScript 
specification it requires the installation of a browser plug-in that is available for 
Windows, Macintosh, and Linux platforms. 
 
An O3D JavaScript application is defined entirely within an HTML document that is 
loaded into a web browser. In principle, once the plug-in is installed, all that a web 
designer needs is a text editor to write JavaScript statements. The O3D interface takes 
care of the communication with the client’s graphics hardware through OpenGL or 
Direct3D libraries. The full power of the underlying graphics hardware is thus 
harnessed by O3D for a quality user experience. 
 
O3D uses its own file format for describing 3D scenes. The file has the extension tgz 
(tar-gnu-zipped), which is a set of files that have been tarred (grouped) together such 
that they can be handle as a single file and then compressed using the GNU zip 
application.   The specific file format of O3D (with extension o3dtgz) requires the 
original 3D scene to be defined in the COLLADA format (COLLADA, 2009). The 
COLLADA format has been developed by the Khronos Group (2009) and is an open 
standard to facilitate the use and interchange of 3D assets. COLLADA format is 
supported by all major content creation applications including 3ds Max, Maya, 
SketchUp and others. The O3D API provides a converter from COLLADA to o3dtgz 
format that can be run from the command line. 
 
Thus, the concept of visualizing interactive 3D contents in a web browser is 
accomplished as follows: produce the 3D assets and save in COLLADA format, then 
convert from COLLADA to o3dtgz format and load into the browser using JavaScript 
statements embedded into an HTML code. While the next Section describes ways in 
which 3D models are created in the first place, Section 4   describes the process of 
integrating such 3D assets into HTML files. 
 
 
3. Generating 3D Models 
 
There are a number of ways in which a 3D model can be generated. Some options 
include: 
 

• Using a 3D modelling package, 
• Using transform graphs, 
• Using a 3D scanner, 
• Using a combined approach with any of the above. 
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We briefly discuss the use of modelling packages and transform graphs. The main 
subject of our research is focused on 3D reconstruction, feature extraction, 
representation, and recognition. Our research into methods for fast 3D reconstruction 
has lead to the development of a 3D scanner using line projection and this is discussed 
in more details in Section 3.3. 
 
 
3.1 Generating 3D Models Using a 3D Modelling Package 
 
A 3D scene can be generated using a number of different tools such as StudioMax, 
Maya, AutoCAD among others. Here we describe a simple 3D model generated with 
Google SketchUP. The application can be downloaded from Google SketchUp 
website (SKETCHUP, 2009).  The simplest way of creating a 3D model involves the 
drawing of primitive geometric shapes (triangle, rectangle, circle) and then extruding 
these in a desired direction. Extrusion is an important operation in 3D modelling and 
all modelling packages have this functionality. A simple 3D model can be created in a 
couple of minutes such as the one depicted in Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: A simple 3D model created using a 3D modelling package. 
 
 
 
3.2 Generating 3D Models Using Transform Graphs 
 
Transform graphs specify the colour, normals, effects, and the position of objects in 
3D space. These normally are defined through low level programming language 
constructs (such as C) and thus, require a good knowledge of programming.   
OpenGL provides a number of low-level constructs allowing programmers to create 
3D models by defining and manipulating transform graphs.  Some examples of 3D 
models are depicted in Figure 2; such objects are defined from primitives and 
transformations are performed on them such as extrusion, scale, rotation and 
translations.  
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For instance, a 3D model of a cube can be defined in OpenGL by specifying the 
position of 8 vertices in space. An example in shown below where one of its vertices 
coincides with the origin and the length of each side of the cube is 1: 

 
Figure 2: Example of models derived from primitive shapes and transform graphs. 

 
 
glBegin(GL QUADS);  
glColor3f(0.0,1.0,0.0); // A Green Cube  
glVertex3f( 0.0, 0.0, 0.0); glVertex3f( 0.0, 1.0, 0.0);  
glVertex3f( 1.0, 1.0, 0.0); glVertex3f( 1.0, 0.0, 0.0);  
glVertex3f( 0.0, 0.0, 1.0); glVertex3f( 0.0, 1.0, 1.0);  
glVertex3f( 1.0, 1.0, 1.0); glVertex3f( 1.0, 0.0, 1.0);  

glEnd();  
 
Constructing a similar cube using the O3D JavaScript extension allows one to work at 
a higher level than the OpenGL version above. The reason is that O3D provides a 
wrapping around some basic OpenGL functions so many low level functions can be 
encapsulated into a higher-level call. The code for creating the 3D cube using O3D 
would look like: 
 

function createShapes()  
{  

var cube = o3djs.primitives.createCube(  
g pack,  
createPhongMaterial([0,1,0,1]), // A green shaded material.  
Math.sqrt(2)); // The length of each side of the cube.  

}  
 
This is much simpler to write and maintain than the OpenGL version. This is so 
because O3D is object-oriented and contains classes to construct a number of 
primitive objects by simply instantiating o3djs.primitives as in the function 
example above. 
 
4. Fast 3D Reconstruction using Line Projection  
 
A third way of developing 3D models discussed in this paper involves the scanning of 
real world objects. We have developed methods for fast 3D reconstruction using line 
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projection (e.g. ROBINSON et al., 2004; RODRIGUES et al., 2006, 2007, 2008; 
BRINK et al., 2008). The method is based on projecting a pattern of lines on the 
target surface and processing the captured 2D image from a single shot into a point 
cloud of vertices in 3D space. The reconstructed models are realistic and capture the 
real Euclidean measurements of the object and are useful to a large number of 
applications including biometric facial recognition, industrial inspection, reverse 
engineering and multimedia applications such as e-learning among others. 
 
The projected pattern consists of evenly spaced white stripes, and the deformation of 
the stripes onto the surface of the object is recorded by a video camera placed in a 
fixed geometric relationship to the stripe projector. The camera and projector axes 
meet at a place in space defined as the calibration plane; this intersection also marks 
the origin of the coordinate system for 3D reconstruction. A camera and projector 
configuration is depicted in Figure 3. 
 

 

 

 
Figure 3: Camera and projector configuration. 

 
A detail from a video frame is depicted in Figure 4 (left) clearly showing the 
deformed stripes. The main issue for accurate 3D reconstruction is encapsulated by 
the indexing problem, which is to find the corresponding stripe indices in both image 
and projector spaces. Even for continuous surfaces the problem can be severe as small 
discontinuities in the object can give rise to un-resolvable ambiguities in 3D 
reconstruction. When there are large discontinuities over the object, as shown in 
Figure 4 (right) where points a, b and c belong to the same stripe, and these are 
distributed at many places the problem is particularly severe. 
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Figure 4: Left, detail from a bitmap showing the stripes deforming across the face. Right, large 

discontinuities can lead to un-resolvable ambiguities. 
 
Despite such difficulties, the advantage of line projection over stereovision methods 
(MARR, 1979) is that the stripe pattern provides an explicitly connected mesh of 
vertices, so that the polyhedral surface can be rendered without the need for surface 
reconstruction algorithms. Also, a smoothly undulating and featureless surface can be 
more easily measured by structured light than by stereovision methods. These 
advantages for single frame scanning are even more important for 4D applications 
such as animation and immersive environments.  
 

 
Figure 5: Mapping stripe indices from projector to camera space. Different colours mean different 

indices. 
 
 The main issue in 3D reconstruction using our method  is to achieve the  correct 
indexing of stripes as depicted in Figure 5 above. We have developed a number of 
algorithms to deal with index mapping as described in (ROBINSON et al., 2004; 
BRINK et al., 2008). Once this mapping is achieved, a 3D point cloud is calculated 
and the output is triangulated using the connectivity of the vertices as depicted in 
Figure 5 (bottom row). This results in a mesh defining objects in the real world with  
sub-millimetre accuracy. 
 
In Figure 6 below, once stripes are detected in an input image and these stripes are 
correctly indexed, a surface shape can then be modelled as a polygonal mesh. Once 
this is achieved, the colour of the reflected white stripe at each pixel that maps to a 
vertex is used to colour the vertex (or triangle) of the 3D model (top row of Figure 6). 
The final model therefore contains the (x, y, z) coordinates and their corresponding 
RGB (red, green, blue) values for each vertex, and the model can be visualised as 
shown on the top row. On the bottom of Figure 6, it is shown a 3D model rendered as 
a wire mesh and with texture. 
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Figure 6. Top row: an input image on the left is transformed into the 3D model and parameterized.  
Bottom, detail of a 3D model rendered as wire mesh and with texture mapping. 

 
 
4. Integrating Interactive 3D Models into a Web Application 
 
The process of integrating a model into an HTML file requires the O3D JavaScript 
Extension. First, O3D requires that a 3D scene model be exported to COLLADA 
format with DAE extension (Digital Asset Exchange).  DAE files and then converted 
into o3dtgz format, which then can be loaded and displayed by O3D. The converted 
COLLADA DAE file into an o3dtgz preserves all absolute references to the various 
assets (geometry, texture mapping, colour, etc.) and converts these to relative URLs. 
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In this way, all model components are properly referenced and can be successfully 
retrieved by the web browser. 
 
For the sake of clarity, in the code below we hide all necessary O3D JavaScript 
initializations and mouse callback procedures. A code fragment of the necessary O3D 
JavaScript statements that would be embedded into HTML to load a file for display 
would look like: 
 

function initLoadFile(clientElements)  
{  
var path = window.location.href;  
var index = path.lastIndexOf(’/’);  
path = path.substring(0, index+1)+’assets/myfirstmodel.o3dtgz’;  
var url = document.getElementById("url").value = path;  
g loadingElement = document.getElementById(’loading’);  
...  

}  
 
 

 
Figure 7: The 3D scene is displayed within the web browser and controlled by mouse events. 
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Figure 8: The	
  3D	
  face	
  model	
  visualized	
  in	
  the	
  web	
  browser. 

 
The 3D scene model resides in a URL relative folder such that is loaded by function 
initLoadFile above with the file path set to assets/myfirstmodel.o3dtgz. In 
order to deal with mouse events and other intricacies of the O3D API, web designers 
can make use of design patterns provided by the many API examples. By adapting 
existing code to the required interactivity, simple applications such as the example 
discussed here can be built in just a few minutes. 
 
When the HTML file that contains the embedded O3D statements is loaded by the 
browser the 3D model is displayed which can be rotated, translated, and zoomed in 
and out. If desired, full screen capability is also available within the O3D API. Screen 
shots of the model created in the previous section are depicted in Figure 7. In this 
example, trackball rotation is provided such that the user can rotate the model by 
clicking and moving the mouse anywhere in the display window. The developed 
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application indeed shows that OpenGL provides high performance and quality user 
experience. 
 
Equally, the large face model can be visualized in a web browser by exporting to 
COLLADA format and then converting to o3dgtz. Figure 8 depicts the face model in 
a web browser. It is interesting to note that the original OBJ file was 13.4MB and the 
final compressed o3dtgz file was only slightly reduced to 9.8MB. This suggests that 
considerable amount of research is still needed to compress 3D data to small files. 
 

 
5. Discussion and Conclusion 
 
This paper has addressed the development of 3D contents for e-learning where 
visualization is provided by a standard web browser. First, the current state of 
technology was considered. While technologies are evolving and standards do not yet 
exist, both Mozilla and Google have opted for JavaScript, a client-side scripting 
language, to interface with OpenGL. This solution provides event handling in a web 
browser by JavaScript combined with the power of OpenGL driving the 3D graphics 
objects. While Mozilla will release their specification in early 2010, Google have 
already released their O3D JavaScript extension. 

 
We have shown through examples how 3D contents can be created and integrated into 
an HTML page using embedded O3D JavaScript statements. As a whole, O3D works 
well and large and complex scenes can be loaded and visualized in a web browser 
with quality user experience provided by OpenGL’s high performance graphics. Our 
major criticism at this point relates to the extra burden of converting file formats, 
which can become a very convoluted experience, as various converters may be 
required. A minor aspect is that, since O3D is a plug-in, it requires downloading and 
installing. An ideal configuration would be one that the web browser natively 
understands 3D formats while standard JavaScript would contain all required 
functionality to load and visualize such models. Mozilla 3D might score highly on 
those aspects when released. 

 
We also considered the issue of generating realistic 3D models from complex objects 
in the real world as opposed to models constructed from primitive geometric objects. 
We have described our approach to 3D reconstruction using line projection, which 
allows the generation of 3D models from a single 2D image. An overview of the 
method was presented together with samples of generated 3D models. The method 
can reconstruct models with sub-millimetre accuracy and recover the real Euclidean 
measurements of the modelled object. The method is thus, a powerful addition to the 
arsenal of tools for building realistic 3D scenes. 
 
It is likely that Mozilla 3D will be standardized to COLLADA file format, therefore 
future work concerning our 3D reconstruction method includes the development of 
file exporters to COLLADA and o3dtgz to facilitate HTML integration. Moreover, 
research is required into compression techniques for 3D models; we are investigating 
partial differential equations and will report on the method in the near future.  
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