
Developing Interaction 3D Models for E-Learning
Applications

RODRIGUES, Marcos <http://orcid.org/0000-0002-6083-1303> and
ROBINSON, Alan

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/5306/

This document is the

Citation:

RODRIGUES, Marcos and ROBINSON, Alan (2009). Developing Interaction 3D
Models for E-Learning Applications. In: MELLO, M, CARVALHO NETO, C and
SPANHOL, F, (eds.) Hipermidias Interfaces Digitais em EAD. Sao Paulo, Brazil,
Laborciencia ltd, 155-176. [Book Section]

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

 1

DEVELOPING INTERACTIVE 3D MODELS FOR E-LEARNING
APPLICATIONS1

Marcos A Rodrigues and Alan Robinson

Geometric Modelling and Pattern Recognition Research Group
Communications and Computing Research Centre

 Sheffield Hallam University, Sheffield, UK
{m.rodrigues, a.robinson}@shu.ac.uk

http://www.shu.ac.uk/gmpr

Abstract
Some issues concerning the development of interactive 3D models for e-learning
applications are considered. Given that 3D data sets are normally large and
interactive display demands high performance computation, a natural solution would
be placing the computational burden on the client machine rather than on the server.
Mozilla and Google opted for a combination of client-side languages, JavaScript and
OpenGL, to handle 3D graphics in a web browser (Mozilla 3D and O3D respectively).
Based on the O3D model, core web technologies are considered and an example of the
full process involving the generation of a 3D model and their interactive visualization
in a web browser is described. The challenging issue of creating realistic 3D models of
objects in the real world is discussed and a method based on line projection for fast 3D
reconstruction is presented. The generated model is then visualized in a web browser.
The experiments demonstrate that visualization of 3D data in a web browser can
provide quality user experience. Moreover, the development of web applications are
facilitated by O3D JavaScript extension allowing web designers to focus on 3D
contents generation.

1. Introduction

3D imaging has considerable potential for multimedia and e-learning applications as
the visualization and interactive manipulation of 3D models can significantly enhance
the learning experience. Some of the advantages of using 3D imaging in an e-learning
scenario are identified as follows:

• The ability to produce realistic 3D models of objects that are instantly
recognized as such by the users,

• A means to provide interactive visualization and manipulation of virtual
objects on screen,

• It gives a sense of immersion in a 3D world,
• It provides a unique opportunity to explore objects and relationships,
• It gives control to the user over how objects are displayed,
• It provides a variety of interrogation dialogues as opposed to a fixed script,
• It provides a better recall of the learning experience from a visual and spatial

environment.

1 Book chapter in M.T. de Mello, C.Z. Carvalho Neto, and F.J. Spanhol (Eds) "Hipermidias Interfaces
Digitais em EAD", Editora Laborciencia Ltd, Sao Paulo, 2009, pp 155-175.

 2

Normally, 3D models are created using a 3D modelling package such as 3ds Max or
Maya or their open source equivalents -- although open source tend to be less
sophisticated with fewer advanced features. A 3D scene model is created from
primitive geometric objects such as rectangles, circles, spheres, cones, and cylinders.
Extrusion is an essential editing operation as it allows one to create a cube for
instance, from an arbitrarily drawn rectangular flat surface. Any 3D model surface
can be mapped to a texture file (i.e. a digital photograph) so realistic scenes can be
created. Once models are created they can be manipulated independently by a
scripting method allowing the scene to be fully animated. Playing back and
interacting with the 3D scene requires specialized software to harness the power of
the underlying processor for quality user experience.

Considering that e-learning contents are normally embedded into hypermedia
documents, one difficulty with such 3D scenes is their integration into HTML files
such that other e-learning materials can be incorporated in the usual way. Web
browsers are not yet designed to deal with the (normally large) 3D data files that
require vast amount of computational resources and thus, palliative solutions are often
used. For instance, a common option is to develop a Flash animation from a 3D scene
but the price is that this is not fully interactive and not as immersive as provided by a
standalone playback application. Other options exist such as producing “flat” 3D
environments by taking several pictures covering 360 degrees (from the centre of a
room for instance) and stitching them together and then playing back in the web
browser. This is very limited as the end result is simply a series of pictures projected
on the surface of a cylinder rotating around its centre axis.

It is clear that what we require is the ability to develop full 3D scenes that can be
manipulated (rotated, translated, scaled) interactively using an input device such as a
mouse and using a standard web browser. Standards for doing this do not yet exist
and the technologies are evolving. We have had recent announcements from Mozilla
in March 2009 that they are working on a specification to be released in early 2010
(CNET, 2009). Immediately after that, Google announced in April 2009 the release of
their 3D API interface in a browser plug in (AJAXIAN, 2009). These followed earlier
announcement from Opera releasing their 3D Canvas in November 2007 (AJAXIAN,
2007).

It takes some time and effort to digest such proposals and even longer to make an
informed judgement on what standards might prevail. At this conjuncture, it seems
that Mozilla and Google proposals are likely to be adopted as standards. Both base
their specifications on the same underlying technologies: OpenGL interfaced with
JavaScript. While Mozilla 3D is not available, Google's O3D API is available now
(O3D API, 2009). We have tested the O3D API and an overview of core technologies
from the point of view of a web designer who might not have deep knowledge of 3D
modelling environments is presented in Section 2.

Notwithstanding the ability to visualize and interact with 3D virtual worlds using an
O3D-enabled web browser, the designer is still faced with the task of generating 3D
scene models. In principle there are three ways in which this can be achieved: 1)
using a 3D modelling package, 2) using transform graphs from a programming
language, or 3) using a 3D scanner. Section 3 provides an introduction to such
technologies focusing on the main topics of our research, which is the generation of

 3

3D models using line projection from a 3D scanner. Therefore, Section 3 addresses
the challenging issue of creating realistic 3D structures of complex objects from the
real world (as opposed to stylised and fantasy worlds and characters such as avatars)
by presenting a method for fast 3D reconstruction from a single image.

There is ample justification and need for such approach; for instance, modelling a
human face using a 3D modelling package is a time consuming task that provides
limited accuracy. For instance, it is unlikely that face proportions (size and shape of
the nose, eyes, etc.) are the true proportions and likeness of the real person. If a model
of another person is required, then the process must be repeated and very little can be
re-used. Providing the ability to take pictures in 3D of arbitrary objects and
incorporating such models into e-learning contents that can be visualized in a standard
web browser is an appealing proposition.

Section 4 describes the process of including 3D models in a web application using the
O3D JavaScript extension. It is shown that once created, 3D models can easily be
incorporated into web applications. Some of the technologies seem to be ready, and it
is now a challenge to the e-learning designer to develop 3D contents to be readily
deployed. Finally, a discussion and conclusion is presented in Section 5.

2. Some Core Web Technologies to Handle 3D Graphics

Here we highlight only the core technologies of OpenGL, JavaScript and O3D. A full
description is outside the scope of this paper and references are provided. These
technologies depend, in turn, on a large number of other related technologies, which
are not dealt with in any level of detail in this paper.

2.1 OpenGL

OpenGL stands for Open Graphics Library. The main source of information is the
OpenGL web site (OpenGL, 2009), which contains news, specifications, tutorials, and
downloads among other materials. OpenGL was developed by Silicon Graphics Inc.
in 1992 and has become the industry standard for graphics applications throughout the
world. Its application programming interface (API) is well developed and is being
nurtured by the ARB (OpenGL Architecture Review Board) which is an industry
consortium responsible for steering the evolution of the software (OpenGL, 2009).

The most appealing aspects of OpenGL are its high performance and portability or
“device independence”. OpenGL comes pre-installed on all major operating systems
(Windows, Linux, Unix, Mac) and applications can be developed to run in all
platforms without the need to changing the code. The OpenGL API provides a set of
rich and highly usable graphics functions allowing learners to produce stunning 3D
simulations in a short time.

OpenGL code has been written in structured programming style providing easy
integration to C/C++ applications. Other languages such as Java require a wrapping
such as JOGL (Java OpenGL) that allows OpenGL functions, which were written in a
non-object oriented way, to be used in the Java language (JOGL, 2009). The sheer
power and easy of integration of OpenGL led it to be the graphics engine of choice

 4

providing functionality to a large number of current 3D modelling packages and
graphics and visualization applications.

While OpenGL provides the engine driving graphics applications, it requires a front-
end program to handle the visualization. Unfortunately, web browsers do not
understand and thus do not interface with OpenGL. Thus, a wrapper is required to
interface with OpenGL and translate OpenGL graphics outputs into statements that
the web browser can understand and display. Both Mozilla and Google have decided
to develop such wrapper in JavaScript.

2.2 JavaScript

JavaScript is the most popular scripting language on the Internet. Its main purpose is
to add interactivity to a web page by embedding JavaScript code into standard HTML
pages. It is an interpreted lightweight programming language with very simple syntax
and it is freely available. With JavaScript, web designers can perform a number of
useful operations such as using dynamic text into an HTML page, write event-driven
code such as reacting to mouse events, modify HTML elements, validate data before
submitting to a server to alleviate server load, detect the user browser and load
appropriate pages designed for that browser, create cookies by storing and retrieving
information on the user’s computer and more (JavaScript Source, 2009; JavaScript
Tutorial, 2009).

One of the most useful aspects of JavaScript is the ability to handle events. The
JavaScript Event Reference lists 21 events that include the various mouse events
(click, double click, mouse button down and up, mouse motion), keyboard events,
window events (moved, get into focus, loses focus, resized), loading of a file is
interrupted, the occurrence of an error, button is pressed, user exits the page and so
on. Error handling is a strong feature of JavaScript and the designer can make use of
try, throw and catch statements. Object oriented programming is also supported; in
addition to the built-in JavaScript objects, it is also possible to access and manipulate
all of the HTML DOM objects with JavaScript such as Document, Frame, Table,
Image, Button, and so on.

To help designers writing compatible code for all browsers, JavaScript allows
browser detection, such that particular code can be written for specific browsers.
Creating and updating cookies and data validation such as checking whether or not an
email is valid can also be performed in JavaScript before forwarding to a server. It is
also possible to create animated images by setting events to load different images as
the user hover the mouse over the page. Similarly, one can create an image map with
several clickable areas on the image and define event handlers to react to user input.

If one wishes to access resources residing on the client’s machine (such as OpenGL)
and display the outputs of the computation using a web browser, a client-side
programming language would be a preferred choice such as JavaScript. If a server-
side language were to be used (such as ASP or PHP) this would place undue load on
the server and on the network, resulting in performance degradation especially for
demanding applications such as 3D graphics. However, the standard JavaScript

 5

language is not designed to interface with OpenGL so that an extension is required,
and this is provided by O3D JavaScript – and, in the near future, by Mozilla 3D.

2.3 The O3D API

The O3D is an open-source JavaScript API that allows interactive 3D graphics
visualization in a web browser (O3D API, 2009). Thus, O3D can be seen as an
extension to JavaScript providing an API for 3D graphics using standard event
processing and callback methods. Since it is not part of the standard JavaScript
specification it requires the installation of a browser plug-in that is available for
Windows, Macintosh, and Linux platforms.

An O3D JavaScript application is defined entirely within an HTML document that is
loaded into a web browser. In principle, once the plug-in is installed, all that a web
designer needs is a text editor to write JavaScript statements. The O3D interface takes
care of the communication with the client’s graphics hardware through OpenGL or
Direct3D libraries. The full power of the underlying graphics hardware is thus
harnessed by O3D for a quality user experience.

O3D uses its own file format for describing 3D scenes. The file has the extension tgz
(tar-gnu-zipped), which is a set of files that have been tarred (grouped) together such
that they can be handle as a single file and then compressed using the GNU zip
application. The specific file format of O3D (with extension o3dtgz) requires the
original 3D scene to be defined in the COLLADA format (COLLADA, 2009). The
COLLADA format has been developed by the Khronos Group (2009) and is an open
standard to facilitate the use and interchange of 3D assets. COLLADA format is
supported by all major content creation applications including 3ds Max, Maya,
SketchUp and others. The O3D API provides a converter from COLLADA to o3dtgz
format that can be run from the command line.

Thus, the concept of visualizing interactive 3D contents in a web browser is
accomplished as follows: produce the 3D assets and save in COLLADA format, then
convert from COLLADA to o3dtgz format and load into the browser using JavaScript
statements embedded into an HTML code. While the next Section describes ways in
which 3D models are created in the first place, Section 4 describes the process of
integrating such 3D assets into HTML files.

3. Generating 3D Models

There are a number of ways in which a 3D model can be generated. Some options
include:

• Using a 3D modelling package,
• Using transform graphs,
• Using a 3D scanner,
• Using a combined approach with any of the above.

 6

We briefly discuss the use of modelling packages and transform graphs. The main
subject of our research is focused on 3D reconstruction, feature extraction,
representation, and recognition. Our research into methods for fast 3D reconstruction
has lead to the development of a 3D scanner using line projection and this is discussed
in more details in Section 3.3.

3.1 Generating 3D Models Using a 3D Modelling Package

A 3D scene can be generated using a number of different tools such as StudioMax,
Maya, AutoCAD among others. Here we describe a simple 3D model generated with
Google SketchUP. The application can be downloaded from Google SketchUp
website (SKETCHUP, 2009). The simplest way of creating a 3D model involves the
drawing of primitive geometric shapes (triangle, rectangle, circle) and then extruding
these in a desired direction. Extrusion is an important operation in 3D modelling and
all modelling packages have this functionality. A simple 3D model can be created in a
couple of minutes such as the one depicted in Figure 1.

Figure 1: A simple 3D model created using a 3D modelling package.

3.2 Generating 3D Models Using Transform Graphs

Transform graphs specify the colour, normals, effects, and the position of objects in
3D space. These normally are defined through low level programming language
constructs (such as C) and thus, require a good knowledge of programming.
OpenGL provides a number of low-level constructs allowing programmers to create
3D models by defining and manipulating transform graphs. Some examples of 3D
models are depicted in Figure 2; such objects are defined from primitives and
transformations are performed on them such as extrusion, scale, rotation and
translations.

 7

For instance, a 3D model of a cube can be defined in OpenGL by specifying the
position of 8 vertices in space. An example in shown below where one of its vertices
coincides with the origin and the length of each side of the cube is 1:

Figure 2: Example of models derived from primitive shapes and transform graphs.

glBegin(GL QUADS);
glColor3f(0.0,1.0,0.0); // A Green Cube
glVertex3f(0.0, 0.0, 0.0); glVertex3f(0.0, 1.0, 0.0);
glVertex3f(1.0, 1.0, 0.0); glVertex3f(1.0, 0.0, 0.0);
glVertex3f(0.0, 0.0, 1.0); glVertex3f(0.0, 1.0, 1.0);
glVertex3f(1.0, 1.0, 1.0); glVertex3f(1.0, 0.0, 1.0);

glEnd();

Constructing a similar cube using the O3D JavaScript extension allows one to work at
a higher level than the OpenGL version above. The reason is that O3D provides a
wrapping around some basic OpenGL functions so many low level functions can be
encapsulated into a higher-level call. The code for creating the 3D cube using O3D
would look like:

function createShapes()
{

var cube = o3djs.primitives.createCube(
g pack,
createPhongMaterial([0,1,0,1]), // A green shaded material.
Math.sqrt(2)); // The length of each side of the cube.

}

This is much simpler to write and maintain than the OpenGL version. This is so
because O3D is object-oriented and contains classes to construct a number of
primitive objects by simply instantiating o3djs.primitives as in the function
example above.

4. Fast 3D Reconstruction using Line Projection

A third way of developing 3D models discussed in this paper involves the scanning of
real world objects. We have developed methods for fast 3D reconstruction using line

 8

projection (e.g. ROBINSON et al., 2004; RODRIGUES et al., 2006, 2007, 2008;
BRINK et al., 2008). The method is based on projecting a pattern of lines on the
target surface and processing the captured 2D image from a single shot into a point
cloud of vertices in 3D space. The reconstructed models are realistic and capture the
real Euclidean measurements of the object and are useful to a large number of
applications including biometric facial recognition, industrial inspection, reverse
engineering and multimedia applications such as e-learning among others.

The projected pattern consists of evenly spaced white stripes, and the deformation of
the stripes onto the surface of the object is recorded by a video camera placed in a
fixed geometric relationship to the stripe projector. The camera and projector axes
meet at a place in space defined as the calibration plane; this intersection also marks
the origin of the coordinate system for 3D reconstruction. A camera and projector
configuration is depicted in Figure 3.

Figure 3: Camera and projector configuration.

A detail from a video frame is depicted in Figure 4 (left) clearly showing the
deformed stripes. The main issue for accurate 3D reconstruction is encapsulated by
the indexing problem, which is to find the corresponding stripe indices in both image
and projector spaces. Even for continuous surfaces the problem can be severe as small
discontinuities in the object can give rise to un-resolvable ambiguities in 3D
reconstruction. When there are large discontinuities over the object, as shown in
Figure 4 (right) where points a, b and c belong to the same stripe, and these are
distributed at many places the problem is particularly severe.

 9

Figure 4: Left, detail from a bitmap showing the stripes deforming across the face. Right, large

discontinuities can lead to un-resolvable ambiguities.

Despite such difficulties, the advantage of line projection over stereovision methods
(MARR, 1979) is that the stripe pattern provides an explicitly connected mesh of
vertices, so that the polyhedral surface can be rendered without the need for surface
reconstruction algorithms. Also, a smoothly undulating and featureless surface can be
more easily measured by structured light than by stereovision methods. These
advantages for single frame scanning are even more important for 4D applications
such as animation and immersive environments.

Figure 5: Mapping stripe indices from projector to camera space. Different colours mean different

indices.

 The main issue in 3D reconstruction using our method is to achieve the correct
indexing of stripes as depicted in Figure 5 above. We have developed a number of
algorithms to deal with index mapping as described in (ROBINSON et al., 2004;
BRINK et al., 2008). Once this mapping is achieved, a 3D point cloud is calculated
and the output is triangulated using the connectivity of the vertices as depicted in
Figure 5 (bottom row). This results in a mesh defining objects in the real world with
sub-millimetre accuracy.

In Figure 6 below, once stripes are detected in an input image and these stripes are
correctly indexed, a surface shape can then be modelled as a polygonal mesh. Once
this is achieved, the colour of the reflected white stripe at each pixel that maps to a
vertex is used to colour the vertex (or triangle) of the 3D model (top row of Figure 6).
The final model therefore contains the (x, y, z) coordinates and their corresponding
RGB (red, green, blue) values for each vertex, and the model can be visualised as
shown on the top row. On the bottom of Figure 6, it is shown a 3D model rendered as
a wire mesh and with texture.

 10

Figure 6. Top row: an input image on the left is transformed into the 3D model and parameterized.
Bottom, detail of a 3D model rendered as wire mesh and with texture mapping.

4. Integrating Interactive 3D Models into a Web Application

The process of integrating a model into an HTML file requires the O3D JavaScript
Extension. First, O3D requires that a 3D scene model be exported to COLLADA
format with DAE extension (Digital Asset Exchange). DAE files and then converted
into o3dtgz format, which then can be loaded and displayed by O3D. The converted
COLLADA DAE file into an o3dtgz preserves all absolute references to the various
assets (geometry, texture mapping, colour, etc.) and converts these to relative URLs.

 11

In this way, all model components are properly referenced and can be successfully
retrieved by the web browser.

For the sake of clarity, in the code below we hide all necessary O3D JavaScript
initializations and mouse callback procedures. A code fragment of the necessary O3D
JavaScript statements that would be embedded into HTML to load a file for display
would look like:

function initLoadFile(clientElements)
{
var path = window.location.href;
var index = path.lastIndexOf(’/’);
path = path.substring(0, index+1)+’assets/myfirstmodel.o3dtgz’;
var url = document.getElementById("url").value = path;
g loadingElement = document.getElementById(’loading’);
...

}

Figure 7: The 3D scene is displayed within the web browser and controlled by mouse events.

 12

Figure 8: The	
 3D	
 face	
 model	
 visualized	
 in	
 the	
 web	
 browser.

The 3D scene model resides in a URL relative folder such that is loaded by function
initLoadFile above with the file path set to assets/myfirstmodel.o3dtgz. In
order to deal with mouse events and other intricacies of the O3D API, web designers
can make use of design patterns provided by the many API examples. By adapting
existing code to the required interactivity, simple applications such as the example
discussed here can be built in just a few minutes.

When the HTML file that contains the embedded O3D statements is loaded by the
browser the 3D model is displayed which can be rotated, translated, and zoomed in
and out. If desired, full screen capability is also available within the O3D API. Screen
shots of the model created in the previous section are depicted in Figure 7. In this
example, trackball rotation is provided such that the user can rotate the model by
clicking and moving the mouse anywhere in the display window. The developed

 13

application indeed shows that OpenGL provides high performance and quality user
experience.

Equally, the large face model can be visualized in a web browser by exporting to
COLLADA format and then converting to o3dgtz. Figure 8 depicts the face model in
a web browser. It is interesting to note that the original OBJ file was 13.4MB and the
final compressed o3dtgz file was only slightly reduced to 9.8MB. This suggests that
considerable amount of research is still needed to compress 3D data to small files.

5. Discussion and Conclusion

This paper has addressed the development of 3D contents for e-learning where
visualization is provided by a standard web browser. First, the current state of
technology was considered. While technologies are evolving and standards do not yet
exist, both Mozilla and Google have opted for JavaScript, a client-side scripting
language, to interface with OpenGL. This solution provides event handling in a web
browser by JavaScript combined with the power of OpenGL driving the 3D graphics
objects. While Mozilla will release their specification in early 2010, Google have
already released their O3D JavaScript extension.

We have shown through examples how 3D contents can be created and integrated into
an HTML page using embedded O3D JavaScript statements. As a whole, O3D works
well and large and complex scenes can be loaded and visualized in a web browser
with quality user experience provided by OpenGL’s high performance graphics. Our
major criticism at this point relates to the extra burden of converting file formats,
which can become a very convoluted experience, as various converters may be
required. A minor aspect is that, since O3D is a plug-in, it requires downloading and
installing. An ideal configuration would be one that the web browser natively
understands 3D formats while standard JavaScript would contain all required
functionality to load and visualize such models. Mozilla 3D might score highly on
those aspects when released.

We also considered the issue of generating realistic 3D models from complex objects
in the real world as opposed to models constructed from primitive geometric objects.
We have described our approach to 3D reconstruction using line projection, which
allows the generation of 3D models from a single 2D image. An overview of the
method was presented together with samples of generated 3D models. The method
can reconstruct models with sub-millimetre accuracy and recover the real Euclidean
measurements of the modelled object. The method is thus, a powerful addition to the
arsenal of tools for building realistic 3D scenes.

It is likely that Mozilla 3D will be standardized to COLLADA file format, therefore
future work concerning our 3D reconstruction method includes the development of
file exporters to COLLADA and o3dtgz to facilitate HTML integration. Moreover,
research is required into compression techniques for 3D models; we are investigating
partial differential equations and will report on the method in the near future.

 14

References

AJAXIAN News, 2007.

3D Canvas in Opera. http://ajaxian.com/archives/3d-canvas-in-opera, November
2007.

AJAXIAN News, 2009.

O3D: Google releases 3D API in a Browser plug-in.
http://ajaxian.com/archives/o3d-google-releases-3d-api-in-a-browser-plugin 21 April
2009.

BRINK et al., 2008. W. Brink, A. Robinson, M. Rodrigues:

 Indexing Uncoded Stripe Patterns in Structured Light Systems by Maximum
Spanning Trees, British Machine Vision Conference BMVC 2008, Leeds, UK,
1-4 Sep 2008.

CNET News, 2009.

Mozilla, graphics group seek to build 3D Web. http://news.cnet.com/8301-
17939_109-10203458-2.html, 24 March 2009.

COLLADA, 2009.

Digital Asset and FX Exchange Schema, https://collada.org

JavaScript Tutorial, 2009.

W3Schools Online Web Tutorials, http://www.w3schools.com

JavaScript Source, 2009.

The JavaScript Source, http://javascript.internet.com/

JOGL, 2009.

Java Bindings for OpenGL API. The JOGL API Project https://jogl.dev.java.net/

KHRONOS GROUP, 2009.

Open Standards for Media Authoring and Acceleration. http://www.khronos.org/

MARR, 1979. D. Marr and T. Poggio.

A computational theory of human stereo vision, Proceedings of the Royal
Society of London, B:301--328, 1979.

O3D API, 2009.

Google Code O3D API, home page at http://code.google.com/apis/o3d/

OpenGL, 2009.

The Industry’s Foundation for High Performance Graphics,
http://www.opengl.org/

ROBINSON, et a.l., 2004. A. Robinson, L. Alboul and M.A. Rodrigues:

Methods for Indexing Stripes in Uncoded Structured Light Scanning Systems,
Journal of WSCG, 12(3), 2004, pp 371-378.

 15

RODRIGUES et al., 2006. M. Rodrigues, A. Robinson, L. Alboul, W. Brink:
3D Modelling and Recognition, WSEAS Transactions on Information Science
and Applications, Issue 11, Vol 3, 2006, pp 2118-2122.

RODRIGUES et al., 2007. M.A. Rodrigues, A. Robinson, W. Brink:
Issues in Fast 3D Reconstruction from Video Sequences, Lecture Notes in
Signal Science, Internet and Education, Proceedings of 7th WSEAS
International Conference on MULTIMEDIA, INTERNET and VIDEO
TECHNOLOGIES (MIV '07), Beijing, China, September 15-17, 2007, pp
213-218.

RODRIGUES et al., 2008. M.A. Rodrigues, A. Robinson, W. Brink:

Fast 3D Reconstruction and Recognition, in New Aspects of Signal
Processing, Computational Geometry and Artificial Vision, 8th WSEAS
ISCGAV, Rhodes, 2008, p15-21.

SKETCHUP, 2009.

Google SketchUp web site http://sketchup.google.com/

