
Novel methods for real-time 3D facial recognition

RODRIGUES, Marcos <http://orcid.org/0000-0002-6083-1303> and
ROBINSON, Alan

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/5290/

This document is the Submitted Version

Citation:

RODRIGUES, Marcos and ROBINSON, Alan (2010). Novel methods for real-time 3D
facial recognition. In: SARRAFZADEH, Majid and PETRATOS, Panagiotis, (eds.)
Strategic Advantage of Computing Information Systems in Enterprise Management.
Athens, Greece, ATINER, 169-180. [Book Section]

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

  1 

Novel Methods for Real-Time 3D Facial Recognition
Marcos A Rodrigues and Alan Robinson

Geometric Modelling and Pattern Recognition Research Group – GMPR
Computing and Communications Research Centre

Sheffield Hallam University, Sheffield UK
{m.rodrigues, a.robinson}@shu.ac.uk

www.shu.ac.uk/gmpr

Abstract 
 

1In this paper we discuss our approach to real-time 3D face recognition. We argue the need
for real time operation in a realistic scenario and highlight the required pre- and post-
processing operations for effective 3D facial recognition. We focus attention to some
operations including face and eye detection, and fast post-processing operations such as hole
filling, mesh smoothing and noise removal. We consider strategies for hole filling such as
bilinear and polynomial interpolation and Laplace and conclude that bilinear interpolation is
preferred. Gaussian and moving average smoothing strategies are compared and it is shown
that moving average can have the edge over Gaussian smoothing. The regions around the
eyes normally carry a considerable amount of noise and strategies for replacing the eyeball
with a spherical surface and the use of an elliptical mask in conjunction with hole filling are
compared. Results show that the elliptical mask with hole filling works well on face models
and it is simpler to implement. Finally performance issues are considered and the system has
demonstrated to be able to perform real-time 3D face recognition in just over 1s 200ms per
face model for a small database.

1. Introduction

It is often stated that 3D facial recognition offers potential advantages over 2D
methods (Cook et al., 2006; Bowyer et al., 2004) as a number of limitations can be
overcome including lighting variations and viewpoint dependency (Medioni and
Waupotitsch, 2003; Gordon, 1992). Moreover, the availability of 3D data can provide
high accuracy on describing surface features such as cheeks and nose through
curvature descriptors (Hesher et al., 2003). In the past, we have tested facial
recognition algorithms based on geometry alone and have achieved recognition rates
up to 97\% (Rodrigues et al., 2008; Brink, 2008). In those experiments, a person was
enrolled only once in the database from a standard frontal view and the verification
models were reconstructed from non-standard poses with the person facing slightly
left or right – a situation that would not be possible with 2D recognition methods with
this level of accuracy. In this paper we describe methods that have bettered those
results achieving 100% accuracy for a small database of high-density meshes.

A difficulty with 3D face recognition research is the availability of 3D models and the
format in which they are presented. The Face Recognition Grand Challenge (FRGC,
   
1 In Press by ATINER, Greece. Paper presented at the 5th International Conference on Computer Science and 

Information Systems 27‐30 July 2009, Athens, Greece 

 

  2 

2005) has allowed the wider research community to test face recognition algorithms
from standard 2D and 3D databases. Concerning 3D facial recognition, one severe
limitation of the FRGC is that it was not designed to operate in real-time. 3D data
were standardized such that an application would load the pre-formatted data into
memory for feature extraction and recognition. 3D data were reconstructed from
human subjects taken from a frontal, but arbitrary view point and, given that these are
large files containing the structure of the vertices in 3D, this rules out the possibility
of testing algorithms in a real-time scenario. Therefore, while 3D data were profitably
used to test recognition algorithms in the FRGC, the process does not represent a
natural way in which 3D facial recognition systems are to be deployed.

This paper argues the need for real-time 3D facial recognition in a realistic scenario.
A major pillar of our argument is that we must control the 3D acquisition process and
this process must be extremely fast. If we do not generate our own 3D data then we
must rely on loading from standard file format representations such as Wavefront’s
OBJ, which means that we cannot operate in real-time. To enable real-time operation,
this paper puts forward the following modus operandi and system requirements: 1)
Automatic routines for tracking the face and eyes would operate on the face from live
video stream and, when some conditions are met, the image is converted into a 3D
structure. 2) The 3D structure would be subject to a number of post-processing
operations for noise and outlier removal, smoothing, mesh repair and so on. 3) 3D
features are automatically detected and extracted and converted into a set of unique
measurements representing a face model. 4) Such features and their measurements are
placed into a database to support both identification and verification. 5) Finally, all of
the above operations would ideally be computed within 1—2 seconds to allow
realistic, real-time operation.

Within our research group we have developed methods for fast 3D reconstruction
using line projection (Robinson et al., 2004; Brink et al., 2008; Rodrigues et al., 2008,
2007; Robinson et al., 2006, 2004). The method is based on projecting a pattern of
lines on the target surface and processing the captured 2D image from a single shot
into a point cloud of vertices in 3D space. Once a point cloud is obtained, it is then
triangulated and relevant feature points on the surface model can be detected for
recognition. The process is called the 3D Striper Model (3DS) encompassing a
number of operations defined as pre- and post-processing:

• Pre-processing operations (2D):
‒ face and eye tracking
‒ image filtering
‒ stripe indexing

• Post-processing operations (3D):
‒ generation of 3D point cloud and mesh triangulation
‒ noise removal, hole filling, mesh smoothing
‒ mesh subdivision
‒ pose normalization
‒ feature extraction and recognition

This paper focuses on performance issues of face and eye tracking in 2D and noise
removal, hole filling, and mesh smoothing in 3D. The objective is to test the

  3 

effectiveness of the methods for real time operation and compare the relative merits of
3D post processing concerning various methods such as Laplace and bilinear hole
filling, and Gaussian and moving average smoothing. The paper is structured as
follows. Section 2 discusses the method and performance of automatic face and eye
tracking, Section 3 presents a number of 3D post processing operations and discusses
their relative merits. Section 4 presents a method for feature extraction and
recognition and finally, a conclusion is presented in Section 5.

2. Automatic Face and Eye Tracking

The Intel's Microcomputer Research Lab has developed a highly optimized computer
vision library that is fine-tuned for the underlying processor type. The processor type
is automatically detected and the optimized functions can run from 2 to 8 times faster
than equivalent optimized C functions (Bradski and Pisarevsky, 2000). Intel libraries
come with built-in routines for real-time face detection based on Haar-like features. A
great advantage of the Intel libraries is that it is possible to train and use a cascade of
boosted classifiers for rapid object detection for any arbitrary object, not only for
faces.

There are a number of tutorials available to train OpenCV for rapid object detection
such as the one described in (Adolf, 2003; Seo, 2009). Since eye detection is not
built-in into OpenCV 1.0 (but it is now included in OpenCV 2.0), we followed the
tutorials for training with examples of left and right eye. The general problem with
such detection techniques is the number of false positives. For instance, in any image
there could be various detected faces and some might not be real faces. We have
experienced the same problem with eye detection; the routines normally detect more
eyes than there are in the scene.

Figure 1: Interface sowing automatic face and eye detection.

  4 

In order to deal with false positives and use the libraries in a consistent way, we
defined a number of constraints based on the way we wish our system to operate. The
face and eye detection run in a separate thread defined within a C++ environment.
The problem to address is to decide when to take a shot of the face for 3D
reconstruction. Thus, the constraints are simply defined as: first, there should be only
one face detected in the image and the face width must be larger than a certain
threshold (300 pixels in our case); second, there should be only one left and only one
right eye detected in the image, and these must be within the region of interest set by
the face detection; third, the position of the face and eyes must not have moved more
than a set threshold since last detection (10 pixels in our case) so to avoid taking
blurred shots due to undesirable motion.

The system is continuously tracking and detecting (possibly multiple) face and eyes,
but only when the above conditions are satisfied a shot is taken (Figure 1). In this
way, the system is apparently idle until someone places their face in front of the
camera. We have extensively tested Intel's face detection in connection with our own
eye detection and it works remarkably well in real-time. It takes only a few moments
to lock on the face and eyes, a video demo can be seen in our web pages (GMPR,
2009).

3. 3D Post-Processing

In this section we describe three steps in 3D post-processing namely hole filling,
smoothing, and noise removal. The objective is to perform a comparative analysis of
the various methods concerning the perceived quality of the resulting model and
relative processing time.

Due to the way our 3D acquisition method works (Robinson et al., 2004) the 3D
structure is a mirror of the stripe pattern that is cast onto the object, where the x
dimension represents each stripe index, y represents the index of vertices along a
given stripe, and z is the vertex depth. Any vertex Vx,y,z in 3D space is defined as a
floating point and has an associated Boolean Bx,y,z value. If (Bx,y,z = TRUE) then Vx,y,z
is a valid vertex, otherwise it is invalid.

In order to perform operations on the structure, it becomes easy to navigate the data
set and test whether a vertex is valid or not. A valid vertex can have its (x,y,z) values
adjusted in a smoothing operation for instance. An invalid vertex can represent a hole
in the structure and can be recovered if the values of its neighbours are known.

3.1 Hole Filling

Reconstructed 3D models normally have a number of holes in the structure. These are
caused by noisy reflection of the illuminated surface and by camera and projector
occlusion (Robinson et al., 2004; Brink, 2008). There are several techniques that can
be used to fill in gaps in the mesh such as the ones discussed in Wang and Oliveira

  5 

(2003; 2007) and Tekumala and Cohen (2004). In this paper we consider three
methods namely bilinear interpolation, Laplace, and polynomial interpolation.

Even though the mesh is defined in 3D, bilinear interpolation (as the name suggests)
is performed first in the x-direction across stripes and then in the y-direction along the
stripes. Linear interpolation in the x-direction is performed first by simply detecting
the number of missing stripes and marking the required indices as valid. The actual
(x,y,z) values for each vertex Vx,y,z are estimated through a simple average of its
neighbours' values.

Laplace hole filling in 3D is achieved through iteratively solving Laplace's equation
over the surface. An initial value is provided for the missing values and the surface
converges to a limit as the number of iterations approaches infinity. We set the
number of iterations to 25 to allow real time performance. The way it works can be
seen as finding the average of nearby vertices and filling the value of the current
vertex (which is the centroid of the area) with the average. Because this is done
iteratively over the same area the surface keeps changing until the number of
iterations reaches the set value.

Polynomial interpolation works in similar way as bilinear. Instead of filling the
missing value with the average of previous and next (say, in the x-direction), it uses a
4th order polynomial approximation. In this way, the surface topology is taken into
account such that for a missing point on the tip of the nose for example, it would
follow the surface of the nose and would fill the missing value with a higher z-value
than a simple average would do. Thus, in theory it would work better than bilinear
and Laplace.

Figure 2: Comparative analysis of hole filling techniques. The white model shows the holes;

green: bilinear interpolation; blue: Laplace; pink: polynomial interpolation.

  6 

Figure 2 depicts the results of the three schemes discussed. The models have been
smoothed using a moving average (see next section) for better visualization and
quality assessment. The model (white) was chosen because it has a critical hole
located at the tip of the nose, which is notoriously difficult to fill in properly. It is
clear that Laplace (blue model) does not work well for the face model as shown on
the tip of the nose and the region around the eyes. Bilinear (green) and polynomial
(pink) work well on the tip of the nose and it seems that bilinear works slightly better
on the region around the eyes.

3.2 Smoothing

Two smoothing techniques are compared namely moving average and Gaussian
smoothing. Moving average is performed by cycling first across the stripes x-
direction) and then along the stripes (y-direction). The average of every three points is
taken and the middle point is replaced by the average. In this way the boundary
vertices remain anchored. Our acquisition method has different resolutions in x- and
y-directions (Robinson et al., 2004). Normally, we can resolve one vertex per pixel in
the y-direction and typically around one vertex per 8 pixels in the x-direction. Thus,
taking this into account, we performed 8 times more smoothing in the y-direction than
in the x-direction and this has worked well in the face models.

Gaussian smoothing is iteratively estimated by considering 8 neighbours for each
vertex. A convolution mask of size 3x3 is applied and the centre vertex is perturbed
depending on the values of its neighbours. The difference between each neighbour
and the centre vertex is recorded and averaged as ∆V. A multiplier factor is provided
(λ) which determines how much of this average should be used to correct the value of
the centre vertex; i.e., it defines the momentum of the error correction. We use λ=0.9
and the number of iterations was set to 35. In each iteration cycle i, the centre vertex
V is corrected by Vi = Vi-1 + λ∆V.

  7 

Figure 3: Comparative analysis of smoothing algorithms. The white model shows the original
mesh; orange: Gaussian smoothing with λ=0.9 and number of iterations 35; cyan: moving

average; magenta: Gaussian smoothing followed by moving average

Figure 3 depicts the results of the smoothing algorithms. It is clear that Gaussian
smoothing (orange model) has considerable limitations regarding the perceived
quality of the mesh. The moving average algorithm (cyan) seems to work
considerably better. By running a Gaussian followed by a moving average seems to
slightly improve the model (magenta) especially around the lip area, which becomes
more pronounced.

3.2 Noise Removal

The difficulty with noisy data is that for any model it is not straightforward to
establish what is structure and what is noise in the data. We observe that the regions
around the eyes are normally affected by noise due to the presence of, for instance,
heavy make-up delineating the eyes, the presence of eyelashes, and the differential
reflectivity of the eyeball. Since we know the position of the eyes in 2D (from 2D
face and eye detection) and since a correspondence exists between pixels in the 2D
image and the 3D model, the position of each eye in 3D is readily determined.

The question then is how we should go about fixing the eye region. We have tried a
number of different schemes and the ones that work best are highlighted here. Since
the eyeball is roughly spherical, a natural solution would be to replace the vertices in
the eye by a spherical surface centred somewhere behind the face model. By
experimentation, we chose the centre of the sphere at a position 40mm behind the face
model in the same Z-axis as the centre of each eye. The centres of the spheres for the
two eyes are straightforward to determine as the face model is normalized with the
origin at the tip of the nose, with the Y-axis parallel to the line connecting the centre
of the two eyes. An elliptical mask is marked centred on each eye, and all vertices
within the elliptical surface have their values replaced by their spherical counterparts.

A second solution, which is conceptually simpler, is to punch an elliptical hole
centred at each eye and then fill in the holes with any of the algorithms discussed
earlier. The size of the elliptical mask is dependent on the distance between the eyes
to cater for different model sizes. To punch the hole, all that is needed is to mark the
vertices in the elliptical surface as invalid, so while they have associated values these
would not be considered in any subsequent calculation including for display purposes.
When the holes in the eyes are filled, the new values are noted and the points are
marked back to valid.

Figure 4 depicts the outputs of the methods. The white model is the original mesh
with noisy eyes. The red model shows the effects of the spherical surface
replacement; although it works well, the model looks artificial. The yellow model
shows the eye holes punched with an elliptical mask and the green model shows eye’s
hole filling with a bilinear interpolation. Of the models shown, it is clear that the
green model seems better than both red and white. While it can be argued (for the
models shown in Figure 4) whether or not the green model is a real improvement on

  8 

the white, we observed that such improvement can become very accentuated in
models with higher levels of noise in the eye region.

Figure 4: Comparative analysis of noise removal around the eyes. The white model shows the
original mesh; red: fitting an elliptical mask around the eyes and filling with a spherical surface
centred at 40mm behind the model; yellow: punching an elliptical hole around the eyes; green:
filling the elliptical hole with a bilinear interpolation.

4. Pose Normalization and Recognition

The mesh is pose-normalized using an iterative method based on the knowledge of
three points on the mesh: the location of the eyes and the tip of the nose. The
positions of the eyes in 3D are immediately detected from their 2D counterparts from
automatic face and eye tracking. The tip of the nose is iteratively detected on the
mesh surface from the 3D location of the eyes (that is, the initial point for the tip of
the nose is the highest point on the mesh below the eye positions).

The origin is then translated to the initial tip of the nose. Figure 5 shows the 3 axes
where green is the z-axis, yellow is the y-axis, and red is the x-axis. First, the mesh is
rotated around its z-axis (green) such that the x-axis is aligned with the y-coordinates
of the two eyes (that is, the two eyes must have the same y-values). A second rotation
is performed around the y-axis (yellow) such that the x-axis is aligned with the z-
coordinates of the two eyes (the two eyes must have the same z-values). Finally, the
last degree of freedom is removed by rotating the mesh around its x-axis (red) such
that the y-axis is at a constant angle value in relation to the z-value of the two eyes
(45 degrees in this case). This process is repeated a number of times (maximum 3) or
until the changes in rotation are below a set threshold.

Once the model is pose-normalized, that is, rotated and translated to a standard
position then a number of planes are cut through the face model in pre-determined
ways and the intersection of these planes with the mesh mark the feature points of

  9 

interest. We have chosen to extract 43 feature points located on the more rigid region
of the face as shown in Figure 5. Then the normalized distances between such points
are estimated and represented by a vector of distances. These vectors of distances
uniquely characterize a face model in the database and form the basis for
identification and verification.

 
Figure 5: Pose normalization and 3D feature extraction.

The recognition method is based on eigenvector decomposition. All vectors of
distances are placed in the database in matrix format where each row represents one
measurement and each column represents one face. First the scatter matrix of the
database is calculated followed by the estimation of the co-variance matrix, which
measures the tendency of two vectors (two faces) to vary together in the database. The
eigenvectors are calculated and sorted by eigenvalues. Only the first 15 eigenvectors
are selected corresponding to the 15 largest eigenvalues. A linear combination of
these eigenvectors is used and kept in a Matrix of Weights, which forms the basis for
recognition.

Once the matrix of weights is obtained, enrolled and to be verified face models are
subject to this matrix transformation. Identification is a one-to-many search and is
achieved by measuring the shortest multi-dimensional distance from a subject’s
feature vector to every other vector in the database. The shortest distance points to the
identity of that person in the database. In verification scenarios a one-to-one search is
performed in a process that relies on a threshold for maximum distance being
specified and this is set through a user-interface. In Figure 1 above, the thumbnails
represent the current image and the three closest matches in the database with a green
banner displaying PASSED:0 and THRESHOLD: < 500. The parameter PASSED
represents the match with a value of zero being a perfect match. If the parameter were
greater than the set THRESHOLD, then a red banner would display FAILED with the
corresponding measure of distance.

  10 

We tested the method with 65 subjects in controlled acquisition where four models
were generated for each person: two models with high density mesh and two with low
density, where a high density mesh has exactly the double the number of vertices as
compared to its low density counterpart. We enrolled one set (65 high + 65 low) and
used the remaining for testing purposes. It is important to stress here that the four
models were generated from two distinct 2D images, where the models from one
image were used to enroll in the database and the models from the other image were
used for testing purposes. An interesting observation was made that all high density
models had their closest match to another high density model while the low density
model had closest match to both. We had 100% accuracy for the high density models
while 6/65 failures for low density models (91% accuracy). The accuracy obviously
reflects the particular set of measurements taken and the relative influence of a subset
on overall performance. Despite lower accuracy rate, the low density models cannot
be discarded at this stage as it suggests that it can improve in the long run for large
databases.

5. Discussion and Conclusion

We have presented an overview of a process model for real-time 3D face recognition.
It was not the purpose of the paper to comment in details on all stages of the process
rather, to update on recent developments concerning real-time tracking and detection
in 2D and some of the required 3D post processing operations. In particular, we focus
on hole filling, smoothing, and noise removal.

Concerning hole filling, the Laplace method can be ruled out given its poor ability to
correctly fill holes in the smooth surface of a face model. We pointed out that bilinear
and polynomial interpolation seems to be equivalent in terms of quality of the output
model. However, the bilinear interpolation has fewer operations to complete than
polynomial interpolation and thus, it is more appropriate for real-time operation and it
is to be preferred.

Concerning mesh smoothing, Gaussian smoothing on its own is substantially poorer
than a simple moving average algorithm. However, moving average tends to smooth
out some important features in the vertical direction; an example is shown where the
lips got over-smoothed and lost some of the features. We also tried a combination of
Gaussian and moving average and this yielded the best results. For applications in 3D
face recognition we still believe that moving average is preferable given that it is
slightly faster than Gaussian as it performs fewer operations, and some of the lost
features have been observed not to impair recognition. The combination of both
remains an option as this can still provide real-time performance. We have briefly
presented other necessary operations such as pose normalization, feature extraction
and recognition and presented results on classification. We have tested high and low
density meshes and the first results indicate that high-density meshes, despite their
computational and storage costs are preferred.

We have tested the above algorithms in a real-time scenario using a Sony Vaio VGN
AR61ZU with Intel Duo Core, 2.4GHz, 4GB memory. All pre-processing operations
in 2D (face and eye tracking, image filtering, stripe indexing) and 3D post-processing
(generation of point cloud and triangulation, noise removal, hole filling, smoothing,

  11 

subdivision, normalization, feature extraction and recognition) are performed in 1s
200ms from the point where the tracking locks on the two eyes. This has been tested
using the bilinear hole-filling, moving average smoothing and elliptical mask eye
fixing with bilinear interpolation.

We stress that all the above operations are included in the overall 1s 200ms per
model, which is a remarkable performance. It is also important to stress that in order
to achieve this level of performance, 3D models are never displayed, only 2D face
and eye detection video stream are displayed. Normally we use VTK to handle the
display of 3D models and this process consumes over 2 seconds per model and, in a
continuous cycle it can take up to 5 seconds per model.

In conclusion, we have demonstrated real time performance of a 3D face recognition
system and fulfilled our claims in Section 1for a system that can be used in a realistic
scenario. The developed system has been implemented using a small database (130
entries). Future research will address bettering the quality of the models, the porting
to a self contained unit that is able to operate in the near-infrared spectrum, and
testing of the method in very large databases (thousands of subjects).

References

Adolf, F. (2003). How‐to build a cascade of boosted classifiers based on Haar‐like 

features. http://lab.cntl.kyutech.ac.jp/ kobalab/nishida/opencv/OpenCV 
ObjectDetection HowTo.pdf. 

 
Bowyer, K.W., K. Chang, and P. Flynn (2004). A Survey Of Approaches To Three‐

Dimensional Face Recognition, Int Conf on Pattern Recognition (ICPR), 358–361. 
 
Bradski, G.R and V. Pisarevsky (2000). Intelapos’ Computer Vision Library: applications 

in calibration, stereo segmentation, tracking, gesture, face and object 
recognition. Computer Vision and Pattern Recognition. Proceedings. IEEE 
Conference on Volume 2, 796 – 797. 

 
Brink,W. (2008). 3D Face Scanning and Alignment for Biometric Systems, PhD Thesis, 

Sheffield Hallam University. 
 
Brink, W., A. Robinson, M. Rodrigues (2008). Indexing Uncoded Stripe Patterns in 

Structured Light Systems by Maximum Spanning Trees, British Machine Vision 
Conference BMVC 2008, Leeds, UK, 1–4 Sep 2008. 

 
Cook, J., C. McCool, V. Chandran, and S. Sridharan (2006). Combined 2D/3D Face 

Recognition Using Log‐Gabor Templates, Advanced Video and Signal Based 
Surveillance, IEEE Conference on, pp. 83, 2006 IEEE Intl Conf on Advanced Video 
and Signal Based Surveillance (AVSS’06). 

 
FRGC, (2005). The Face Recognition Grand Challenge, http://www.frvt.org/FRGC/  
 
GMPR, 2009. Geometric Modelling and Pattern Recognition Video Demos at http:// 

www.shu.ac.uk/ research/meri/gmpr/videos.html 
 

  12 

Gordon, G. (1992). Face recognition based on depth and curvature features. Computer 
Vision and Pattern Recognition (CVPR), 108–110. 

Medioni, G. and R.Waupotitsch (2003). Face recognition and modeling in 3D. IEEE 
International Workshop on Analysis and Modeling of Faces and Gestures (AMFG 
2003), 232–233. 

 
Hesher, C., A. Srivastava, and G. Erlebacher (2003). A novel technique for face 

recognition using range images. 7th Int Symposium on Signal Processing and Its 
Applications). 

 
Rodrigues, M.A. A. Robinson,W. Brink (2008). Fast 3D Reconstruction and Recognition, 

in New Aspects of Signal Processing, Computational Geometry and Artificial 
Vision, 8th WSEAS ISCGAV, Rhodes, 2008, p15–21. 

 
Rodrigues, M.A., A. Robinson, W. Brink (2007). ’Issues in Fast 3D Reconstruction from 

Video Sequences, Lecture Notes in Signal Science, Internet and Education, 
Proceedings of 7th WSEAS International Conference on MULTIMEDIA, INTERNET 
and VIDEO TECHNOLOGIES (MIV ’07), Beijing, China, September 15‐17, 2007, pp 
213–218. 

 
Rodrigues, M.A., A. Robinson, L. Alboul, W. Brink (2006). 3D Modelling and Recognition, 

WSEAS Transactions on Information Science and Applications, Issue 11, Vol 3, 
2006, pp 2118–2122. 

 
Robinson, A., L. Alboul, and M. Rodrigues (2004). Methods for indexing stripes in 

uncoded structured light scanning systems. Journal of WSCG, 12(3) 371–378, 
February 2004. 

 
Robinson, A., M.A. Rodrigues, L. Alboul (2005). Producing Animations from 3D Face 

Scans,Game‐ On 2005, 6th Annual European GAME‐ON Conference, De Montfort 
University, Leicester, UK, Nov 23–25, 2005. 

 
Seo, N. (2009). Tutorial: OpenCV haartraining (Rapid Object Detection With A Cascade of 

Boosted Classifiers Based on Haar‐like Features), http://note.sonots.com/ 
SciSoftware/haartraining.html  

 
Tekumalla, L.S., and E. Cohen (2004). A hole filling algorithm for triangular meshes. tech. 

rep. University of Utah, December 2004. 
 
Wang, J. and M. M. Oliveira (2003). A hole filling strategy for reconstruction of smooth 

surfaces in range images. XVI Brazilian Symposium on Computer Graphics and 
Image Processing, pages 11–18, October 2003. 

 
Wang, J. and M. M. Oliveira (2007). Filling holes on locally smooth surfaces 

reconstructed from point clouds. Image and Vision Computing, 25(1):103–113, 
January 2007 

