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Abstract 
 

1In this paper we discuss our approach to real-time 3D face recognition. We argue the need 
for real time operation in a realistic scenario and highlight the required pre- and post-
processing operations for effective 3D facial recognition. We focus attention to some 
operations including face and eye detection, and fast post-processing operations such as hole 
filling, mesh smoothing and noise removal. We consider strategies for hole filling such as 
bilinear and polynomial interpolation and Laplace and conclude that bilinear interpolation is 
preferred. Gaussian and moving average smoothing strategies are compared and it is shown 
that moving average can have the edge over Gaussian smoothing. The regions around the 
eyes normally carry a considerable amount of noise and strategies for replacing the eyeball 
with a spherical surface and the use of an elliptical mask in conjunction with hole filling are 
compared. Results show that the elliptical mask with hole filling works well on face models 
and it is simpler to implement. Finally performance issues are considered and the system has 
demonstrated to be able to perform real-time 3D face recognition in just over 1s 200ms per 
face model for a small database. 
 

1. Introduction 
 

It is often stated that 3D facial recognition offers potential advantages over 2D 
methods (Cook et al., 2006; Bowyer et al., 2004) as a number of limitations can be 
overcome including lighting variations and viewpoint dependency (Medioni and 
Waupotitsch, 2003; Gordon, 1992). Moreover, the availability of 3D data can provide 
high accuracy on describing surface features such as cheeks and nose through 
curvature descriptors (Hesher et al., 2003). In the past, we have tested facial 
recognition algorithms based on geometry alone and have achieved recognition rates 
up to 97\% (Rodrigues et al., 2008; Brink, 2008). In those experiments, a person was 
enrolled only once in the database from a standard frontal view and the verification 
models were reconstructed from non-standard poses with the person facing slightly 
left or right – a situation that would not be possible with 2D recognition methods with 
this level of accuracy. In this paper we describe methods that have bettered those 
results achieving 100% accuracy for a small database of high-density meshes. 
 
A difficulty with 3D face recognition research is the availability of 3D models and the 
format in which they are presented. The Face Recognition Grand Challenge (FRGC, 
                                                         
1 In Press by ATINER, Greece. Paper presented at the 5th International Conference on Computer Science and 

Information Systems 27‐30 July 2009, Athens, Greece 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2005) has allowed the wider research community to test face recognition algorithms 
from standard 2D and 3D databases. Concerning 3D facial recognition, one severe 
limitation of the FRGC is that it was not designed to operate in real-time. 3D data 
were standardized such that an application would load the pre-formatted data into 
memory for feature extraction and recognition. 3D data were reconstructed from 
human subjects taken from a frontal, but arbitrary view point and, given that these are 
large files containing the structure of the vertices in 3D, this rules out the possibility 
of testing algorithms in a real-time scenario. Therefore, while 3D data were profitably 
used to test recognition algorithms in the FRGC, the process does not represent a 
natural way in which 3D facial recognition systems are to be deployed. 
 
This paper argues the need for real-time 3D facial recognition in a realistic scenario. 
A major pillar of our argument is that we must control the 3D acquisition process and 
this process must be extremely fast. If we do not generate our own 3D data then we 
must rely on loading from standard file format representations such as Wavefront’s 
OBJ, which means that we cannot operate in real-time.  To enable real-time operation, 
this paper puts forward the following modus operandi and system requirements: 1) 
Automatic routines for tracking the face and eyes would operate on the face from live 
video stream and, when some conditions are met, the image is converted into a 3D 
structure. 2) The 3D structure would be subject to a number of post-processing 
operations for noise and outlier removal, smoothing, mesh repair and so on. 3) 3D 
features are automatically detected and extracted and converted into a set of unique 
measurements representing a face model. 4) Such features and their measurements are 
placed into a database to support both identification and verification. 5) Finally, all of 
the above operations would ideally be computed within 1—2 seconds to allow 
realistic, real-time operation. 
 
Within our research group we have developed methods for fast 3D reconstruction 
using line projection (Robinson et al., 2004; Brink et al., 2008; Rodrigues et al., 2008, 
2007; Robinson et al., 2006, 2004). The method is based on projecting a pattern of 
lines on the target surface and processing the captured 2D image from a single shot 
into a point cloud of vertices in 3D space. Once a point cloud is obtained, it is then 
triangulated and relevant feature points on the surface model can be detected for 
recognition. The process is called the 3D Striper Model (3DS) encompassing a 
number of operations defined as pre- and post-processing: 
 

• Pre-processing operations (2D): 
‒ face and eye tracking 
‒ image filtering 
‒ stripe indexing 

• Post-processing operations (3D): 
‒ generation of 3D point cloud and mesh triangulation 
‒ noise removal, hole filling, mesh smoothing 
‒ mesh subdivision 
‒ pose normalization 
‒ feature extraction and recognition 

 
This paper focuses on performance issues of face and eye tracking in 2D and noise 
removal, hole filling, and mesh smoothing in 3D. The objective is to test the 
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effectiveness of the methods for real time operation and compare the relative merits of 
3D post processing concerning various methods such as Laplace and bilinear hole 
filling, and Gaussian and moving average smoothing. The paper is structured as 
follows. Section 2 discusses the method and performance of automatic face and eye 
tracking, Section 3 presents a number of 3D post processing operations and discusses 
their relative merits. Section 4 presents a method for feature extraction and 
recognition and finally, a conclusion is presented in Section 5. 
 

2. Automatic Face and Eye Tracking 
 
The Intel's Microcomputer Research Lab has developed a highly optimized computer 
vision library that is fine-tuned for the underlying processor type. The processor type 
is automatically detected and the optimized functions can run from 2 to 8 times faster 
than equivalent optimized C functions (Bradski and Pisarevsky, 2000). Intel libraries 
come with built-in routines for real-time face detection based on Haar-like features. A 
great advantage of the Intel libraries is that it is possible to train and use a cascade of 
boosted classifiers for rapid object detection for any arbitrary object, not only for 
faces. 
 
There are a number of tutorials available to train OpenCV for rapid object detection 
such as the one described in (Adolf, 2003; Seo, 2009). Since eye detection is not 
built-in into OpenCV 1.0 (but it is now included in OpenCV 2.0), we followed the 
tutorials for training with examples of left and right eye. The general problem with 
such detection techniques is the number of false positives. For instance, in any image 
there could be various detected faces and some might not be real faces.  We have 
experienced the same problem with eye detection; the routines normally detect more 
eyes than there are in the scene. 
 
 

 
Figure 1: Interface sowing automatic face and eye detection. 
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In order to deal with false positives and use the libraries in a consistent way, we 
defined a number of constraints based on the way we wish our system to operate. The 
face and eye detection run in a separate thread defined within a C++ environment. 
The problem to address is to decide when to take a shot of the face for 3D 
reconstruction. Thus, the constraints are simply defined as: first, there should be only 
one face detected in the image and the face width must be larger than a certain 
threshold (300 pixels in our case); second, there should be only one left and only one 
right eye detected in the image, and these must be within the region of interest set by 
the face detection; third, the position of the face and eyes must not have moved more 
than a set threshold since last detection (10 pixels in our case) so to avoid taking 
blurred shots due to undesirable motion.  
 
The system is continuously tracking and detecting (possibly multiple) face and eyes, 
but only when the above conditions are satisfied a shot is taken (Figure 1). In this 
way, the system is apparently idle until someone places their face in front of the 
camera. We have extensively tested Intel's face detection in connection with our own 
eye detection and it works remarkably well in real-time. It takes only a few moments 
to lock on the face and eyes, a video demo can be seen in our web pages (GMPR, 
2009). 
 

3. 3D Post-Processing 
 
In this section we describe three steps in 3D post-processing namely hole filling, 
smoothing, and noise removal. The objective is to perform a comparative analysis of 
the various methods concerning the perceived quality of the resulting model and 
relative processing time. 
 
Due to the way our 3D acquisition method works (Robinson et al., 2004) the 3D 
structure is a mirror of the stripe pattern that is cast onto the object, where the x 
dimension represents each stripe index, y represents the index of vertices along a 
given stripe, and z is the vertex depth.  Any vertex Vx,y,z in 3D space is defined as a 
floating point and has an associated Boolean Bx,y,z value. If (Bx,y,z = TRUE) then Vx,y,z 
is a valid vertex, otherwise it is invalid.  
 
In order to perform operations on the structure, it becomes easy to navigate the data 
set and test whether a vertex is valid or not. A valid vertex can have its (x,y,z) values 
adjusted in a smoothing operation for instance. An invalid vertex can represent a hole 
in the structure and can be recovered if the values of its neighbours are known. 
 

3.1 Hole Filling 
 
Reconstructed 3D models normally have a number of holes in the structure. These are 
caused by noisy reflection of the illuminated surface and by camera and projector 
occlusion (Robinson et al., 2004; Brink, 2008). There are several techniques that can 
be used to fill in gaps in the mesh such as the ones discussed in Wang and Oliveira 
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(2003; 2007) and Tekumala and Cohen (2004). In this paper we consider three 
methods namely bilinear interpolation, Laplace, and polynomial interpolation. 
 
Even though the mesh is defined in 3D, bilinear interpolation (as the name suggests) 
is performed first in the x-direction across stripes and then in the y-direction along the 
stripes. Linear interpolation in the x-direction is performed first by simply detecting 
the number of missing stripes and marking the required indices as valid. The actual 
(x,y,z) values for each vertex Vx,y,z are estimated through a simple average of its 
neighbours' values. 
 
Laplace hole filling in 3D is achieved through iteratively solving Laplace's equation 
over the surface. An initial value is provided for the missing values and the surface 
converges to a limit as the number of iterations approaches infinity. We set the 
number of iterations to 25 to allow real time performance. The way it works can be 
seen as finding the average of nearby vertices and filling the value of the current 
vertex (which is the centroid of the area) with the average. Because this is done 
iteratively over the same area the surface keeps changing until the number of 
iterations reaches the set value. 
 
Polynomial interpolation works in similar way as bilinear. Instead of filling the 
missing value with the average of previous and next (say, in the x-direction), it uses a 
4th order polynomial approximation. In this way, the surface topology is taken into 
account such that for a missing point on the tip of the nose for example, it would 
follow the surface of the nose and would fill the missing value with a higher z-value 
than a simple average would do. Thus, in theory it would work better than bilinear 
and Laplace. 
 

 
Figure 2: Comparative analysis of hole filling techniques. The white model shows the holes; 

green: bilinear interpolation; blue: Laplace; pink: polynomial interpolation. 
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Figure 2 depicts the results of the three schemes discussed. The models have been 
smoothed using a moving average (see next section) for better visualization and 
quality assessment. The model (white) was chosen because it has a critical hole 
located at the tip of the nose, which is notoriously difficult to fill in properly.  It is 
clear that Laplace (blue model) does not work well for the face model as shown on 
the tip of the nose and the region around the eyes. Bilinear (green) and polynomial 
(pink) work well on the tip of the nose and it seems that bilinear works slightly better 
on the region around the eyes. 
 

3.2 Smoothing 
 
Two smoothing techniques are compared namely moving average and Gaussian 
smoothing. Moving average is performed by cycling first across the stripes x-
direction) and then along the stripes (y-direction). The average of every three points is 
taken and the middle point is replaced by the average. In this way the boundary 
vertices remain anchored. Our acquisition method has different resolutions in x- and 
y-directions (Robinson et al., 2004). Normally, we can resolve one vertex per pixel in 
the y-direction and typically around one vertex per 8 pixels in the x-direction. Thus, 
taking this into account, we performed 8 times more smoothing in the y-direction than 
in the x-direction and this has worked well in the face models. 
 
Gaussian smoothing is iteratively estimated by considering 8 neighbours for each 
vertex. A convolution mask of size 3x3 is applied and the centre vertex is perturbed 
depending on the values of its neighbours. The difference between each neighbour 
and the centre vertex is recorded and averaged as ∆V. A multiplier factor is provided 
(λ) which determines how much of this average should be used to correct the value of 
the centre vertex; i.e., it defines the momentum of the error correction. We use λ=0.9 
and the number of iterations was set to 35. In each iteration cycle i, the centre vertex 
V is corrected by Vi = Vi-1 + λ∆V. 
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Figure 3: Comparative analysis of smoothing algorithms. The white model shows the original 
mesh; orange: Gaussian smoothing with λ=0.9 and number of iterations 35; cyan: moving 

average; magenta: Gaussian smoothing followed by moving average 
 
Figure 3 depicts the results of the smoothing algorithms. It is clear that Gaussian 
smoothing (orange model) has considerable limitations regarding the perceived 
quality of the mesh. The moving average algorithm (cyan) seems to work 
considerably better. By running a Gaussian followed by a moving average seems to 
slightly improve the model (magenta) especially around the lip area, which becomes 
more pronounced. 
 

3.2 Noise Removal 
 
The difficulty with noisy data is that for any model it is not straightforward to 
establish what is structure and what is noise in the data. We observe that the regions 
around the eyes are normally affected by noise due to the presence of, for instance, 
heavy make-up delineating the eyes, the presence of eyelashes, and the differential 
reflectivity of the eyeball. Since we know the position of the eyes in 2D (from 2D 
face and eye detection) and since a correspondence exists between pixels in the 2D 
image and the 3D model, the position of each eye in 3D is readily determined. 
 
The question then is how we should go about fixing the eye region. We have tried a 
number of different schemes and the ones that work best are highlighted here. Since 
the eyeball is roughly spherical, a natural solution would be to replace the vertices in 
the eye by a spherical surface centred somewhere behind the face model. By 
experimentation, we chose the centre of the sphere at a position 40mm behind the face 
model in the same Z-axis as the centre of each eye. The centres of the spheres for the 
two eyes are straightforward to determine as the face model is normalized with the 
origin at the tip of the nose, with the Y-axis parallel to the line connecting the centre 
of the two eyes. An elliptical mask is marked centred on each eye, and all vertices 
within the elliptical surface have their values replaced by their spherical counterparts. 
 
A second solution, which is conceptually simpler, is to punch an elliptical hole 
centred at each eye and then fill in the holes with any of the algorithms discussed 
earlier. The size of the elliptical mask is dependent on the distance between the eyes 
to cater for different model sizes. To punch the hole, all that is needed is to mark the 
vertices in the elliptical surface as invalid, so while they have associated values these 
would not be considered in any subsequent calculation including for display purposes. 
When the holes in the eyes are filled, the new values are noted and the points are 
marked back to valid. 
 
Figure 4 depicts the outputs of the methods. The white model is the original mesh 
with noisy eyes. The red model shows the effects of the spherical surface 
replacement; although it works well, the model looks artificial. The yellow model 
shows the eye holes punched with an elliptical mask and the green model shows eye’s 
hole filling with a bilinear interpolation. Of the models shown, it is clear that the 
green model seems better than both red and white. While it can be argued (for the 
models shown in Figure 4) whether or not the green model is a real improvement on 
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the white, we observed that such improvement can become very accentuated in 
models with higher levels of noise in the eye region. 
 

 
Figure 4: Comparative analysis of noise removal around the eyes. The white model shows the 
original mesh; red: fitting an elliptical mask around the eyes and filling with a spherical surface 
centred at 40mm behind the model; yellow: punching an elliptical hole around the eyes; green: 
filling the elliptical hole with a bilinear interpolation. 
 

4. Pose Normalization and Recognition 
 
The mesh is pose-normalized using an iterative method based on the knowledge of 
three points on the mesh: the location of the eyes and the tip of the nose. The 
positions of the eyes in 3D are immediately detected from their 2D counterparts from 
automatic face and eye tracking. The tip of the nose is iteratively detected on the 
mesh surface from the 3D location of the eyes (that is, the initial point for the tip of 
the nose is the highest point on the mesh below the eye positions). 
 
The origin is then translated to the initial tip of the nose. Figure 5 shows the 3 axes 
where green is the z-axis, yellow is the y-axis, and red is the x-axis. First, the mesh is 
rotated around its z-axis (green) such that the x-axis is aligned with the y-coordinates 
of the two eyes (that is, the two eyes must have the same y-values). A second rotation 
is performed around the y-axis (yellow) such that the x-axis is aligned with the z-
coordinates of the two eyes (the two eyes must have the same z-values). Finally, the 
last degree of freedom is removed by rotating the mesh around its x-axis (red) such 
that the y-axis is at a constant angle value in relation to the z-value of the two eyes 
(45 degrees in this case). This process is repeated a number of times (maximum 3) or 
until the changes in rotation are below a set threshold.  
 
Once the model is pose-normalized, that is, rotated and translated to a standard 
position then a number of planes are cut through the face model in pre-determined 
ways and the intersection of these planes with the mesh mark the feature points of 
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interest. We have chosen to extract 43 feature points located on the more rigid region 
of the face as shown in Figure 5. Then the normalized distances between such points 
are estimated and represented by a vector of distances. These vectors of distances 
uniquely characterize a face model in the database and form the basis for 
identification and verification. 
 
 

 
Figure 5: Pose normalization and 3D feature extraction. 

The recognition method is based on eigenvector decomposition. All vectors of 
distances are placed in the database in matrix format where each row represents one 
measurement and each column represents one face. First the scatter matrix of the 
database is calculated followed by the estimation of the co-variance matrix, which 
measures the tendency of two vectors (two faces) to vary together in the database. The 
eigenvectors are calculated and sorted by eigenvalues. Only the first 15 eigenvectors 
are selected corresponding to the 15 largest eigenvalues. A linear combination of 
these eigenvectors is used and kept in a Matrix of Weights, which forms the basis for 
recognition.  
 
Once the matrix of weights is obtained, enrolled and to be verified face models are 
subject to this matrix transformation. Identification is a one-to-many search and is 
achieved by measuring the shortest multi-dimensional distance from a subject’s 
feature vector to every other vector in the database. The shortest distance points to the 
identity of that person in the database. In verification scenarios a one-to-one search is 
performed in a process that relies on a threshold for maximum distance being 
specified and this is set through a user-interface. In Figure 1 above, the thumbnails 
represent the current image and the three closest matches in the database with a green 
banner displaying PASSED:0 and THRESHOLD: < 500. The parameter PASSED 
represents the match with a value of zero being a perfect match. If the parameter were 
greater than the set THRESHOLD, then a red banner would display FAILED with the 
corresponding measure of distance.  
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We tested the method with 65 subjects in controlled acquisition where four models 
were generated for each person: two models with high density mesh and two with low 
density, where a high density mesh has exactly the double the number of vertices as 
compared to its low density counterpart. We enrolled one set (65 high + 65 low) and 
used the remaining for testing purposes. It is important to stress here that the four 
models were generated from two distinct 2D images, where the models from one 
image were used to enroll in the database and the models from the other image were 
used for testing purposes. An interesting observation was made that all high density 
models had their closest match to another high density model while the low density 
model had closest match to both. We had 100% accuracy for the high density models 
while 6/65 failures for low density models (91% accuracy). The accuracy obviously 
reflects the particular set of measurements taken and the relative influence of a subset 
on overall performance. Despite lower accuracy rate, the low density models cannot 
be discarded at this stage as it suggests that it can improve in the long run for large 
databases. 
 

5. Discussion and Conclusion 
 
We have presented an overview of a process model for real-time 3D face recognition. 
It was not the purpose of the paper to comment in details on all stages of the process 
rather, to update on recent developments concerning real-time tracking and detection 
in 2D and some of the required 3D post processing operations. In particular, we focus 
on hole filling, smoothing, and noise removal. 
 
Concerning hole filling, the Laplace method can be ruled out given its poor ability to 
correctly fill holes in the smooth surface of a face model. We pointed out that bilinear 
and polynomial interpolation seems to be equivalent in terms of quality of the output 
model. However, the bilinear interpolation has fewer operations to complete than 
polynomial interpolation and thus, it is more appropriate for real-time operation and it 
is to be preferred. 
 
Concerning mesh smoothing, Gaussian smoothing on its own is substantially poorer 
than a simple moving average algorithm. However, moving average tends to smooth 
out some important features in the vertical direction; an example is shown where the 
lips got over-smoothed and lost some of the features. We also tried a combination of 
Gaussian and moving average and this yielded the best results. For applications in 3D 
face recognition we still believe that moving average is preferable given that it is 
slightly faster than Gaussian as it performs fewer operations, and some of the lost 
features have been observed not to impair recognition. The combination of both 
remains an option as this can still provide real-time performance. We have briefly 
presented other necessary operations such as pose normalization, feature extraction 
and recognition and presented results on classification. We have tested high and low 
density meshes and the first results indicate that high-density meshes, despite their 
computational and storage costs are preferred. 
 
We have tested the above algorithms in a real-time scenario using a Sony Vaio VGN 
AR61ZU with Intel Duo Core, 2.4GHz, 4GB memory. All pre-processing operations 
in 2D (face and eye tracking, image filtering, stripe indexing) and 3D post-processing 
(generation of point cloud and triangulation, noise removal, hole filling, smoothing, 
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subdivision, normalization, feature extraction and recognition) are performed in 1s 
200ms from the point where the tracking locks on the two eyes. This has been tested 
using the bilinear hole-filling, moving average smoothing and elliptical mask eye 
fixing with bilinear interpolation. 
 
We stress that all the above operations are included in the overall 1s 200ms per 
model, which is a remarkable performance. It is also important to stress that in order 
to achieve this level of performance, 3D models are never displayed, only 2D face 
and eye detection video stream are displayed. Normally we use VTK to handle the 
display of 3D models and this process consumes over 2 seconds per model and, in a 
continuous cycle it can take up to 5 seconds per model.  
 
In conclusion, we have demonstrated real time performance of a 3D face recognition 
system and fulfilled our claims in Section 1for a system that can be used in a realistic 
scenario. The developed system has been implemented using a small database (130 
entries). Future research will address bettering the quality of the models, the porting 
to a self contained unit that is able to operate in the near-infrared spectrum, and 
testing of the method in very large databases (thousands of subjects). 
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