

3D reconstruction of the surgical scene using structured light

RODRIGUES, Marcos https://orcid.org/0000-0002-6083-1303 Available from Sheffield Hallam University Research Archive (SHURA) at: https://shura.shu.ac.uk/5196/

This document is the

Citation:

RODRIGUES, Marcos (2011). 3D reconstruction of the surgical scene using structured light. In: ESF EMRC Exploratory Workshop on Image-guided Laparoscopic Therapies, Caceres, Spain, 15-17 June 2011. (Unpublished) [Conference or Workshop Item]

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Marcos A Rodrigues

Geometric Modelling and Pattern Recognition Research Group - GMPR Sheffield Hallam University, Sheffield UK m.rodrigues@shu.ac.uk www.shu.ac.uk/gmpr

3D RECONSTRUCTION OF THE SURGICAL SCENE USING STRUCTURED LIGHT

(b) centred

(c) system space

The core of the technology: Stripe indexing and generation of 3D data

Steps in 3D reconstruction

Pre-processing operations (2D):

- image acquisition (visible and NIR)
- image filtering
- stripe indexing/image correspondence

Post-processing operations (3D):

- generation of 3D point cloud and triangulation
- noise removal, hole filling, mesh smoothing
- mesh subdivision
- pose normalization / registration
- inclusion in an AR system

3D post-processing: hole filling

3D post-processing: smoothing

Pose registration

Need external markers for liver registration

Performance and the future

- Real-time performance
- Tracking features and registration to a standard pose
- Embed into AR systems

Future work:

- Embedding the design into DSPs
- New optics
- Develop methods for 3D image compression