
Real-time 3D Face Recognition using Line Projection and
Mesh Sampling

RODRIGUES, Marcos <http://orcid.org/0000-0002-6083-1303> and
ROBINSON, Alan

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/5055/

This document is the

Citation:

RODRIGUES, Marcos and ROBINSON, Alan (2011). Real-time 3D Face Recognition
using Line Projection and Mesh Sampling. In: LAGA, H, FERREIRA, A, GODIL, A,
PRATIKAKIS, I and VELTKAMP, R, (eds.) 3D Object Retrieval 2011 Eurographics
Symposium Proceedings. Eurographics Association, 9-16. [Book Section]

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

Real-Time 3D Face Recognition using Line

Projection and Mesh Sampling
M.A. Rodrigues and A. Robinson

GMPR Geometric Modelling and Pattern Recognition Research Group
Sheffield Hallam University, Sheffield, UK
{M.Rodrigues, A.Robinson}@shu.ac.uk

Abstract—The main contribution of this paper is to present a

novel method for automatic 3D face recognition based on

sampling a 3D mesh structure in the presence of noise. A

structured light method using line projection is employed where a

3D face is reconstructed from a single 2D shot. The process from

image acquisition to recognition is described with focus on its

real-time operation. Recognition results are presented and it is

demonstrated that it can perform recognition in just over one

second per subject in continuous operation mode and thus,

suitable for real time operation.

Keywords-3D face recognition; 3D reconstruction; 3D post-

processing; sampling-based recognition; real time recognition

I. INTRODUCTION

It is often stated that 3D facial recognition has potential
advantages over 2D methods [2, 6] as a number of limitations
can be overcome including lighting variations and viewpoint
dependency [9, 10]. Moreover, 3D data can provide high
accuracy on describing surface features such as cheeks and
nose through curvature descriptors [11]. This paper describes a
real-time, fully automatic 3D face recognition system: from 2D
eye tracking and image capture to 3D reconstruction, to 3D
post-processing and recognition. It is noted that recognition is
based on geometry alone: once an image is reconstructed in
3D, no texture information is used in the recognition process.

3D facial recognition algorithms based on geometry alone
have been described with recognition rates up to 97% [4, 13]
for selected models with low levels of noise. Furthermore, for
special cases of high-density meshes with minimum noise
accuracy of 100% are reported [12]. In those experiments, a
person was enrolled once in the database from a standard
frontal view and the verification models were reconstructed
from different structured light images in which the person
could be facing slightly left or right – it seems unlikely that
such performance would not be possible using only 2D
recognition methods. However it is important to stress the role
of relative noisy free data in those experiments.

The availability of 3D models and the format in which they
are presented are not convenient for research aiming at fast
recognition rates. While the Face Recognition Grand Challenge
FRGC [7] has allowed the wider research community to test
recognition algorithms from standard 2D and 3D databases, a
severe limitation is that it was not designed to cater for real-
time requirements. The FRGC database is standardized such
that an application can load pre-formatted data for feature
extraction and recognition. 3D data were reconstructed from

human subjects taken from a frontal, but arbitrary view point
and, given that these are large files containing the structure of
the vertices in 3D, this rules out the possibility of testing
algorithms in a real-time scenario. Therefore, while 3D data
were profitably used to test recognition algorithms in the
FRGC, the process does not represent a natural way in which
3D facial recognition systems are to be deployed. This paper
presents a contribution towards solving real-time issues in 3D
face recognition.

 The works of [5, 13,14, 16, 17] have described structured
light methods for fast 3D reconstruction from line projection.
While those or alternative structured light methods (such as
fringe processing) or stereo vision can be used, there are
prescribed steps that need to be performed in order to achieve a
fully automatic 3D face recognition system:

 2D pre-processing: face and eye tracking; image filtering;
image correspondence (stereo) or projection pattern
detection (structured light methods)

 3D post-processing: generation of 3D point cloud and
mesh triangulation; noise removal; 3D hole filling; mesh
smoothing (optional); mesh subdivision (optional); pose
normalization; feature extraction

 Enrolment and recognition: features are enrolled in a
database for subsequent identification (one-to-many) or
verification (one-to-one) recognition using appropriate
algorithms

These steps are described as follows. Section II describes 2D
image processing and Section III the required 3D operations.
Section IV deals with pose normalization in 3D, Section V
describes a sampling method, sections VI and VII present
experimental results. Finally conclusions are presented in
Section VIII.

II. AUTOMATIC FACE AND EYE TRACKING IN 2D

Our scanner has three major components: a near-infrared
(NIR) projector capable of projecting a pattern of sharp lines
that remain in focus over a large distance up to 5m. Two
CMOS cameras are used one operating in the visible and
another in the NIR spectrum. A beam splitter is placed in front
of the cameras such that both cameras see the same portion of
the world. Face and eye tracking are performed in the visible
spectrum and, when the image satisfies given constrains (see
below) the NIR projector is switched on and the image is taken
with the NIR camera. The NIR image contains the projected

lines forming a pattern of stripes that are then processed to
recover the 3D structure of the face.

The Intel's Microcomputer Research Lab has developed a
highly optimized computer vision library that is fine-tuned for
the underlying processor type. The processor type is
automatically detected and the optimized functions can run
from 2 to 8 times faster than equivalent optimized C functions
(Bradski and Pisarevsky, 2000). Intel libraries come with built-
in routines for real-time face detection based on Haar-like
features. A great advantage of the Intel libraries is that it is
possible to train and use a cascade of boosted classifiers for
rapid object detection for any arbitrary object, not only for
faces [1, 18].

Since eye detection is not built-in into OpenCV 1.0 (it is now

included in OpenCV 2.0), we trained boosted classifiers with

examples of left and right eye and negative images. The

general problem with such detection techniques is the number

of false positives. For instance, on any image there could be

various detected faces and some might not be real faces. The

same problem happens with eye detection; the routines

normally detect more eyes than there are in the scene.

 In order to solve this problem a number of constraints are

defined: first, there should be only one face detected in the

image and the face width must be larger than a certain

threshold (300 pixels in our case); second, there should be

only one left and only one right eye detected in the image, and

these must be within the region of interest set by the face

detection; third, the position of the face and eyes must not

have moved more than a set threshold since last detection (10

pixels in our case) so to avoid inconsistent shots caused by

rapid motion.

Figure 1. Automatic face and eye tracking

Figure 1 shows the system’s interface; it is continuously
tracking and detecting (possibly multiple) faces and eyes, but
only when the above conditions are satisfied a shot is taken. In
this way, the system is apparently idle until someone places
their face in front of the camera. We have extensively tested
Intel's face detection in connection with our own eye detection
and it works remarkably well in real-time. Before a shot is

taken a near-infrared line pattern is projected onto the subject.
The result is that we now have a structured light 2D image
enabling 3D reconstruction and, from eye tracking, we know
the position of the eyes in 2D from which we can know their
3D counterparts.

The next step in the
process is to apply 2D
image filters on the image
that contains the stripe
patterns (pictured left)
namely a median filter
followed by a weighted
mean filter. This enables
the detection of the stripe
patterns in the image.
Given that we know the
geometry of the camera
and projector, by
knowing the stripe
indices we can now fully

reconstruct in 3D by trigonometry. Details of the process have
been published in [16].

III. AUTOMATIC PRE- AND POST-PROCESSSING IN 3D

3D reconstruction is achieved by mapping the image space
to system space (camera + projector) in a Cartesian coordinate
system. We have developed a number of successful algorithms
to deal with the mapping as described in [5, 16]. Once this
mapping is achieved, a 3D point cloud is calculated and the
output is triangulated using the connectivity of the vertices as
depicted in Figure 2.

Figure 2. Point cloud and triangulation from the detected stripe pattern in 2D

Once the surface shape has been modeled as a polygonal
mesh, a number of 3D post-processing operations are required:
hole filling, mesh subdivision, smoothing, and noise removal.
There are several techniques that can be used to fill in gaps in
the mesh such as the ones discussed in [19, 20, 21]. From the
techniques we considered, we tend to focus on three methods
namely bilinear interpolation, Laplace, and polynomial
interpolation. We found that the most efficient method for real-
time operation is bilinear interpolation [12].

The next step is mesh subdivision that, depending on the
recognition algorithm to be used may or may not be required.
Our research indicates that for the sampling based method
described in Section V mesh subdivision is advisable. We use a
polynomial interpolation of degree 4 across the stripe patterns
and this increases the mesh density while making features more
discernible. This is demonstrated in Figure 3, where in the

subdivided mesh (pink) the region around the eyes and lips are
better delineated.

Figure 3. Nonsubdivided mesh (left) and subdivided (right)

We use two smoothing techniques namely moving average
and Gaussian smoothing. Moving average is performed
through cycling across and then along the stripes. The average
of every three points is estimated and the middle point is
replaced by the average. In this way the boundary vertices
remain anchored. Gaussian smoothing is iteratively estimated
by considering 8 neighbours for each vertex. A convolution
mask of size 3x3 is applied and the centre vertex is perturbed
depending on the values of its neighbours. The difference
between each neighbour and the centre vertex is recorded and
averaged as ∆V. A multiplier factor is provided (L) which
determines how much of this average should be used to correct
the value of the centre vertex; i.e., it defines the momentum of
the error correction. We use L=0.9 and the number of iterations
is set to maximum 35. In each iteration cycle i, the centre
vertex V is corrected by Vi = Vi-1 + L∆V. The effects of
smoothing are depicted in Figure 4. It is clear that Gaussian
smoothing (orange model) has considerable limitations
regarding the perceived quality of the mesh. The moving
average algorithm (cyan) seems to work considerably better.
By running a Gaussian followed by a moving average slightly
improves the model (magenta) especially around the lip area,
which becomes more pronounced.

Figure 4. The effects of smoothing: white, the original model; orange,

Gaussian smoothing; cyan, moving average; magenta, Gaussina followedd by

moving average

Noise removal is mainly concerned with the region
around the eyes, as considerable amount of noise exist due to
eyelashes and unwanted reflections. A natural solution would
be to replace the vertices in the eye by a spherical surface
centred somewhere behind the face model. By experimentation,
we chose the centre of the sphere at a position 40mm behind
the face model in the same Z-axis as the centre of each eye. An
elliptical mask is marked centred on each eye, and all vertices
within the elliptical surface have their values replaced by their
spherical counterparts. This however, resulted in unnatural
looking models. A second solution, which is conceptually
simpler, is to punch an elliptical hole centred at each eye and
then fill in the holes with bilinear interpolation. This has
proved to work well for the face models as shown in Figure 5.

Figure 5: Comparative analysis of noise removal around the eyes. The white

model shows the original mesh; red: fitting an elliptical mask around the eyes
and filling with a spherical surface centered at 40mm behind the model;

yellow: punching an elliptical hole around the eyes; green: filling the elliptical

hole with bilinear interpolation.

Figure 6. Triangulated mesh (left), with color and black and white texture

mapping (centre) and with original stripe pattern (right)

Finally, texture mapping can be overlaid on the mesh either
by using the same striped image or by an identical image in the
visible spectrum without stripe information. This is visualized
in Figure 6, which shows from left to right the triangulated
model (gold), with color and black and white texture, and with

the original projected stripe pattern. This can be useful for
instance if one wishes to integrate 2D and 3D face recognition
algorithms.

IV. POSE NORMALIZATION

Before we can proceed to feature extraction (by mesh
sampling) and recognition, all models in the database need to
be brought to a standard pose. The standard pose needs to be
consistent, i.e., it should be possible to evaluate for all models.
We have chosen the pose depicted in Figure 7 below where the
origin is placed at the tip of the nose.

Figure 7. The standard pose with the origin at the tip of the nose

In this pose, the X-axis (red) is aligned with the position of

the eyes, the Y-axis (yellow) forms a constant angle of π/10

with a point located on the front between the two eyes, and the

Z-axis points away from the model such that all depths are

negative. The algorithm to achieve this standard pose is

described as follows (given that we know the position of the

eyes (E1 and E2) in 3D:

1. Estimate the angle ß1 in the XY-plane between E1 and

E2

2. Centered on E1 rotate the mesh around the Z-axis by

angle ß1: Rot(z, ß1)

3. Estimate the angle ß2 in the YZ-plane between E1 and

E2

4. Centered on E1 rotate the mesh around the Y-axis by

angle ß2: Rot(y, ß2)

5. Find the intersection point on the mesh (above the eyes,

on the front) of the arcs centered on E1 and E2 with

radius 0.75 of the inter-ocular distance. Mark this point

as F

6. Find the tip of the nose. This is defined as the highest

point on the mesh below eye positions within a search

threshold of one inter-ocular distance. Mark this point

as T

7. Estimate the angle ß3 described by F, T, and the Y-axis

8. Centered on T, rotate the mesh around the X-axis by (π

/10 — ß3): Rot(x, π /10 — ß3)

9. After this rotation, the highest point on the mesh

defining T might have slightly changed. Repeat steps 6,

7 and 8 until (π /10 — ß3) is below a set threshold.

V. MESH SAMPLING

Once the model assumes the standard pose, we have
developed and tested a recognition algorithm based on
extracting a set of features from sampling the mesh. First we
define a region on the face from which sampling points are to
be taken. The region is cropped in 3D analogous to cropping a
2D image: we define two horizontal planes (top and bottom)
and two vertical planes (left and right) setting the limits for
cropping the 3D structure. All calculations are performed in 3D
and if a point lies within the boundaries of the four cropping
planes it is marked as valid, otherwise it is marked as invalid.
The result is a cropped face structure, or a face mask from
which a fixed number of points are sampled. We chose to
sample 900 points (30x30). These points form the feature
vector that uniquely characterizes a face and it is used for
recognition. Figure 8 below shows the original face structure
in blue and the sampled mask in white. Note that the sampled
mask has its corner points removed. While this may not be
strictly necessary it may increase recognition rates as it has
been observed that points in the four corners are more
susceptible to noise.

Figure 8. Sampling method: a mask (white) is cut from the model (blue). The

mask contains 900 points whose depths are used for recognition

The starting point from cropping and sampling is the
position of the two eyes in 3D. This is known from 2D eye
tracking, from which corresponding 3D vertices can be
determined. The idea is to cut the mesh in 3D half a distance
between the eyes to the left and right of each eye, and 1/3 of
the distance to the top and 2/3 of the distance to the bottom.
Recalling that the mesh has been normalized so the origin is at
the tip of the nose and the reference distance is the inter-ocular
distance E2—E1 where (E1, E2) are the locations or the two eyes
in 3D. A rectangular sampling mask is defined through four
cropping planes as follows.

 ∏TOP: a plane parallel to XZ-plane defined at point (0,
1.3(E2 — E1), 0)

 ∏BOTTOM: a plane parallel to XZ-plane defined at point (
0, -0.66(E2 — E1), 0)

 ∏LEFT: a plane parallel to YZ-plane defined at point (-
(E2 — E1), 0, 0)

 ∏RIGHT: a plane parallel to YZ-plane defined at point (
(E2 — E1), 0, 0)

It has been observed that noisy regions at the boundaries of
the cropped face present a serious problem. To illustrate this,
consider Figure 9. The green models show both sides of the
cropped face. When the shot was taken, the person was looking
to their right, assuming a similar pose to the green model on the
right. A clear view of that side of the face is available while
the other side is partially occluded. Stripes are projected
horizontally on the face and because some stripes stretch
further than others, it is possible to fill in a number of holes in
the occluded area, but this is never a perfect job, as it can be
seen on the green model on the left.

Figure 9. Boundary noise in cropped face models. The noisy side of the geen
model (top left) is corrected by point reflection, resulting in the blue model

The solution to this problem is to reflect the good points on
one side of the mesh replacing the noisy ones on the other side.
Only a few points are required to be reflected and the decision
as to how many points and which side of the face needs to be
reflected is made depending on whether the mesh has been
rotated clockwise or anti-clockwise in the Y-axis (yellow axis
in Figure 7) and by how much. For the sampling mask 30x30,
these are suggested limits by experimentation for N (the
number of reflected points):

 If rotation angle 0.00 < abs(ß2) <= 0.10, N=3

 If rotation angle 0.10 < abs(ß2) <= 0.15, N=6

 If rotation angle 0.15 < abs(ß2) <= 0.20, N=7

 If rotation angle 0.20 < abs(ß2), N=8

Finally, if ß2 >0, reflect points from right to left of the YZ-
plane, otherwise from left to right. The result of reflecting such
points is shown in the blue model on the left of Figure 9: its
initial state was the green model above. It clearly becomes a
better-defined model.

Since the starting point for cropping the face in 3D is the
position of the eyes, it is a natural question to ask to what
precision eyes need to be detected. In Figure 10 the white mask
was cropped from the eye locations as detected by eye tracking.
A difference of 10 pixels in an image of size 1392x1040 was
added to each eye location, effectively making the distance
between the two eyes 20 pixels wider. A wider eye distance

means a larger cropped face in 3D; this is shown in the blue
model of Figure 10. However, note that the feature vector is
constructed from the depth of the 900 sampled points, so the
actual difference in depth between the white and blue cropped
faces is negligible (<0.1%) and should not impair recognition
as shown in the next section by analyzing any misrecognition.

Figure 10. Sensitivity to variations of 20 pixels in eye location

VI. RECOGNITION RESULTS

A version of the eigenface method described in [22] was
used for recognition where a face is represented by a vector of
size 900x1, that is, the depth of each sampled point. Given that
we wanted to test the feasibility of the method for real time
operation, we performed identification (one-to-many) and
extracted statistics from the log file. Four databases were
created with 20, 40, 80, and 200 entries. For enrollment, 2
models of each person were used: one frontal and another
looking to the side (either right or left) as in the example shown
in Figure 11:

Figure 11. Examples of enrolment shots

If in the example of Figure 12, if the identity of the person were
“person 01”, the model in the database would be enrolled as
p01s1, p01s2, p01s3, p01s4 (person 01 shot 1, person 01
shot2, person 01 shot 3, person 01 shot 4). It is important to
stress that in the tests reported here we have not tried to select
noise-free models: all models were selected at random so some
models contain high levels of noise. Recognition results are
summarized in Table I for the closest match in the database.

In performing identification (one-to-many) we saved to a
spreadsheet the results of the 10 closest matches so we can
reason abut setting thresholds for verification. Obviously that
for different sizes of databases the threshold varies and the
correct threshold to minimize FAR can only be found by

experimentation. As an example of determining the correct
threshold for verification, Table II shows the sorted results for
3 subjects only where correct identification is colored green. It
is clear that some models are more distinctive than others and
over the database the top two results point to the right identity.
A reasonable threshold for verification for this database would
thus be a distance of 72. This is the worse case scenario
meaning that for any person performing verification on this
database if the distance to the claimed model is 72 or less it
would be considered a pass.

TABLE I. RECOGNITION RESULTS (CLOSEST MATCH)

TABLE II. IDENTIFICATION (ONE-TO-MANY)

The sampling method presented here is also shown to be

robust to variations in expression as illustrated in Figure 12,

which shows a typical example of one-to-many identification.

The input model (by definition unseen) has its closest match in

person 49 shot 3, which is the correct model with a smiley

face. The database has 200 entries for 50 distinct subjects and

a measure of the distance (74) between input model and

closest match is also displayed.

Figure 12. An example of identification (one-to-many)

The next examples depicted in Figures 13 and 14 are on one-

to-one verification. We extended the verification procedure to

also retrieve the closest match in the database. The threshold

for verification was set at 150, based on information from a

table similar to the one depicted in Table II. Figure 13 on the

left shows the (unseen) input model. The input claims to be the

person displayed in the middle (which is enrolled in the

database). The claim is accepted as the distance is smaller than

the threshold and a green banner shows “PASSED”. The third

image on the right is the actual closest match in the database

when compared to the input model. Note that the two enrolled

models (centre and right) do not smile. Figure 14 shows the

input model on the left claiming to be the person in the

middle. The claim is not accepted as the distance is greater

than the threshold and a red banner with the message

“FAILED: TOO DISSIMILAR” is displayed. Note that this

time the closest match in the database is not the same as above

(given small differences in eye detection) but still the correct

person.

Figure 13. An example of passed verification (one-to-one)

Figure 14. An example of failed verification (one-to-one)

Concerning the misclassifications in Table I, the

reasons for these are clear and have to do with camera

calibration issues and noise in the eye region. It has been

established that, on data collection, the camera focus was

changed between enrollment and verification causing the scale

of the models to change. Effectively, calibration is thrown out

by a change of focus. In addition, noise in the eye region has

resulted in inaccurate pose normalization. This is illustrated in

Figure 15 in which the green model is the enrolled one and the

wire mesh is the verification model. It is clear that a large

number of points at the boundaries differ substantially and this

resulted in a closest match to a different model in the database.

The lessons from these misclassifications are twofold: first, it

is necessary to run the subdivision algorithm, as subdivision

tends to reduce noise around the eyes (all models were

generated without subdivision). Second, if the camera focus is

changed for whatever reason during data collection, the

camera needs to be recalibrated before proceeding – this

seems obvious and had we spotted these problems before

enrolling and verifying, uncalibrated models would have been

removed from the database and we would probably have

gotten perfect recognition results for these tests.

Figure 15. A failed identification due to scale and noise

VII. REAL TIME PERFORMANCE

The algorithms were tested working together from eye

tracking to 3D reconstruction and recognition including

logging the results with time stamps onto an HTML file. We

used a Sony Vaio computer, Intel Core 2 Duo, 2.4GHz, 4GB

memory. It has been shown that the methods presented here

lend themselves to real-time operation as, from the moment

the eye tracking algorithms lock on the eyes, it takes only

1second 200millisencods to perform the following operations:

Take a shot in 2D

Run image filters (median and weighted mean filters)

Detect the stripes in the image

Convert the stripes into a 3D point cloud

Triangulate the point cloud

Perform hole filling on the mesh

Determine the location of eyes in 3D

Punch a hole in the eyes, fill with bilinear interpolation

Find tip of the nose

Normalize pose with origin at the tip of the nose

Determine the cropping planes and crop the mesh

Replace noisy points by reflection

Sample the cropped mesh to 900 points

Search the database for the closest match

Display results of recognition on screen

Save to log file: time stamp, current image, closest match

Continue eye tracking and repeat the sequence

This is indeed a remarkable performance given the high

number of operations and complexity of the required

functions. Thread functions were implemented where required

for improved performance and there is scope for further

optimization by expanding thread granularity. In a recent trial

at Heathrow Airport (London, UK) the requirements were set

at maximum 10seconds per subject for 3D face recognition.

Our solution is one order of magnitude better than those

requirements and thus, can be realistically applied where high

throughput 3D face recognition is desired.

VIII. CONCLUSION

This paper has presented methods for real-time 3D face
recognition from face and eye tracking in 2D to fast 3D
reconstruction, to feature extraction by mesh sampling, to
identification and verification. Based on geometry alone, the
reported recognition accuracy is excellent and there is the
potential to achieve 100% recognition for small databases (200
entries was the maximum size used). The misclassified cases
were traced back to camera calibration issues.

It is important to stress that the objective of the paper was
not to compare the recognition method based on sampling the
mesh with other recognition methods reported in the literature
that use FRGC data. We argued in the introduction that FRGC
data are not suitable for real-time operation because video
stream data with face and eye tracking are required to
demonstrate real-time capabilities by generating 3D data on the
fly. We thus use our own purpose built 3D scanner in
conjunction with fast 3D reconstruction algorithms. We have
demonstrated in this paper that the process from 2D tracking to
3D recognition takes only 1second 200milliseconds per subject
and thus, can be used in a real-time scenario given the speed
and accuracy of the 3D recognition.

Future work includes designing and implementing a
method for fully automatic camera calibration. We are also
pursuing research on mesh description using partial differential
equations (PDEs) and developing recognition methods that use
PDE information. Furthermore, methods to compress the 3D
mesh are required to enable network-based 3D recognition
systems. Research on these issues is under way and will be
reported in the near future.

REFERENCES

[1] Adolf, F. (2003). How-to build a cascade of boosted classifiers based on
Haar-like features. http://lab.cntl.kyutech.ac.jp/kobalab/nishida/opencv/
OpenCV ObjectDetection HowTo.pdf.

[2] Bowyer, K.W., K. Chang, and P. Flynn (2004). A Survey Of
Approaches To Three-Dimensional Face Recognition, Int Conf on
Pattern Recognition (ICPR), 358–361.

[3] Bradski, G.R and V. Pisarevsky (2000). Intelapos’ Computer Vision
Library: applications in calibration, stereo segmentation, tracking,
gesture, face and object recognition. Computer Vision and Pattern
Recognition. Proceedings. IEEE Conference on Volume 2, 796 – 797.

[4] Brink,W. (2008). 3D Face Scanning and Alignment for Biometric
Systems, PhD Thesis, Sheffield Hallam University.

[5] Brink, W., A. Robinson, M. Rodrigues (2008). Indexing Uncoded Stripe
Patterns in Structured Light Systems by Maximum Spanning Trees,
British Machine Vision Conference BMVC 2008, Leeds, UK, 1–4 Sep
2008.

[6] Cook, J., C. McCool, V. Chandran, and S. Sridharan (2006). Combined
2D/3D Face Recognition Using Log-Gabor Templates, Advanced Video
and Signal Based Surveillance, IEEE Conference on, pp. 83, 2006 IEEE

Intl Conf on Advanced Video and Signal Based Surveillance
(AVSS’06).

[7] FRGC, (2005). The Face Recognition Grand Challenge,
http://www.frvt.org/FRGC/

[8] GMPR, 2009. Geometric Modelling and Pattern Recognition Video
Demos at http:// www.shu.ac.uk/ research/meri/gmpr/videos.html

[9] Gordon, G. (1992). Face recognition based on depth and curvature
features. Computer Vision and Pattern Recognition (CVPR), 108–110.

[10] Medioni, G. and R.Waupotitsch (2003). Face recognition and modeling
in 3D. IEEE International Workshop on Analysis and Modeling of Faces
and Gestures (AMFG 2003), 232–233.

[11] Hesher, C., A. Srivastava, and G. Erlebacher (2003). A novel technique
for face recognition using range images. 7th Int Symposium on Signal
Processing and Its Applications).

[12] Rodrigues, M.A, and A.Robinson (2009). Novel Methods for Real-Time
3D Facial Recognition. ATINER 5th Int Conf on Computer Sc and Info
Sys, Athens, Greece, 27-30 July 2009.

[13] Rodrigues, M.A. A. Robinson,W. Brink (2008). Fast 3D Reconstruction
and Recognition, in New Aspects of Signal Processing, Computational
Geometry and Artificial Vision, 8th WSEAS ISCGAV, Rhodes, 2008,
p15–21.

[14] Rodrigues, M.A., A. Robinson, W. Brink (2007). ’Issues in Fast 3D
Reconstruction from Video Sequences, Lecture Notes in Signal Science,
Internet and Education, Proceedings of 7th WSEAS International
Conference on MULTIMEDIA, INTERNET and VIDEO

TECHNOLOGIES (MIV ’07), Beijing, China, September 15-17, 2007,
pp 213–218.

[15] Rodrigues, M.A., A. Robinson, L. Alboul, W. Brink (2006). 3D
Modelling and Recognition, WSEAS Transactions on Information
Science and Applications, Issue 11, Vol 3, 2006, pp 2118–2122.

[16] Robinson, A., L. Alboul, and M. Rodrigues (2004). Methods for
indexing stripes in uncoded structured light scanning systems. Journal of
WSCG, 12(3) 371–378, February 2004.

[17] Robinson, A., M.A. Rodrigues, L. Alboul (2005). Producing Animations
from 3D Face Scans,Game- On 2005, 6th Annual European GAME-ON
Conference, De Montfort University, Leicester, UK, Nov 23–25, 2005.

[18] Seo, N. (2009). Tutorial: OpenCV haartraining (Rapid Object Detection
With A Cascade of Boosted Classifiers Based on Haar-like Features),
http://note.sonots.com/ SciSoftware/haartraining.html

[19] Tekumalla, L.S., and E. Cohen (2004). A hole filling algorithm for
triangular meshes. tech. rep. University of Utah, December 2004.

[20] Wang, J. and M. M. Oliveira (2003). A hole filling strategy for
reconstruction of smooth surfaces in range images. XVI Brazilian
Symposium on Computer Graphics and Image Processing, pages 11–18,
October 2003.

[21] Wang, J. and M. M. Oliveira (2007). Filling holes on locally smooth
surfaces reconstructed from point clouds. Image and Vision Computing,
25(1):103–113, January 2007.

[22] Turk, M.A. and A. P. Pentland (1991). Face Recognition Uisng
Eigenfaces. Journal of Cognitive Neuroscience 3 (1): 71–86.

http://www.frvt.org/FRGC/

