
In-Close, a fast algorithm for computing formal concepts

ANDREWS, S. <http://orcid.org/0000-0003-2094-7456>

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/38/

This document is the

Citation:

ANDREWS, S. (2009). In-Close, a fast algorithm for computing formal concepts. In:
International Conference on Conceptual Structures (ICCS), Moscow, 2009.
[Conference or Workshop Item]

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

In-Close, a Fast Algorithm for Computing
Formal Concepts

Simon Andrews

Communication and Computing Research Centre
Faculty of Arts, Computing, Engineering and Sciences

Sheffield Hallam University, Sheffield, UK
s.andrews@shu.ac.uk

Abstract. This paper presents an algorithm, called In-Close, that uses
incremental closure and matrix searching to quickly compute all formal
concepts in a formal context. In-Close is based, conceptually, on a well
known algorithm called Close-By-One.
The serial version of a recently published algorithm (Krajca, 2008) was
shown to be in the order of 100 times faster than several well-known
algorithms, and timings of other algorithms in reviews suggest that none
of them are faster than Krajca. This paper compares In-Close to Kra-
jca, discussing computational methods, data requirements and memory
considerations. From experiments using several public data sets and ran-
dom data, this paper shows that In-Close is in the order of 20 times
faster than Krajca. In-Close is small, straightforward, requires no ma-
trix pre-processing and is simple to implement.

1 Introduction

Tables are often used to represent incidence data in the form of binary relations.
Columns in the table represent attributes or items and rows represent objects,
instances or transactions. A presence of the value 1 (true) in row i, column j,
says that object i has attribute j. A presence of the value 0 (false) in row i,
column j, says that object i does not have attribute j. This form of data is the
basis for Formal Concept Analysis (FCA) [9, 20, 18], where it is referred to as the
formal context, and is important in data mining [11]. Data analysis applications
are numerous, in fields such as marketing, census analysis and bioinformatics.

A formal description of formal concepts begins with a set of objects G and a
set of attributes M . A binary relation I ⊆ G×M is called the formal context. If
i ∈ G and j ∈M then iIj says that object i has attribute j. For a set of objects
A ⊆ G, a derivation operator ′ is defined to obtain the set of attributes common
to the objects in A as follows:

A′ := { j ∈M | ∀i ∈ A : iIj }.

Similarly, for a set of attributes B ⊆ M , the operator is defined to obtain
the set of objects common to the attributes in B as follows:

B′ := { i ∈ G | ∀j ∈ B : iIj }.

(A, B) is a formal concept iff A′ = B and B′ = A. A is called the extent of
the formal concept and B is called the intent.

The problem associated with the computation of all formal concepts in a
formal context is that every combination of columns (or rows) can generate a
concept. Only a proportion of these will be closed and the number of formal
concepts grows exponentially with the size of the matrix [6]. In addition, many
different combinations of columns may share the same rows, leading to the same
result being generated many times. This leads to a large number of computations
and the searching of large numbers of results for repeats, even for medium-sized
data sets. (For the purposes of this paper, 200 attributes and 10,000 objects is
an example of a medium-sized data set.) This has led to a variety of interesting
approaches to computing formal concepts. This paper presents an algorithm,
called In-Close, based conceptually on Kuznetsov’s Close-By-One algorithm
[13], as a contender for being the fastest method to date.

2 Computing Formal Concepts

In computing formal concepts, a Boolean matrix is often used to represent the
formal context, where rows and columns are, computationally, interchangeable.
Thus, in what follows, the same will apply if ‘A’, ‘extent’, ‘object’ and ‘row’ are
substituted for ‘B’, ‘intent’, ‘attribute’ and ‘column’, and vice-versa.

Reviews of algorithms that take a variety of approaches to generating formal
concepts may be found in [2, 14, 21]. Many of these algorithms perform additional
tasks, such as constructing the concept lattice (Hasse diagram), and not all were
designed with fast performance as a requirement, nor with the intention to be
applied to the size of data sets suggested here.

Other work has drawn from different areas where formal concepts are impor-
tant: in data mining [21], where formal concepts may be referred to as closed
frequent itemsets and in Boolean factor analysis where they are optimal factors
[3]. There is also a strong correlation with algorithms determining the rectangular
groups used to simplify Boolean expressions in Karnaugh maps [22]. Elsewhere,
algorithms have referred to formal concepts as maximal rectangles [4], although
this term has also been used when referring to the largest contiguous empty
rectangles in a Boolean matrix [7].

Fundamental to the performance of algorithms to generate formal concepts is
how they deal with the complexity of the computation. As mentioned in section 1,
many values of B can generate the same value of A, and only the largest (closed)
value of B is part of a formal concept. Taking the matrix in Figure 1, A = {4, 5}
will be generated for three values of B: {2}, {2, 4} and {4} where {2, 4} is the
closed B. As As are generated, a common method is to search previous results
and discard repeats. A key to good peformance is how efficiently previous results
are searched. Lindig’s algorithm [15], and others like it, use a search tree, or trie,
to quicky find repeated results. Others use a hash function where the cardinality

of results is used to divide them into groups, thus narrowing the search [10].
Berry’s algorithm [4] avoids searching by pruning the matrix before generating
concepts from it - eliminating columns that are strict subsets of other columns
and pairing those that are equal.


0 1 0 0 0
1 1 0 0 0
1 1 0 1 0
1 1 0 0 0
0 0 1 0 1
0 0 1 0 1


Fig. 1. A Boolean matrix.

Another way of dealing with complexity is to artificially restrict the result
space. Some algorithms discard results that have less than a user-specified size
of A, thereby significantly reducing the computation [21]. This size is sometimes
given as a proportion of |G| and is referred to in data mining as the minimum
support required by an itemset for it to be of significance. It is argued that formal
concepts with small extents may be of less interest, or that they may be the result
of small errors in the data set, and not generating them is therefore sensible. It
is acknowledged that this is not always the case and that useful results may
be lost by ‘over-pruning’ the computation [17]. Similar approaches to reducing
computation have been explored that discard results with small |B| or small
|B × A|, or use some other constraint (‘powers of 2’ rectangles in Karnaugh
maps, for example).

In all cases, concepts need to be closed by the algorithm at some point. One
approach is to take each new extent and, from it, determine the corresponding
intent. This is the approach used by Krajca but not by In-Close, which uses
an incremental approach to closure, as will be seen later.

2.1 The Lexicographical Order of Concepts

Ganter showed how an order of concepts could be used to circumvent the need
to explicitly search for repeated results [8]. In mathematics, combinations have
a lexicographical order, or cannon, where {1, 2, 3} comes before {1, 2, 4}, for
example, and {1, 2, 6} comes before {1, 3}. If concepts are generated in this order
for A, or for B, it is possible to determine if a concept is new by examining its
cannonicity. Ganter’s algorithm and subsequent algorithms, such as Kuznetsov’s
Close-By-One [13], maintain a current object. The concept next generated is new
(cannonical) if its extent contains no object preceeding the current object. For
example, if the current object is 2 and the extent then generated is {1, 2, 4}, the
corresponding concept is not cannonical and can be discarded.

One way of implementing this approach is to use a recursive function to
generate combinations of objects or attributes in lexicographical order. Both
Krajca and In-Close use such a function to generate attribute combinations,
and this will be the approach described in what follows. A loop is used recur-
sively to generate the combinations as follows:

for j ← y upto n− 1

where n = |G|. For the first iteration of the loop, y = 0. Recursive iterations of
the loop are carried out, each time setting the initial value, y, to j + 1.

The general method is to add attributes, one at a time, to a current intent.
As each new attribute is added, the corresponding extent is computed. This is
achieved by intersecting the current extent, A, with the attribute extent, {j}′,
of the new attribute. i.e. newA = A ∩ {j}′. The new extent can be one of three
outcomes:

1. The empty set.
2. A non-empty set smaller than A.
3. The same set, i.e. A ∩ {j}′ = A.

Krajca and In-Close deal with these outcomes in different ways.

2.2 The Krajca Method

A recent algorithm by Krajca, Outrata and Vychodil [12, 16, 19], referred to
here as Krajca, was shown to be particularly efficient. They have presented a
serial and a parallel version of their algorithms but only the serial version (and
results from it) is considered in this paper. Three real data sets were used, by
them, in a comparative experiment with some well known algorithms (already
mentioned here) that are representative of several mainstream approaches. On
average, Krajca was 139 times faster than Ganter’s algorithm [8], 406 times
faster than Lindig’s algorithm [15] and 106 times faster than Berry’s algorithm
[4]. An inspection of timings in the algorithm reviews cited at the start of this
section suggests that none of the algorithms reviewed are faster than the serial
version of Krajca (bearing in mind the caveats mentioned).

The process Krajca uses is as follows: when an attribute is added to B,
Krajca computes closure of the intent by iterating across all the rows in A∩{j}′,
identifying all truthfully associated columns. The algorithm then utilises the
lexicographical order of attribute generation to quickly determine the newness
of the intent. It compares the newly closed intent with the unclosed version,
and, if the closed version agrees with the unclosed version, up to the current
attribute, the result must be new. The presence of an earlier attribute in the
closed version indicates that the concept must have already been generated. In
this case, the recursion is skipped.

Krajca makes efficient use of outcome 3. After closure, if the next attribute
to be included is already in the intent, the recursion can be skipped. This can
significantly reduce the number of repeated concepts.

However, although Krajca is efficient in several ways, completing closure of
repeats requires a significant amount of computation, particularly if there are
many rows to iterate across. Krajca’s way of determining outcome 1 is rather
inefficient, too. At the start of the process of closure, Krajca sets B to M and
outcome 1 is then deemed to have occured if B is still equal to M , after the
closure. There is also an issue arising from the fact that B = M is also true
when there is an object with all the attributes. The test in the algorithm should
probably be ‘if A = ∅’, but, because Krajca represents A and B as Boolean
lists, this would take more time.

2.3 The In-Close Method

In-Close uses the lexicographic approach for implicitly searching, but avoids
the overheads of computing repeated closures. Instead, it completes closure in-
crementally, and only once per concept, as it iterates across the attributes, us-
ing outcome 3 as an indicator to add the new attribute to the current intent
and prune the recursion at that point. Iteration across the attributes continues,
adding a new attribute and pruning its branch each time outcome 3 occurs, until
the concept is closed. Figure 2 shows this happening for a concept with intent
{0, 1, 3, ...}: (i) Attribute 1 joins 0 and the branch of recursion is pruned. (ii)
Attribute 2 is not part of B, so either the branch is taken (if A is not empty),
or the branch is pruned (if A is empty). (iii) Attribute 3 joins 0 and 1 and the
branch of recursion is pruned. (iv) On to the next attribute.

Outcome 1 is quickly dealt with by testing the size of the new extent imme-
diately after the intersection is made. If the new extent is empty, the recursion
is skipped.

Outcome 2 requires A to be searched for in previous results. This is done
implicitly by examining the Boolean matrix, paying attention to its cannonicity.
The method is to attempt to match the rows in A with those in any previous
column, excluding columns in B (Figure 3). If a match is found, then A will have
already been generated. In this case, the recursion is skipped. If A is new, the
next branch of recursion is taken to begin closure of the new concept.

Put formally, if B is the current intent, j is the new attribute and A is the
resulting extent, A is not cannonical if

∃k ∈M −B | k < j ∧ ∀i ∈ A : iIk.

In In-Close, the closures are implicit, in that we can only say that all con-
cepts with intents beginning with attribute j are closed once the algorithm has
completed that breadth of computation (and moved on to intents beginning
with j + 1). The benefit of this is that concepts are closed only once per concept
and that the test of cannonicity requires iteration over a relatively small por-
tion of the matrix. Thus, closure and searching are carried out efficiently, with
comparatively few redundant operations.

(iv)

(iii)

(i)

(ii)

4

2

3

4 4 4

5 5 55 5 555

3

01

44

5 55 5

3

01

44

5 55 5

3

01

4

5 5

013

4

5 5

013

1

2

3

4 4 4 4

3

4

2

3

4 4

3

4

55 5 55 55 5 5 5 5 55 5

0

5 5

1

2

3

4 4 4 4

3

4

2

3

4 4

3

4

55 5 55 55 5 5 5 5 55 5

0

5 5

Fig. 2. Incrementally closing intent B = {0, 1, 3, ...}.

0 00 0

1 11 1

0 01 1

0 00 0

j
x

j
y

j
z

1 11 1… … … ……

0 01 0
found skip skipsearch search search

Fig. 3. Checking cannonicity by searching for rows A = {1, 3}, skipping columns B =
{jx, jy, jz}.

3 The In-Close Algorithm

A formal context is represented by a Boolean matrix, I, with m rows, repre-
senting a set of objects {0, 1, ...,m − 1}, and n columns, representing a set of
attributes {0, 1, ..., n− 1}. For an object i and an attribute j, I[i][j] = true says
that object i has attribute j.

A formal concept is represented by an extent, A[r] (an ordered list of ob-
jects), and an intent, B[r] (an ordered list of attributes), where r is the concept
number (index). For example, if B[r] = (3, 5, 7), B[r][2] = 7. For the purposes
of the following pseudocode, A[r] and B[r] will be treated as sets of objects and
attributes, respectively, where convenient. Thus, B[r] ∪ {j} appends attribute j
to B[r].

In the algorithm, there is a current attribute, j, the index of the current
concept being closed, r, and a global index of the candidate new concept, rnew.

There are two procedures, InClose(r,y) and IsCannonical(r,y), where
y is a starting column. InClose(r,y) means ‘incrementally close concept r,
beginning at attribute y’.

The supremum is the concept with index 0 and is initialised as A[0] =
(0, 1, ...,m− 1) and B[0] = ∅. Initially, rnew = 0 and the invocation of InClose
is InClose(0,0).

The pseudocode is presented below, with a line-by-line explanation of each
procedure.

3.1 Explanation of InClose

Line 2 - Begin a new concept.
Line 3 - Iterate over attributes, starting at attribute y.
Lines 4 to 7 - Form an extent, A[rnew], by computing A[r] ∩ {j}′.
Line 8 - If the extent is empty (outcome 1), skip the recursion and move on to

InClose(r, y)
begin1

rnew ← rnew + 1;2

for j ← y upto n− 1 do3

A[rnew]← ∅;4

foreach i in A[r] do5

if I[i][j] then6

A[rnew]← A[rnew] ∪ {i};7

if |A[rnew]| > 0 then8

if |A[rnew]| = |A[r]| then9

B[r]← B[r] ∪ {j};10

else11

if IsCannonical(r, j − 1) then12

B[rnew]← B[r] ∪ {j};13

InClose(rnew, j + 1);14

end15

the next attribute. Note that a value > 0 can be used if concepts with extents
below a certain size are not of interest (the notion of minimum support described
in section 2).
Lines 9 and 10 - If the extent is unchanged (outcome 2) then add the attribute
to B[r] (incremental closure), skip the recursion and move on to the next at-
tribute.
Lines 11 and 12 - Otherwise, the extent must be a smaller, non-empty intersec-
tion (outcome 3), so call IsCannonical to see if it has already been generated.
Lines 13 and 14 - If the extent is not found, the concept is cannonical, so ini-
tialise B[rnew] and call InClose to begin its closure. Otherwise, if the extent is
found, skip the recursion and move on to the next attribute.

3.2 Explanation of IsCannonical

The procedure searches for A[rnew] in the blocks of columns in-between those in
B[r] (Figure 2).
Line 2 - Take each column in B[r] (in reverse order) and
Line 3 - iterate down to that column from a starting column.
Lines 4 and 5 - In each column, try to match the extent. i.e. is A[rnew] ⊆ {j}′?
Line 6 - If the extent is found, stop searching and return false (it is not can-
nonical).
Line 7 - Skip the column just iterated down to, ready to iterate the next block
of columns.
Lines 8 - 11 - Finally (if not already found), search for the extent in the block
of columns down to 0.

IsCannonical(r, y)
Result: Returns false if A[rnew] is found, true if not found
begin1

for k ← |B[r]| − 1 downto 0 do2

for j ← y downto B[r][k] + 1 do3

for h← 0 upto |A[rnew]| − 1 do4

if not I[A[rnew][h]][j] then break;5

if h = |A[rnew]| then return false;6

y ← B[r][k]− 1;7

for j ← y downto 0 do8

for h← 0 upto |A[rnew]| − 1 do9

if not I[A[rnew][h]][j] then break;10

if h = |A[rnew]| then return false;11

return true;12

end13

4 Experimental Evaluation

In-Close and the serial version of Krajca were implemented in Microsoft C.
The algorithm designs (pseudocode) were at a similar level of abstraction. The
implementations were carried out using similar constructs, without further op-
timisation and without altering the logic of the designs. Thus, as far as possible,
the experiments compared ‘like with like’. Two groups of experiments were car-
ried out to compare their performance. One group of experiments was carried out
using four publicly available data sets from the UCI Machine Learning Repos-
itory [1] and one group using several sets of random data. The UCI data sets
were chosen on the basis of suitability in terms of size (thousands of objects,
hundreds of attributes) and data type (predominantly Boolean or multivariate).
Two of the sets chosen (Anonymous Microsoft Web Data and Mushroom) were
used in the experiments of Krajca [12] and so would provide a corroborative
facet to the comparison. Multivariate data was converted into corresponding
Boolean representations, i.e. an attribute with x values was converted into x
Boolean attributes. Continuous data were not used.

The experiments were carried out on a standard Windows-XP PC using
an Intel E4600 2.40GHz processor with 3.00 GB of RAM. The formal concepts
generated were stored in RAM and subsequently output to a .text file as comma
separated, 16 bit, attribute and object values in the form j0, j1, ..., j|B|−1, \t
i0, i1, ..., i|A|−1, \n. File output was not timed.

4.1 Pre-processing

For the sake of efficiency, in addition to the Boolean matrix, Krajca uses an
array of ordered lists of objects to represent the input data. This is generated

from the matrix as a pre-processing task. Krajca also requires an initial closure,
(∅′, ∅′′), to be computed, to provide a starting point. As this is most sensibly
done at the same time the array of ordered lists is populated, Krajca’s pre-
processing has been included in the timings that follow, although it contributes
only very slightly.

In-Close requires no pre-processing.

4.2 Public data set experiments

Table 1 lists the timings achieved using the four UCI data sets. The first section
of the table gives the name of the data set, the corresponding matrix size and the
density of true values in the matrix. Any missing values in a data set are taken
into account in the calculation of the matrix density. The second section of the
table gives the number of formal concepts generated and the size of the resulting
.text file. The third section gives the time, in seconds, taken by Krajca and
In-Close to generate the concepts and a comparison of their times.

The names of the data sets used are Anonymous Microsoft Web Data, Mush-
room, Adult (also known as Census Income) and Internet Advertisements. De-
tails of the data sets and how they were used is given in the following sub-
sections.

Table 1. UCI data set results (timings in seconds).

Data set Anon MS-Web Mushroom Adult Internet Ads
|G| × |M | 32711× 294 8124× 125 48842× 96 3279× 1555

Density 1.03% 17.36% 8.24% 0.77%

#Concepts 128,380 226,920 68,872 7,680
File KB 9,342 95,499 34,482 735

Krajca 57.72 27.86 14.48 2.30
In-Close 1.42 2.11 1.05 0.23
× faster 40.64 13.20 13.79 10.00

Anonymous Microsoft Web Data Data Set Contains logs of web site
areas visited by anonymous users of www.microsoft.com. 32711 logs (objects in
the experiment) were sampled, covering 294 areas of the site (attributes in the
experiment). Areas are numbered 1000 - 1297, with numbers 1047, 1285, 1286
and 1296 not used. Care was taken in the experiment to exclude these numbers
during data acquisition. Instance data is recorded in the data set in the form
user: areas visited, so there are no missing values.

Mushroom Data Set Contains records from The Audobon Society Field Guide
to North American Mushrooms (1981). It describes 8124 mushrooms (4208 ed-

ible, 3916 poisonous) in terms of physical characteristics. There are 22 charac-
teristics recorded as multivariate attributes. This is the list in the form attribute
name(number of values): cap-shape(6), cap-surface(4), cap-color(10),
bruises? (2), odor(9), gill-attachment(4), gill-spacing(3), gill-size(2), gill-
color(12), stalk-shape(2), stalk-root(6), stalk-surface-above-ring(4), stalk-surface-
below-ring(4), stalk-color-above-ring(9), stalk-color-below-ring(9), veil-type(2),
veil-color(4), ring-number(3), ring-type(8), spore-print-color(9), population(6),
habitat(7). There are 2480 missing values, all for the stalk-root attributes, treated
as 0 in the experiment (i.e. a separate Boolean attribute for ‘missing’ was not
included). Thus, there were 125 Boolean attributes in the experiment.

Adult Data Set Contains 48842 instances of 1994 US census data, extracted
from the US census bureau database. There are 14 attributes as follows, with
multivariate attributes given the number of values in parenthesis:
age(continuous), workclass(8), fnlwgt(continuous), education(16), education-
num(continuous), marital-status(7), occupation(14), relationship(6), race(5),
sex (2), capital-gain(continuous), capital-loss(continuous), hours-per-
week(continuous), native-country(40). Continuous data were not used. Thus,
there were 96 Boolean attributes in the experiment. There are 4262 missing
values in the data used, treated as 0 in the experiment.

Internet Advertisements Data Set Contains data concerning features on
internet pages. There are 1558 attributes: three continuous, 1555 Boolean. The
continuous attributes were not used in the experiment. There are 15 missing
values in the Boolean data, all for the first Boolean attribute, treated as 0 in the
experiment.

4.3 Random Data Experiments

Three experiments were carried out to compare the performance of In-Close
and Krajca while varying |M |, |G| and matrix density. Table 2 gives the results
for variable |M |, Table 3 gives the results for variable |G| and Table 4 gives the
results for variable density. In each case the timings and number of concepts
stated are an average over a series of sets of random numbers.

Table 2. Variable |M | results (timings in seconds). Density = 2%, |G| = 10,000.

|M | 200 400 600 800 1000 1500
#Concepts 29,696 111,460 266,091 502,032 832,862 2,096,413

Krajca 1.52 11.68 41.70 106.44 225.89 862.10
In-Close 0.07 0.50 1.69 4.06 8.11 29.49
× faster 21.71 23.36 24.67 26.22 27.85 29.23

Table 3. Variable |G| results (timings in seconds). Density = 5%, |M | = 200.

|G| 10,000 20,000 30,000 40,000 50,000
#Concepts 465,016 1,164,325 1,839,593 2,503,508 3,219,911

Krajca 28.87 187.78 420.05 731.94 1178.41
In-Close 0.99 2.55 4.22 5.94 7.77
× faster 29.16 73.64 99.53 123.22 151.66

Table 4. Variable density results (timings in seconds). |M | = 100, |G| = 2,000

Density 5% 10% 15% 20%
#Concepts 10,623 111,324 683,595 4,043,027

Krajca 0.13 1.71 12.95 88.60
In-Close 0.011 0.155 1.17 8.02
× faster 11.82 11.03 11.07 11.04

5 Conclusion

In-Close significantly outperformed the serial version Krajca in all experi-
ments. Published results [12], comparing the serial version of Krajca with sev-
eral well known algorithms, showed Krajca to be the fastest, by about 100
times. In-Close is, therefore, a contender to be the fastest serial algorithm, to
date, for generating all formal concepts in a formal context. Furthermore, the
timings here indicate that In-Close performs as well, if not better, than the
parallel version of Krajca. For example, in comparable conditions, Krajca was
timed at 11.466 seconds to compute the Anonymous MS Web data set, running
on 8 CPUs, compared with 1.42 seconds for In-Close.

The variable |G| results (Table 3) highlight a vulnerability of the type of
closure used by Krajca, where the time taken is exponential to |A∩{j}′|. There
are significant overheads if closure requires iteration across all i ∈ A ∩ {j}′.

6 Discussion

Data Sets Problems concerning the comparison of performance using the same
data sets have been highlighted by Kuznetsov [14]. For example, the UCI Mush-
room data set is quoted in this paper as having 125 Boolean attributes whereas
elsewhere it has been quoted as having 119 attributes. This is because the 22 mul-
tivariate attributes in the data set can be simplified. For example, there are four
binary attributes that might be represented as four Boolean attributes (rather
than the eight used here). Kuznetsov has suggested that some well recognised
data sets could be used, with clearly defined multivariate scalings. One way of
doing this would be to implement a Boolean data set repository. As well as pro-
viding standardised public data sets, it could be a resource for providing random
data sets with varying properties.

Memory Considerations On 32-bit hardware, large Boolean matrices are dif-
ficult to store. Because of this, a bit-array version of In-Close is proposed.
Krajca and In-Close generate concepts in exponential memory, athough Kra-
jca has the advantage that both A and B are static data and can therefore be
linearised. In In-Close, only A is static, although some savings in B can be
made with the use of linked lists, without significant loss of performance. How-
ever, a version of In-Close is being developed that uses a tree data structure
to store concepts in polynomial memory and which produces the corresponding
concept lattice.

References

1. Asuncion, A., Newman, D. J.: UCI Machine Learning Repository
[http://www.ics.uci.edu/∼mlearn/MLRepository.html]. Irvine, CA: University of
California, School of Information and Computer Science (2007).

2. Arevalo, G., Berry, A., Huchard, M., Perrot, G., Sigayret, A.: Performances of
Galois Sub-hierarchy-building algorithms. In: Kuznetsov, S.O., Schmidt, S. (eds),
ICFCA 2007, LNAI 4390, pp. 166180, 2007. Springer-Verlag, Berlin, Heidelberg
(2007).

3. Belohlavek, R.: Optimal decompositions of matrices with grades, In: Intelligent
Systems, 2008. IS ’08. 4th International IEEE Conference, vol. 2, pp.15-2-15-7,
6-8 (Sept. 2008).

4. Berry, A., Bordat, J-P., Sigayret, A.: A Local Approach to Concept Generation.
In: Annals of Mathematics and Artifical Intelligence, Vol. 49, pp. 117-136 (2007).

5. Boulicaut, J-F., Besson, J.: Actionability and Formal Concepts: A Data Mining
Perspective. In: Medina, R., Obiedkov, S. (eds.), Int. Conf. on Formal Concept
Analysis, Lecture Notes on Artifical Intelligence series, pp. 14-31, 2008, Springer-
Verlag, Berlin / Heidelberg (2008).

6. Carpineto, C., Romano, G.: Concept Data Analysis: Theory and Application. Wi-
ley (2004).

7. Edmonds, J., Gryz, J., Liang, D., Miller, R.J.: Mining for Empty Rectangles in
Large Data Sets. In: Database Theory - ICDT 2001, Lecture Notes in Computer
Science series, Vol. 1973/2001, pp. 174-188. Springer Berlin / Heidelberg (2001).

8. Ganter, B.: Two Basic Algorithms in Concept Analysis, Technical Report FB4-
Preprint No. 831, TH Marstadt (1984).

9. Ganter, B., Wille, R: Formal Concept Analysis: mathematical foundations,
Springer, Heidelberg 1999.

10. Godin, R., Missaoui, R., Alaoui, H.: Incremental Concept Formation Algorithms
Based on Galois Lattices. In: Computational Intelligence, Vol. 11(2), pp 246-267,
Blackwell Synergy (1995).

11. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufman
(2001).

12. Krajca, P., Outrata, J., Vychodil, V.: Parallel Recursive Algorithm for FCA. In:
Belohlavek, R., Kuznetsov, S.O. (eds.), Proceeding of the Sixth International Con-
ference on Concept Lattices and their Applications, pp. 71-82, Palacky University,
Olomouc (2008).

13. Kuznetsov, S.O.: Learning of Simple Conceptual Graphs from Positive and Nega-
tive Examples. In: Proceedings of the Third European Conference on Principles of

Data Mining and Knowledge Discovery, Lecture Notes In Computer Science, Vol.
1704, pp. 384 - 391. Springer-Verlag, London (1999).

14. Kuznetsov, S.O., Obiedkov, S.A.: Comparing Performance of Algorithms for Gen-
erating Concept Lattices. In: Journal of Experimental and Theoretical Artificial
Intelligence, Vol. 14, pp. 189-216 (2002).

15. Lindig, C.: Fast concept analysis. In: Working with Conceptual Stuctures: Contri-
butions to ICCS 2000, pp. 152-161, Shaker-Verlag, Aachen (2000).

16. Outrata, J., Vychodil, V.: Fast algorithm for computing maximal rectangles from
object-attribute relational data (submitted).

17. Pensa, R.G., Boulicaut, J-F.: Towards Fault-Tolerant Formal Concept Analysis. In:
Bandini, S., Manzoni, S. (eds.), AI*IA 2005: Advances in Artificial Intelligence,
Lecture Notes in Computer Science series, Vol. 3673, pp. 212-223, Springer-Verlag,
Berlin / Heidelberg (2005).

18. Priss, U.: Formal Concept Analysis in Information Science. In: Cronin, B. (ed.),
Annual Review of Information Science and Technology. Vol 40, 2006, p. 521-543
(2006).

19. Vychodil, V.: A new algorithm for computing formal concepts. In: Trappl, R. (ed.),
Cybernetics and Systems 2008, Proc. 19th EMSCSR, 2008, pp. 15-21, (2008).

20. Wille, R.: Formal Concept Analysis as Mathematical Theory of Concepts and
Concept Hierarchies. In: Ganter, B., Stumme, G., Wille, R. (eds.), Formal Con-
cept Analysis: Foundations and Applications, pages 1-33. Springer-Verlag, Germany
(2005).

21. Zaki, M.J., Hsiao, C-J.: Efficient Algorithms for Mining Closed Itemsets and Their
Lattice Structure. In: IEEE Transactions on Knowledge and Data Mining, Vol. 17,
No. 4, IEE Computer Soc. (April 2005).

22. Zaki, M.J., Ramakrishnan, N.: Reasoning about sets using redescription mining. In:
Proceedings of the Eleventh ACM SIGKDD international Conference on Knowledge
Discovery in Data Mining, Chicago, Illinois, USA, August 21 - 24, 2005. KDD ’05.
pp. 364-373. ACM, New York, NY (2005).

