
Dynamic graph-based search in unknown environments

HAYNES, Paul, ALBOUL, Lyuba <http://orcid.org/0000-0001-9605-7228> and
PENDERS, Jacques <http://orcid.org/0000-0002-6049-508X>

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/3755/

This document is the Accepted Version [AM]

Citation:

HAYNES, Paul, ALBOUL, Lyuba and PENDERS, Jacques (2012). Dynamic graph-
based search in unknown environments. Journal of Discrete Algorithms, 12, 2-13.
[Article]

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

Dynamic graph-based search in unknown environments

Paul S Haynes and Lyuba S Alboul and Jacques S Penders
{p.haynes,l.alboul,j.penders}@shu.ac.uk 1

Abstract

A novel graph-based approach to search within unknown environments is
presented. A virtual geometric structure is imposed upon the environment rep-
resented in memory by a graph. Algorithms use this representation to coordinate
a team of robots (or entities). Local discovery of environment features causes
dynamic expansion of the graph resulting in global exploration of the unknown
environment. The algorithm is shown to have O(n) time complexity, and a
maximum bound on the length of the resulting walk Ω is given.

1. Introduction

The method presented in this paper stems from the research in multi-robot
systems within the remits of the recently completed GUARDIANS project2.
Autonomous mobile robotics, in particular collective and cooperative robotics,
has gained a lot of attention recently.

Multi-robot systems pose new challenging problems such as cooperative per-
ception and localization, cooperative task planning and execution, team navi-
gation behaviors, robot interactions among themselves and with humans, coop-
erative learning, and communication.

There have been some significant advances in tackling the aforementioned
problems, often based, however, on empirical approaches. They are either driven
by informal expert knowledge, or by resource-intensive trial-and-error processes
[7].

There is a demanding need for formalization of methodologies and theoretical
frameworks capable of providing solutions to general classes of problems specific
for multi-robot systems.

In this paper such a framework is proposed for the problem of global self-
localization of multi-robot teams, when no a priori information about the en-
vironment is known.

The problem of self-localization is one of the central problems in robotics,
and is particularly difficult in unknown indoor environments where such tools
as GPS are unavailable.

2Guardians, Group of Unmanned Assistant Robots Deployed in Aggregative Navigation
supported by Scent Detection, EU FP6 ICT 045269

Preprint submitted to Elsevier December 1, 2010

It is directly related to the famous SLAM problem of a robot simultane-
ously localizing and building a map of the environment. This problem has
been studied extensively in the robotics literature, focusing mostly on a single
robot. Conceptually, the SLAM problem for a single robot in 2D is considered
to be solved, but in practice it may still encounter difficulties, even outdoors, in
urban areas or forests. SLAM approaches are mainly probabilistic in their na-
ture due to the uncertainty of acquired information. Data association methods
used in SLAM require significant computation in real-life implementations, and
contribute to increased complexity [8].

The problem of multi-robot localization and encountered difficulties has not
yet been fully researched [9]. A multi-robot team, by definition, represents a
sensor network. An important aspect of a multiple robotic system, as opposed
to a single robot, is the richness of available information. In a cooperative
multi-robot team, robots obtain information from their own sensors as well as
other robots. This information can be of various types: perceptual (data from
lasers, various distributed cameras) as well as non-perceptual (symbolic infor-
mation, directions, and commands, obtained from other robots or a database).
Therefore, richness of information should be taken into account.

In the last decade, several works appeared that tackle the problem of co-
operative multi-robot localization. Whereas some approaches still consider this
problem within the SLAM framework, by treating the problem of multi-robot
localization as a Multi-SLAM problem [10], others, while still using probabilis-
tic methods, attempt to take into consideration robots as landmarks themselves
[11]. Another trend is based on robot distribution on site, which can work well
if the group of robots is large and communication between them is robust [13].

A promising mathematical tool to characterize a multi-robot system is a
graph. Indeed, the problem of coordination in multi-robot systems can be char-
acterized naturally by a finite representation of the configuration space using
Graph Theory. Nodes represent robots with resources limited by sensors, con-
trol design, and computational power. Edges are virtual entities describing local
interactions and can support information flow between nodes/robots. If other
sensor devices are present in the environment they can be added to the sen-
sor robot networks. Graph theory facilitates analysis of the interplay between
the communications network and robot dynamics, and to choose strategies for
information exchange which mitigate these effects.

Graph-theoretical approaches have been increasingly used for building and
analyzing communication and sensor networks [14].

In this paper we describe a graph-theoretical framework for cooperative
multi-robot localization. The (unknown) site is initially covered by an infinite
virtual triangular grid (triangular tiling) T∞, depicted in Fig. 1.

The grid spans infinitely in all directions, and as robots explore the site local
parts of the grid become actualized. The environment, therefore, represents a
subgraph L of T∞. The robots are equipped with the Laser Range Finder (LRF)
which is used as the main sensor for position detection with radio signal as a
backup.

The length of the edges is limited by the range of the LRF, or can be smaller

2

Figure 1: Virtual triangular grid

depending on the initial position of the robots. Our robot team consists of
minimally three robots, and robots act as dynamic and static graph nodes;
they switch between these two modes in a prescribed manner. Coordination
of robots whilst correcting for odometry errors then becomes more manageable
and a cooperative exploration algorithm has been developed.

The choice of three robots is due to several reasons. One is that this allows
accurate calculation of robot positions and poses without assuming that robots
are equipped with a proprioceptive motion detector as suggested in [11], as two
robots act as static beacons whilst the third robot is moving. It also allows to
develop a robust movement strategy that minimizes the number of robot steps.
Indeed, our goal is not only to achieve robust self-localization of robots, but
also explore the unknown environment in the most optimal manner, reducing
the number of visits to previously visited nodes in L.

From a theoretical point of view, our method, to a certain extent, repre-
sents a fusion and further development of strategies proposed in [16] and [15].
One crucial difference is that movements of the robots in our approach are not
random, but are determined in a structured yet adaptive manner. The robots
build the representation of the environment simultaneously whilst moving. For
this reason, we consider the dual graph H∞ to T∞; the nodes of this graph are
possible positions of our 3-robot team considered as a whole.

Surprisingly, the result of the presented approach bears some similarity to
that of [17] in which a Kohonen Self-Organizing Network (SOM) is used to
obtain a topological graph representation of the environment. The SOM node
positions change during network convergence, but the graph itself does not, i.e
edges are not deleted. Our approach represents the environment better in the
sense that unnecessary edges and nodes are removed and obstacles are repre-
sented as cycles in the graph. A further advantage is a lower computational
cost; neural network approaches can take a long time to converge. Moreover,
the authors of [17] assume a perfect odometry, which is impossible in real-life
applications.

In the next section our approach is described in detail.

3

2. Framework

The framework described here is intended to provide a discrete mathematical
framework in which to achieve the following goals.

• Enable a team of 3 robots to autonomously explore an unknown environ-
ment.

• To make no assumptions about the environment beyond the graph em-
bedding.

• To cover the whole of the accessible environment (Completeness)

• To intelligently recognize and avert the visiting of “redundant” regions
(via Intelligent rules)

• To make deductions concerning the final walk length.

2.1. Localization and Movement Graphs

Our approach imposes a virtual geometric structure on the unknown envi-
ronment, thus providing an environment coordinate system in which to develop
algorithms. The structure is the infinite triangular grid graph T∞, chosen for
reasons discussed previously. The infinite hexagonal grid graph H∞ dual to T∞

is also necessary.
A localization graph is an induced subgraph L ⊂ T∞ used to represent

possible robot locations. The unknown localization graph to be discovered is
denoted L⊂T∞, with the known graph denoted L⊂L.

The 3-clique of robots progressively learn the unknown localization graph L
as exploration proceeds until L = L−L′, where L′ is the indiscoverable graph,
at which point the algorithm terminates. At any one time L is the learned lo-
calization graph. The indiscoverable L′ pertains to enclosed inaccessible regions
of the environment. Likewise, an hexagonal movement graph is an induced sub-

Figure 2: Robots ready for search. Surrounding unvisited localization vertices
are identified. The dual movement graph is constructed accordingly.

graph of H∞, with the unknown (at any one time) movement graph denoted

4

M⊂H∞, and the known movement graph denoted M ⊂M. The movement
graph M is dual to L, and represents possible 3-clique movements governed by
Rule (1) below.

Rule 1. Let C = {Ri} ∈L be a 3-clique of vertices as in Figure (2), with cor-
responding dual movement graph vertex m ∈ M . A single robot is permitted to
move between two stationary robots. This move corresponds to an edge connect-
ing m to some other vertex m′ ∈M (cf. Figure 3)

Figure 3: A single time step demonstrating dynamic extension.

The justification of Rule (1) stems from the problem of odometry error correction
in real robots described earlier. This well known problem demands careful
consideration of the approach to robot movement to minimize the accumulation
of odometry error. Small errors in odometry result in large errors over long
distances.

Algorithm 1. A1 Compute level-1 face.

1: procedure ComputeOuterFace(G)
2: Find left most vertex v ∈ G.
3: Let u = (0, 1)

4: Find arg min
w
{∠(u,

−→
vw)|v −→ w}

5: Let s =
−→
vw

6: f = v
7: while s 6= u do
8: f + w
9: Let u =

−→
wv, v = w

10: Find arg min
w
{∠(u,

−→
vw)|v −→ w}

11: end while
12: return f
13: end procedure

5

2.2. Movement

Vertices of the current localization graph L represents robots (here on re-
ferred to as entities) within the environment. However, it is the movement graph
M , dual to L, which facilitates actual movement.

Our approach uses the principle of dynamic exploration (or search) through
M by moving from the current vertex to the next vertex on the outer face (also
called a level-1 face [4]) of M . On moving to a new location L and M are
updated and the process repeats.

Figure 3 demonstrates updating after a move has occurred. The 3-clique of
entities (green and black squares), are situated within the known localization
graph L (denoted by large circles). The yellow circles on localization vertices
represent visited vertices, whilst those without represent known (sensed) ver-
tices. The known movement graph M (light blue) shows the moves available
to the 3-clique (not necessarily from its current location). Red spots indicate
those visited vertices of M . The unknown localization graph L can be seen here
in grey.

As the 3-clique of entities move from vertex m to vertex m′ of the movement
graph the source vertex m is removed from the graph if removal does not dis-
connected the graph, i.e. removal is permitted if and only if ω(G\m) = ω(G),
where ω(X) is the number of connected components of graph X. This simple
principle of

• traversing the current outer face of M ;

• dynamically extending L (and subsequently the dual graph M); and

• removing the source vertices where possible,

is a mechanism for automating the search of an unknown environment in an
ordered manner. However, the geometric embeddings imposed on L and M
coupled with this simple principle of search means the path taken may not be
optimal, and is discussed next.

2.3. Intelligent Rules

Besides the constraints imposed by the unknown environment (such as forc-
ing the the movement graph to be 1-connected, for example), there are other
situations in which the discussed simple principle of search may not be optimal.

There may emerge, for example, a simple path of a level-1 face whose vertices
are enclosed entirely by visited vertices. Clearly it would be inefficient for the
entities to revisit such vertices since we may infer them as empty space. Indeed,
since sensed vertices were actualized (i.e. there were no obstacles found), and
they are surrounded by wholly visited nodes, then they may be inferred to
be visited (since they are empty). A depth first search can quickly identify
such regions and disconnect the located (possibly biconnected) region on back-
tracking.

This is the purpose of the ValidatePath() function. Following computa-
tion of the level-1 face (which is unique at any one time), each vertex of the

6

path proceeding from the current vertex is checked to see if it is enclosed by
wholly visited vertices. If it is then the graph is disconnected at this vertex
since traversing the path is unnecessary and would be inefficient. If not, then
validation is complete and the entities must be allowed to traverse the path in
order to visit the unexplored region.

3. Algorithms and Complexity

3.1. Nomenclature

The logical denotations True (>), False (⊥), and the logical AND operation
over a set of discrete values (

∧
) are used. The algorithms are presented from an

object oriented perspective, thus a→F() denotes that F() is a member function
of object (vertex) a to be called, for example. This should not be confused with
the long arrow notation u −→ v, denoting vertices u and v of a graph to be
connected by an edge.

The ComputeOuterFace() function computes the level-1 face (outer face)
walk of M [4, 2], details of which are given in the next section. The resulting
outer face walk is denoted Ω, with the current member denoted ω ∈ Ω. The
next element of the walk is denoted ω′ = ω + 1. The list Ω is understood to
be cyclic in that ωn + 1 = ω1 and ω1 − 1 = ωn, where ω1 and ωn are the first
and last elements of Ω respectively, and is implemented in C++ using the list
container.

The current 3-clique of entities in the localization graph L are denoted Ri,
where i = 1, 2, 3. Position vectors associated with a vertex are denoted a → c,
where a is a given vertex.

3.2. The level-1 face

Although simple, the level-1 face algorithm is given here for completeness.
A vertex v is a level-k vertex if it is on the kth nested face, e.g. a level-1 vertex
sits on the outer face. We call a cycle of level-k vertices a level-k face, [4].

Computing the level-1 face is equivalent to determining the outer face, for
which there is a linear time algorithm. Figure 4 shows a connected triangular
grid graph G ⊂ T∞. Finding the level-1 face begins with determining the left
most vertex v ∈ G, vertex d in this case (if multiple vertices share this position
then the most recently found is chosen).

Now consider a direction vector u parallel to the vertical axis. Vertex v is
called the pivot and is the first vertex of the face. Determining the next vertex
requires finding a vertex w −→ v such that the anti-clockwise angle from u to
−→
vw is minimal, (f in this case).

Direction vector u is then replaced by u =
−→
wv, and the pivot by w. Repeating

the process sweeps out the face from vertex to vertex as shown until u is equal
to the initial edge.

The notation ∠(u,v) below denotes the anti-clockwise angle from vector u
to v. The resulting level-1 face is an anti-clockwise cycle of level-1 vertices. This
process may be considered the discrete analogue of the continuous curve fitting

7

Algorithm 2. 1: procedure DynamicSearch . Searches an unknown
environment.

2: if graph altered then. If the graph has been updated we must compute
a new outer face walk

3: ω′ ← ∅
4: if Ω 6= ∅ then . If a previous walk exists
5: ω′ ← ω + 1 . ω points to the next element in the walk
6: end if
7: Ω← (ω → ComputeOuterFace()) . Compute new walk
8: if ω′ 6= ∅ then
9: if there exists v ∈ Ω such that (v = ω) ∧ ((v + 1) = ω′) then .

Find exact position in Ω if possible (should the local walk remain unchanged)
10: ω ← v . Set current position
11: goto 16
12: end if
13: end if
14: Find ω′ ∈ Ω such that ω′ = ω . Since the local walk has changed,

find any matching vertex
15: ω ← ω′

16: end if
17: if ω → ValidatePath(ω + 1) then . Check necessity of path
18: graph altered← > . Redundant paths have been removed
19: goto 2
20: end if
21: ω ← ω + 1 . Move to next vertex in walk
22: Find i ∈ {1, 2, 3} such that Ri 6∈ (ω →S) . Determine entity to move
23: Ri ← (ω →S)\((ω − 1)→S) . Move the entity
24: r ← Ri . Remember which entity moved
25: r →visited← > . Set it as visited
26: if h is not a cut-vertex then . Remove previously visited vertex?
27: Disconnect h from all neighbors.
28: end if

29: (ω →visited)←
3∧

i=1

(Ri →visited)

30: graph altered← (RealiseSurroundingArea(r) > 0). Update L and
M

31: for all 3-cliques Ci ∈ L such that r ∈Ci and
∧
c∈Ci

(c→visited) do .

Remove visited movement graph vertices v dual to Ci

32: Let v ∈M be the hexagonal vertex dual to Ci.
33: if v 6= ω then . Do not consider current clique
34: if v connects to any other vertices then
35: Disconnect those vertices connecting to v which are not cut-

vertices.
36: graph altered = >
37: end if
38: end if
39: end for
40: for all connected neighbors s ∈ N(r) such that ¬(s→visited) do

41: s→visited←
∧

s′∈N(s)

(s′ →visited) . s becomes visited if its

surrounding vertices are visited
42: end for
43: return
44: end procedure

8

Figure 4: Simplified example of computing a level-1 (outer) face f1 =
abcdfgjihigeb.

problem of an arbitrary set of points described in [3], but applied to embedded
graphs in the plane.

3.3. Main Algorithms

The main algorithm to search an unknown environment is presented in the
listing A2. The approach is partially inspired by the algorithms for hamiltonian
walks in known environments, but adapted to unknown environments.

Details of hamiltonian walk construction in known environments for which
no assumption is made as to the k-connectedness of the graph may be found in
[2]. Optimal hamiltonian walks for known graphs that are at least 4-connected
are well established (see Tutte [5, 6], for example)

Algorithm A2 is the starting point of the system, and has the following
mechanisms:

(i) Computation of ComputeOuterFace(·) and the identification and tak-
ing of the next move in the walk, or, if the graph local to the 3-clique
remains unchanged, taking the next move in the current walk.

(ii) Checking whether the next move is actually necessary and removing (i.e.
deleting) unnecessary simple paths via ValidatePath(·).

(iii) Disconnecting the previous vertex ω− 1 following a move to ω if and only
if ω − 1 is not a cut-vertex.

(iv) Dynamic expansion of the 3-clique frontier via RealiseSurroundingArea(·),
or similar.

(v) Maintaining the flagging of graph vertices as visited, either explicitly or
implicitly.

For this last mechanism, note that explicit flagging occurs when a movement
graph vertex is physically surrounded by the 3-clique, whereas implicit flagging
occurs, for example, when a recently visited movement vertex has neighbors
that are themselves surrounded by entirely visited vertices.

The complexity of algorithm A2 is given by the following proposition.

Proposition 1. Algorithm A2 has complexity O(nH), where nH is the number
of vertices in the final movement graph M∗ ⊂M.

9

Algorithm 3. 1: procedure ValidatePath(p) . Searches for and removes
unnecessary paths.

2: avoid← this
3: if p→ Recur() then
4: Disconnect p from avoid.
5: return >
6: end if
7: return ⊥
8: end procedure
9: procedure Recur()

10: rtn← >
11: visited←

∧
s′∈S

(s′ →visited)

12: this→ visited← >
13: if ¬ visited then
14: return ⊥
15: end if
16: for all p ∈ N(this), p ∈ Ω such that p 6=avoid of this vertex do
17: if p has not yet been traversed by DFS then
18: if (p→Recur()) then
19: Disconnect p from all its neighbors.
20: else
21: rtn← ⊥
22: end if
23: end if
24: end for
25: return rtn
26: end procedure

Proof. The first subroutine of algorithm A2 is ComputeOuterFace() which
computes the level-1 face of the current movement graph M . This is a simple
O(n) time algorithm as discussed in section 3.2.

Following computation of the level-1 face requires locating where in the new
level face corresponds to the previous location in the previous level face so that
we can take the next move. This takes O(|Ω|), where nH ≤ |Ω| ≤ 2nH .

Path validation and removing of unnecessary paths via ValidatePath()
takes O(nH) time (see proposition 2).

The remaining subroutines remove remaining implicitly visited regions local
to the 3-clique. Finally, by Proposition 3 (see below), the RealiseSurroundin-
gArea() subroutine has complexity O(1). Summing gives an overall complexity
of O(nH).

Algorithm A2 makes use of the ValidatePath() function as discussed in
the previous section, with complexity given by the proposition below.

Proposition 2. Algorithm A3 has an upper bound complexity of O(nH).

10

Algorithm 4. 1: procedure RealiseSurroundingArea(r) . Dynamically
extend the graph

2: P ← ∅+ {(ω → c, ω)}
3: r → known← >
4: for all 3-cliques Ci = {r, a, b} ∈ L where (¬(a → known)) ∧ (b →
known) do

5: v → c← 1
3

∑
c∈Ci

c→ c . Make v ∈M the dual vertex to Ci ∈ L

6: v → visited←
∧
c∈Ci

(c→ visited)

7: v → S ← Ci

8: P ← P + {(v → c, v)}
9: end for

10: counter ← 0
11: for all elements s ∈ P do
12: for all elements t ∈ P such that all t proceed s do
13: if ‖(s→ c)− (t→ c)‖2 < 3/2 then . Is this a neighboring

hexagonal vertex
14: if s 6−→ t and s has not been previously disconnected from t

then
15: Connect s to t. . Establish new connections (edges)
16: counter ← counter + 1
17: end if
18: end if
19: end for
20: end for
21: return counter
22: end procedure

Proof. A level-1 face P ⊂ M has a maximum of nP < nH vertices. Since
algorithm A2 is effectively a depth first search of P , its complexity is O(nP), or
more generally we may state that for any path P algorithm A2 has complexity
O(nH).

The RealiseSurrouondingArea() function depends on the application
at hand. A robotics setting would require this function to physically scan the
surrounding area to determine which vertices to add to the localization graph
L, and to connect vertices appropriately.

However, for simulation purposes an algorithm based on a known connected
graph L is presented. RealiseSurroundingArea() examines the known lo-
calization graph L. The entities are, of course, only aware of the vertices of the
induced subgraph L ∈ L which they have previously visited, and the traversal
boundary (i.e. unvisited yet sensed, or “known”, vertices).

A real implementation with robots would see the entities (robots) making use
of a sensory device (such as a laser) to realize the surrounding area in real-time.

11

The complexity of RealiseSurroundingArea() is given by the following
proposition.

Proposition 3. Algorithm A4 has complexity O(1).

Proof. Since algorithm A4 operates on induced subgraphs of the infinite tri-
angular grid graph T∞, the number of 3-cliques about vertex r is constant (cf.
Figure 6).

Thus, there are a maximum of five such 3-cliques since there are six 3-cliques
containing a single given vertex of T∞ and we disregard the current 3-clique.
The set P then has a maximum of 5 elements.

Finally, each element s of P considers all elements t ∈ P proceeding s. Since
there are a maximum of 5 elements in P this requires a maximum and constant
number of 4 + 3 + 2 = 4(4 + 1)/2 − 1 = 10 operations. Therefore, the total
complexity is O(1).

Figure 5: Dynamic graph construction

4. Analysis and Discussion

Figures 5 and 7 show example outputs of the system (algorithm A2) given
different environment graphs L. The system achieves the goals set out at the
beginning of this section, taking into account the restrictions imposed by the
unknown environment (such as a lack of information as to the k-connectedness
of the representative movement graph).

Empirical results aside, a number of theorems concerning completeness and
walk length may be proved.

12

Figure 6: 3-clique formation centered on r. C = {{r23} , {r34} , {r45} , {r56}}.

4.1. Completeness

Completeness (briefly mentioned in section 2) ensures the algorithm com-
pletely covers the accessible induced subgraph of an environment graph L.

Theorem 1. Let L be the localization graph of the environment, initially un-
known to the 3-clique of entities C = {Ri} whose dual vertex is m∈M . Then
the final walk Ω∗ ∈M produced by Algorithm A2 spans the entire graph L−L′,
where L′ is the graph of unreachable vertices of the environment.

Proof. Consider the initial known movement graph M (cf. Figure 5, for exam-
ple). Wherever L (in grey) permits, each 3-clique of L instantiates a connected
vertex m′∈M of the movement graph. Thus, the mechanism of extension exists
to instantiate and connect those vertices having potential to exist, but which
have not previously been disconnected. The proof is completed by induction.

By this mechanism of extension, there always exists a simple path P ∈M of
length l+ 1, where P = mp1p2 · · · pl, such that there exists q ∈ N(pl) unvisited,
where N(pl) is the set of neighboring vertices of pl. The case for which l = 0
is simply the case for which one or more neighbors m′ of m are unvisited. If
no such simple path exists then the algorithm is complete since, by definition,
a path is only ever disconnected when m is a cut vertex rooting one or more
biconnected components which are wholly visited or enclosed by wholly visited
vertices. Thus, a simple path connecting to an unvisited biconnected component
of the graph is never disconnected.

In the case the where the next move of the movement graph M relative
to the 3-clique is unaltered from the previous level-1 face walk, then the next
vertex within the previously calculated level-1 face (ω′ = ω + 1) of Ω ∈ M is
traversed. Traversal continues until an unvisited vertex is reached, in which
case the graph is dynamically extended, and the outer face walk is recalculated,
thus completing the induction.

4.2. Walk Length

The system deals with unknown environment exploration with no a priori
knowledge of the search domain. Thus, determining an exact upper bound
length for the final walk Ω∗ is difficult since clearly this depends on the unknown.

13

Figure 7: Dynamic graph construction

However, in this section we present a logical argument which makes headway
in understanding the walk length resulting from algorithm A2. An upper bound
is given on the length of the final walk Ω∗.

To do this consideration of the key subroutines (mechanisms (i)-(v) listed in
section 3.3) of the algorithm is required.

Let L∗ be the final localization graph discovered by A2, where L∗ = L− L′
and L′ is the graph of indiscoverable vertices. Then naturally h(Ω∗) depends
on the features contained within L∗ which, of course, directly effects the final
movement graph M∗.

By mechanisms (i), (iv), and (v) the algorithm, by definition of the level-1
face algorithm, follows the boundary vertices of L∗. In addition mechanism
(iii) deletes the graph vertex of all previous moves ω − 1 where possible, thus
reducing the graph of available future moves (before dynamic expansion).

This mechanism causes previously visited vertices to act as “walls” of the
environment, thus the algorithm will not tread these vertices on its next return
unless doing so would allow access to one or more unvisited regions (such as
biconnected components).

We can deduce that this approach leads to a “spiders-web”, or spiraling,
approach to graph discovery until all available vertices become visited.

Additionally, the remaining mechanism (ii) implements an element of intel-
ligence which makes spiraling more efficient. During the course of the algorithm
it may emerge that certain simple paths of the graph are surrounded entirely

14

Figure 8: Concentric level-k faces of two regions C and D of graph G connected
by a simple path P = vw1w2 . . . wmv

′.

by visited vertices. Clearly it would be inefficient to traverse such simple paths,
and the mechanism identifies and removes them using depth first search.

An inefficient property of the current mechanisms concerns the existence of
biconnected components connected by a path, however short, one or more of
which may contain a number of concentric level-k faces (see Figure 8). This
inefficiency is highlighted by the following lemma.

Lemma 1. Let biconnected components C and D be two regions of M∗, con-
nected by a simple path P = vw1w2 . . . wmv

′, containing quantities c and d of
level-k faces respectively such that c ≥ d. Then P must be traversed 2d times to
discover D fully.

Proof. The previous discussion demonstrated that cut-vertices are not deleted
(by mechanism (iii)) if returning to them would allow access to one or more un-
visited regions. This is demonstrated in Figure 8. Traversing the outer boundary
in region C to the indicated cut-vertex v, the level-1 face, by definition, would
traverse path P to join cut-vertex v′ in region D before traversing its level-1 face.
Traversal would proceed until v′ is rejoined and P is traversed in the reverse
direction to join v. Any remainder of the level-1 face in C would be traversed
until a join side-stepped the outer face walk into the level-2 face. Note that by
mechanism (iii) the level-1 face in region D would be fully deleted (assuming
no further biconnected components are connected to the level-1 face of region
D), as would that of region C. Thus, the simple path P is traversed exactly 2
times, with a remaining d− 1 outer boundaries in region D.

Clearly, repeating this procedure results in a total traversal of 2d traversals
of the simple path P to fully discover region D.

Now suppose mechanism (ii) is omitted from algorithm A2 for the moment.
Then by the previous discussion a spiraling approach to discovery occurs, with
recourse to the outermost cut-vertices of the boundary of the movement graph
as the boundary is traversed (bearing in mind the boundary is continuously
reduced where possible by mechanism (iii)).

Therefore, the final walk length h(Ω∗) depends on the outer-boundary cut-
vertices within M . Now let Di be the ith biconnected component connected to
any other region C by a simple path P = vw1w2 . . . wmv

′, such that σ(C) ≥
σ(Di), where σ(X) is the number of concentric level-k faces contained by region

15

Figure 9: The walk completes isolated regions, unlike in Figure 8

X such that each level-k face contains the vertex v′.
We may use Lemma 1 to compute the traversal cost of the simple path

joining the two regions. However, before doing so, a further consideration is
required:

Every time a simple path P connecting regions C to Di is traversed, the
length of P increases since on reaching Di the walk traverses the outer boundary
therein and returns to v′. If this was not the last level-k face of this region then
the region will be revisited once more, but to reach an unvisited vertex of that
region it must travel 1 vertex further than before. Therefore, each time the
path is traversed, then due to mechanism (v) the path length must be noted to
increase by exactly 1. Therefore, a given isolated region Di would require

2|Pi|+ 2(|Pi|+ 2) + 2(|Pi|+ 3) + · · ·+
2(|Pi|+ σ(Di))

= 2|Pi|σ(Di) + 2(2 + 3 + · · ·+ σ(Di))

= 2(|Pi|σ(Di) +
σ(Di)(σ(Di) + 1)

2
− 1)

= σ(Di)(2|Pi|+ σ(Di) + 1)− 2,

steps.
This gives the undesirable result of exiting a biconnected component multiple

times, stripping the biconnected component of its level-1 face on every exit
(except where additional biconnected components are attached to it)

It would be much more efficient and desirable if the system completed a
biconnected component before exiting (as in Figure 9). To remedy this, the
level-1 face algorithm disregards visited vertices (i.e. those corresponding to
a path connecting two biconnected components) where unvisited yet known
(i.e. sensed) vertices are available. This new mechanism (mechanism (vi)) is in
addition to those stated in section 3.3.

Thus, in Figure 10 the biconnected component shown would cause algorithm
A1 to consider the cut-vertex dual to the 3-clique as inaccessible. This has the

16

Figure 10: Demonstration of Lemma 1.

effect of the next level-1 face computed to be that of the interior of the bicon-
nected component. This process continues until the biconnected component is
fully explored at which point the region is exited.

Given the previous discussion and the introduction of mechanism (vi), we
can deduce an estimate for a maximum bound of h(Ω∗),

h(Ω∗) ≤ n+ 2

p−1∑
k=1

|Pk|,

where p is the number of biconnected components emerging as M develops and
Pk are paths connecting their centres.

5. Closing Remarks

This paper gives a solution to the difficult problem of unknown environment
search using graph structures and elements of graph theory.

On imposing a virtual structure on the environment, a principle of search,
basically amounting to wall following, was developed into a number of algorithms
and additional mechanisms were reasoned and applied to achieve a desired result
each of which improved efficiency of the search in some way.

The result is a simple, discrete, and robust ready made system of linear time
complexity which is both useful in its current form yet allowing room for further
development.

The authors believe this to be a novel approach in that the system assigns
virtual structure to the environment thus availing pragmatic deployment of

17

entities within the environment and eventual metric map construction. Previous
approaches traditionally overlay the topological structure once the environment
has been searched and a metric map built.

Future work is to include improvement (possibly by way of convolution) of
algorithms, and theoretical improvements of the walk length upper bound. This
may itself improve on the already good time complexity. Practical applications
on a real world problem (such as robots) would also be a major goal.

Finally, development of algorithms to coordinate n entities for efficient search
is desirable, for large team exploration, for example.

References

[1] Alboul, L. S., Abdul-Rahman, H., Haynes, P. S., Penders, J., An
approach to multi-robot site exploration based on principles of self-
organization,Intelligent Robotics and Applications - Third International
Conference, ICIRA 2010, Shanghai, China, November 10-12, 2010. Pro-
ceedings, Part II, LNCS 6425, pp. 717–729, Springer, 2010.

[2] Haynes, P. S., Alboul, L. S., 2011. Hamiltonian Walks in Embedded Planar
Graphs, In preparation.

[3] Alboul, L. and Echeveria, G. and Rodrigues, M., 2004. Curvature criteria
to fit curves to discrete data. EWCG 19th European Workshop on Compu-
tational Geometry.

[4] Baker, B. S, 1994. Approximation algorithms for NP-complete problems on
planar graphs. Journal of the Association for Computing Machinery, 41:1,
pp. 153-180.

[5] Tutte, W. T., 1956. A theorem on planar graphs. Transactions of American
Mathematical Society, 82, pp. 99-116.

[6] Tutte, W. T., 1977. Bridges and Hamiltonian circuits in planar graphs.
Aequationes Mathematica, 15, pp. 1-33.

[7] Gerkey, B., Mataric, M., Multi-robot task allocation: Analyzing the com-
plexity and optimality of key architectures. In: Proc. of the IEEE Interna-
tional Conference on Robotics and Automation (ICRA) (2003).

[8] Bailey, T.; Durrant-Whyte, H., Simultaneous localization and mapping
(SLAM): part II,. IEEE Robotics and Automation Magazine, V.13(3), pp.
108-117.

[9] Dieter Fox, Wolfram Burgard, Hannes Kruppa, and Sebastian Thrun, A
probabilistic approach to collaborative multi-robot localization. Autonomous
Robots, 8(3):325–344, 2000.

18

[10] Fox, D., Ko, J., Konolige, K., Limketkai, B., Schulz, and D., Stewart, B.:
Distributed Multirobot Exploration and Mapping. Proceedings of the IEEE,
Vol. 94, No. 7, pp. 1325-1339, (2006).

[11] Howard, A., Mataric, M. J., Sukhatme, G. S.: Localization for mobile robot
teams: A distributed MLE approach. In Experimental Robotics VIII, ser.
Advanced Robotics Series, 146–166, (2002).

[12] Rekleitis, I., Dudek, G., and Milios, E. : Multi-robot collaboration for
robust exploration, Annals of Mathematics and Artificial Intelligence, Vol.
31, pp. 7-40, (2001).

[13] Ludwig, L., Gini, M.: Robotic Swarm Dispersion Using Wireless Intensity
Signals. In: Distributed Autonomous Robotic Systems 7, pages 135–144.
Springer Japan, 2007.

[14] Mesbahi, M., Egerstedt, M., Graph Theoretical Methods in Multiagent Net-
works. Princeton University Press, 2010.

[15] Rekleitis, I., Dudek, G., and Milios, E. : Multi-robot collaboration for
robust exploration, Annals of Mathematics and Artificial Intelligence, Vol.
31, pp. 7-40, (2001).

[16] Kurazume, K. R., Hirose, S.: An experimental study of a cooperative po-
sitioning system. Autonomous Robots, 8(1):4352, 2000.

[17] Vlassis, N., Papakonstantinou, G., and Tsanakas, P.: Robot Map Build-
ing by Kohonen’s Self-Organizing Neural Networks. In Proc. 1st Mobinet
Symposium on Robotics for Health, (1997).

19

