
Agents for educational games and simulations

BEER, Martin <http://orcid.org/0000-0001-5368-6550>, BROM, Cyril,
DIGNUM, Frank and SOO, Von-Wun

Available from Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/3731/

This document is the author deposited version. You are advised to consult the
publisher's version if you wish to cite from it.

Published version

BEER, Martin, BROM, Cyril, DIGNUM, Frank and SOO, Von-Wun (2011). Agents for
educational games and simulations. In: Agents for Educational Games and
Simulations, Taipei, May 2011. Taipei, ROC, AAMAS.

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

Tenth International
Conference on Autonomous
Agents and Multi-Agent

Systems (AAMAS)

at the Taipei International
Convention Center (TICC) in Taipei,

Taiwan

Workshop on the uses of
Agents for Education,
Games and Simulations

Monday 2nd May 2011

Organisers:

Martin Beer, UK.

email: m.beer@shu.ac.uk

Cyril Brom, CZ.

email: brom@ksvi.mff.cuni.cz

Von-Wun Soo, TW

email:soo@cs.nthu.edu.tw

Frank Dignum, NL.

email: dignum@cs.uu.nl

Preface

Training for complex situations in human societies such as in edu-
cation, business transactions, military operations, medical care and
crisis management can be provided effectively using serious games
and simulations. In these types of games and simulations the role
of agents to model and simulate naturally behaving characters be-
comes more and more important. Especially in situations where the
games are not just meant to provide fun, but are used to support
the learning process it is important that the games achieve their
goal and do not just distract (or entertain) the trainee. This work-
shop bringe sogether several strands that have been developing in
a number of different workshops at AAMAS over recent years, and
provides an opportunity to discuss common issues and to develop
common understanding.

A major aim of this workshop is to discuss how to model ra-
tional (or non-rational, but natural) behaving agents who are em-
bedded in a social context with other characters and humans. This
is especially important when both characters and humans can be
pro-active but also have to react to the behaviour of others in their
environment. Thus these characters should have some social con-
science of themselves and others and base their decisions for actions
on this knowledge. Of course social knowledge may consist of de-
tailed knowledge such as that some person has been your long time
friend and thus can be trusted to help you, but also general knowl-
edge such as that society looks bad at people that cheat but adores
people that grasp opportunities. Thus we aim to model also different
levels of action and interactions. Both the operational ones such as
gestures and general way of animating characters, the tactical deci-
sions such as negotiation tactics when trying to get some help and
long term strategies such as behaving cooperative towards your boss
in order to secure a promotion. One of the interesting questions is
how these should be modelled and how they interact? And how do
current agent architectures support these models?

In general the technologies used in game engines and multi-agent
platforms are not readily compatible due to some inherent differences

of concerns. Where game engines focus on real-time aspects and
thus propagate efficiency and central control, multi-agent platforms
assume autonomy of the agents. And while the multi agent platforms
offer communication facilities these can or should not be used when
the agents are coupled to a game. So, although increased autonomy
and intelligence may offer benefits for a more compelling game play
and may even be necessary for serious games, it is not clear whether
current multi agent platforms offer the facilities that are needed to
accomplish this.

The workshop therefore four main themes:

1. Technical
What techniques are suitable for agents that are incorporated
in educational contexts, games and simulations. How to balance
intelligence and efficiency? How to couple the agents to the game
or simulation and manage this couplings information flow? How
to deal with the inherent real time nature of the game engine
environment? How to couple long and short time interactions?

2. Conceptual
What information is available for the agents’ use, either through
the educational context, or from the system, through for exam-
ple, the game or simulation engine? How can reaction to events
be balanced with goal directed behaviour? How are ontological
differences between information used by agents and information
from the domain handled? How do we choose the actions of an
agent? Too high level gives little control; too low level makes the
agent inefficient.

3. Design
How do we design interactive systems containing intelligent agents?
How do we determine what agents should do and should not do,
such that local autonomy and story line are well balanced. How do
we design the agents themselves that are embedded in other (pos-
sibly diverse) systems (including the behaviour authoring tools
and methodologies)?

4. Education
It is also important that we introduce both the design and con-
struction of these collaborative autonomous systems into the com-
puter science curriculum and develop ways of encouraging their

ii

effective utilisation across the curriculum. Contributions to the
workshop will be welcomed that provide a mixture of relevant
theoretical and practical understanding of both the teaching and
use of multi-agent systems in educational and entertainment re-
search, together with practical examples of the use of such sys-
tems in real application scenarios. These will be written for stu-
dents, teachers, producers, directors and other professionals who
want to improve their understanding of the opportunities offered
by the use of multi-agent systems in teaching and entertainment
scenarios of all types.

These are all issues that will become increasingly important as
agents are used increasingly to assist interactions with social and
other media. One interesting trend in the papers presented is the
interaction of agents with cooperative immersive environments, such
as Second Life, which raises a number of technical and social issues
that will need to be explored further in later workshops.

March 2011 Martin Beer
Cyril Brom

Von-Wun Soo
Frank Dignum

iii

iv

Organization

Organisers

Martin Beer, Communications and Computing Research Centre, ACES, Sheffield Hal-

lam University, UK.

email: m.beer@shu.ac.uk

Cyril Brom, Department of Software & Computer Science Education, Faculty of Math-

ematics and Physics, Charles University in Prague, CZ.

email: brom@ksvi.mff.cuni.cz

Von-Wun Soo, Department of Computer Science, Institute of Information Systems

and Applications, National Tsing Hua University, Taiwan

email:soo@cs.nthu.edu.tw

Frank Dignum, Department of Information & Computing Sciences, Utrecht Univer-

sity, NL.

email: dignum@cs.uu.nl

Programme Committee

Elisabeth Andre (DFKI, GER)

Juan Carlos Augusto (University of Ulster, UK)

Paul Shueh-Min Chang, (National Tsing Hua University, TW)

Vincent Corruble (LIP6, FR)

Virginia Dignum (Technical University Delft, NL)

Hiromitsu Hattori (Kyoto University, JP)

Dirk Heylen (Univ of Twente, NL)

Koen Hindriks (Delft University, NL)

Stefan Kopp (University of Bielefeld, GER)

Mike van Lent (SOAR technology, USA)

Michael Lewis (University of Pittsburg, USA)

Simon Lynch (Univ. of Teeside, UK)

Stacy Marsella, (ISI, Univ of Southern California, USA)

Hector Munoz-Avila (Lehigh university, Bethlehem, USA)

Emma Norling (MMU, UK)

Anton Nijholt (UT, NL)

Joost van Oijen (VSTEP, NL)

Jeff Orkin (MIT, USA)

Ana Paiva (IST, PT)

David Pynadath (USC, USA)

Geber Ramalho (UFPE, BR)

Debbie Richards(Macquarie University, AUS)

Avi Rosenfeld (JCT, IR)

Ilias Sakellariou (UOM, GR)

David Sarne (Bar Ilan University, IR)

Barry Silverman (UPenn, USA)

Pieter Spronck (Tilburg University, NL)

Rainer Unland (University of Duisburg-Essen, GER)

Joost Westra (UU, NL)

vi

Contents

Preface i

Organisation v

Contents vii

Middleware Architectures

Interfacing a Cognitive Agent Platform with Second Life 1
Surangika Ranathunga, Stephen Cranefield & Martin Purvis

CIGA: A Middleware for Intelligent Agents in Virtual Environments 17
Joost Van Oijen, Los Vanhe & Frank Dignum

How to compare usability of techniques for the specification of virtual
agents behavior? An experimental pilot study with human subjects

33

Jakub Gemrot, Cyril Brom, Joanna Bryson & Michal Bida

Agent Architectures

ADAPT: Abstraction Hierarchies to Better Simulate Teamwork 59
Meirav Hadad & Avi Rosenfeld

An Architecture for Affective Behaviours Based on Conservation of Re-
sources

75

Sabrina Campano, Etienne De Sevin, Vincent Corruble & Nicolas
Sabouret

Adaption and Emergance

Socially-aware emergent narrative 83
Sergio Alvarez-Napagao, Ignasi Gmez-Sebasti, Sofia Panagiotidi, Arturo
Tejeda, Luis Oliva & Javier Vzquez-Salceda

Organizing Scalable Adaptation in Serious games 91

Joost Westra, Frank Dignum & Virginia Dignum

Inferring Prgamatics from Dialogue Contexts in Simulated Virtual Agent
Games

109

Yu-Hung Chien & Von-Wun Soo

Dialogues and Learning

Dialog Designs in Virtual Drama: Balancing Agency and Scripted Dialogs 125
Edward C.-C. Kao, Von-Wun Soo

Collection and Analysis of Multimodal Interaction in Direction Giv-
ing Dialogues: Towards an Automatic Gesture Selection Mechanism for
Metaverse Avatars

141

Takeo Tsukamoto, Yumi Muroya, Masashi Okamoto & Yukiko Nakano

Learning by Playing in Agent-oriented Virtual Learning Environment 151
Yundong Cai & Zhiqi Shen

viii

Interfacing a Cognitive Agent Platform with
Second Life

Surangika Ranathunga, Stephen Cranefield, and Martin Purvis

Department of Information Science, University of Otago,
PO Box 56, Dunedin 9054, New Zealand

{surangika,scranefield,mpurvis}@infoscience.otago.ac.nz

Abstract. Second Life is a popular multi-purpose online virtual world
that provides a rich platform for remote human interaction. It is in-
creasingly being used as a simulation platform to model complex human
interactions in diverse areas, as well as to simulate multi-agent systems.
It would therefore be beneficial to provide techniques allowing high-level
agent development tools, especially cognitive agent platforms such as
belief-desire-intention (BDI) programming frameworks, to be interfaced
to Second Life. This is not a trivial task as it involves mapping poten-
tially unreliable sensor readings from complex Second Life simulations to
a domain-specific abstract logical model of observed properties and/or
events. This paper investigates this problem in the context of agent in-
teractions in a multi-agent system simulated in Second Life. We present
a framework which facilitates the connection of any multi-agent platform
with Second Life, and demonstrate it in conjunction with an extension
of the Jason BDI interpreter.

1 Introduction

Second Life [1] is a popular multi-purpose online virtual world that is increasingly
being used as a simulation platform to model complex human interactions in
diverse areas such as eduction, business, medical and entertainment. This is
mainly because of the rich platform it provides for remote human interactions,
including the possibility of enabling software-controlled agents to interact with
human-controlled agents. Second Life is more sophisticated than conventional 2D
simulation tools, and is more convenient than cumbersome robots, thus it has
started to gain attention as a simulation platform for testing multi-agent systems
and other AI concepts. It would therefore be beneficial to provide techniques
allowing high-level agent development tools, especially cognitive agent platforms
such as belief-desire-intention (BDI) programming frameworks, to be interfaced
with Second Life.

When interfacing agent platforms with Second Life, there are two important
aspects to be addressed: how the sensor readings from Second Life environments
are mapped to a domain-specific abstract logical model of observed properties
and/or events, and how the agent actions are performed in the Second Life
virtual environment. The first aspect can be quite complex when considering

the high volumes of potentially unreliable sensor readings an agent receives. As
for the latter, it is important to identify ways of correctly interfacing the agents
with their representation module inside Second Life (the Second Life avatar),
because Second Life may have synchronization issues with respect to carrying
out the actions specified by the agent model.

With the use of the LIBOMV client library [2], we have developed a frame-
work that facilitates the connection of any multi-agent framework with Second
Life and addresses the above challenges. The main focus of this paper is to high-
light the importance and difficulty of creating an abstract logical model of the
sensory inputs of an agent deployed in Second Life, and to present the solution
we developed in our connection framework to address this problem.

Creating a high-level abstract logical model of agent sensory data involves
two main steps: extracting sensory readings from Second Life accurately, and
formulating a high-level domain-specific abstract logical model to be passed to
an agent’s cognitive module. The latter has not gained much attention in the
related research with respect to deploying intelligent agents inside Second Life.

In our framework, an agent deployed in Second Life can sense the Second Life
environment around it with the use of its LIBOMV client, and the framework
records these sensor readings. There are some difficulties in obtaining accurate
sensor readings from Second Life simulations. Therefore we have introduced a
novel technique in our framework, which extracts sensor readings from Second
Life more accurately than the commonly used data extraction methods.

The extracted sensory data result in a high volume of low-level informa-
tion (avatar and object position information and avatar animation information),
making it difficult to directly use these data in an agent’s reasoning process.
In order to convert this low-level information into a form that can be used
by the multi-agent system, we employ a complex event processing mechanism
and identify the high-level domain-specific complex events embedded in the re-
trieved low-level data. The output of the framework is a snapshot of the Second
Life environment that contains all the low-level and high-level events and other
contextual information that took place in a given instant of time, encoded as
propositions. This provides an agent a complete view of the environment around
it, thus eliminating the possibility of having to base its reasoning on a partial
set of data.

We also note that our framework facilitates the co-existence of agents be-
longing to multiple agent platforms in the same Second Life simulation. In this
paper, we demonstrate this framework in conjunction with an extension of the
Jason BDI interpreter that allows agents to specify their expectations of future
outcomes in the system and to respond to fulfilments and violations of these
expectations [3]. An agent’s expectations we consider here are constraints on
the future that are based on published norms, agreed contracts, commitments
created through interaction with other agents, or personally inferred regularities
of agent behaviour. An agent may base its practical reasoning on the assumption
that one or more of its expectations will hold, while ensuring that it will receive
notification events when these rules are fulfilled and/or violated.

With the extended functionality of the Jason platform, we demonstrate how
a Jason agent deployed in Second Life using our framework can take part in
complex simulations and respond to the received percepts from Second Life,
as well as to the identified fulfilments and violations of its expectations. The
fulfilments and violations of an agent’s expectations are detected by an expec-
tation monitor [4] that is integrated with the framework through an interface,
and the agent’s expectations are defined as temporal logic formulae to be moni-
tored by the expectation monitor. The framework forwards the processed sensory
readings from Second Life to both the Jason environment and the expectation
monitor. Therefore, in parallel to a Jason agent being able to respond to the
observed changes in the environment, the expectation monitor matches these
changes with the monitored formulae and identifies the fulfilment or violation
of the defined expectations. The notifications of the identified fulfilments or vi-
olations are also passed to the Jason agent, and the agent can have plans that
respond to these identified fulfilments and violations.

The rest of the paper is organized as follows. Section 2 describes the poten-
tial of Second Life as a simulation environment and the related implementation
problems. Section 3 describes the developed framework and in Section 4, we
demonstrate this developed system by means of an example. Section 5 discusses
some related work. Section 6 concludes the paper.

2 Second Life as a Simulation Environment

Second Life provides a sophisticated and well developed virtual environment
for creating simulations for different domains and to test AI theories, including
agent-based modelling. With the average monthly repeated user logins at around
8000001, and with the virtual presence of many organizations, Second Life con-
tains many interaction possibilities, which inherently lead to the provision of
new scenarios to be used in simulations. Second Life is not restricted to a spe-
cific gaming or training scenario. Developers can create a multitude of scenarios
as they wish, using the basic building blocks that are provided. For example, in
Second Life, these scenarios could be in the areas of education, business, enter-
tainment, health or games. The significance of using Second Life scenarios lies
in the fact that they can be carried out between software-controlled agents, and
also between software-controlled agents and human-controlled agents.

Second Life has been identified as a good simulation platform for testing AI
theories [5] and specifically multi-agent systems [6]. A detailed analysis on the
benefits of using Second Life over traditional 2D simulations and physical robots
has also been done [5], with the main advantage reported being the ability to
create sophisticated test beds in comparison to 2D simulations, and more cost
effective test beds when compared to physical robots.

Despite this, still we do not see Second Life being used for complex simula-
tions of AI theories or multi-agent systems modelling. The lack of use of Second
1 http://blogs.secondlife.com/community/features/blog/2011/01/26/the-second-life-

economy-in-q4-2010

Life as a simulation environment for AI research can be, to a certain extent,
attributed to the previous lack of a convenient programming interface. Tradi-
tional programming in Second Life is done using in-world scripts created using
the proprietary Linden Scripting Language (LSL). These scripts are associated
with objects, and in order to use them to control an agent inside Second Life,
the objects should be attached to the agent. This approach has many limitations
when used for AI simulations, for reasons such as the limited control over the
agent wearing the scripted object. We discuss this in more detail in Section 2.1.

With the development of the third party library LibOpenMetaverse (LI-
BOMV), Second Life can now be accessed through a more sophisticated pro-
gramming interface. LIBOMV is a “.Net based client/server library used for
accessing and creating 3D virtual worlds” [2], and is compatible with the Second
Life communication protocol. Using the LIBOMV client-side API, “bots” can
be defined to control avatars in Second Life. With appropriate programming
techniques, the LIBOMV library can be used to create avatars that have be-
havioural abilities similar to those controlled by humans. This includes moving
abilities such as walking, running or flying, performing animations such as cry-
ing, or laughing, communication abilities using instant messaging or public chat
channels, and the ability to sense the environment around it.

2.1 Challenges in Monitoring Agent Interactions in Second Life

For Second Life simulations that contain a lot of agents and objects moving at
speed, there is a challenge in retrieving accurate position information at a high
frequency to make sure that important events are not missed out.

Although an in-world sensor created using an LSL script can retrieve accurate
position information of avatars and objects, it has limitations when extracting
position and animation information of fast moving objects and avatars. A sensor
can detect only 16 avatars and/or objects in one sensor function call, and the
maximum sensor range is 96 metres. One approach to overcoming this problem
is to employ multiple sensors; however multiple scripts operating for long du-
rations at high frequency introduce “lag” to the Second Life servers, i.e. they
slow the rate of simulation. For the same reason and because of the imposed
memory limitations on scripts, an LSL script cannot undertake complex data
processing, and since there is no provision to store the recorded data in-world at
runtime, recorded data must be communicated outside the Second Life servers
using HTTP requests which are throttled to a maximum of only 25 requests per
20 seconds. Moreover, there is a possibility that avatar animations with a shorter
duration (e.g. crying or blowing a kiss) may go undetected, because a sensor can
record only animations that are played during the sensor operation.

With a LIBOMV client deployed in Second Life, all the aforementioned lim-
itations can be avoided. Avatar and object movements and avatar animations
inside a Second Life environment generate corresponding update events in the
Second Life server, and the server passes this information to the LIBOMV client
using the Second Life communication protocol. The processing of this informa-
tion is done outside the Second Life servers, thus causing no server lag.

However, this approach does have its own limitations which affect the ac-
curacy of recorded information. As with other viewer clients, the Second Life
server sends information to the LIBOMV client only if there is any change in
the environment perceived by the LIBOMV client. This means that the client
has to “assume” its perceived environment. For objects and avatars that are
moving, the client has to keep on extrapolating their position values based on
the previously received velocity and position values until it receives an update
from the server. Extrapolated position values may not be completely in tally
with the server-sent values and this situation is evident when extrapolating po-
sition values for objects and avatars that move fast. Moreover, it was noted that
there is an irregularity in the recorded position data for small objects that may
easily go out of the viewing range of the LIBOMV client, which directly affects
the recording of accurate position information for small objects.

In order to overcome these challenges, we introduce a combined approach
(described in Section 3) based on attaching an object containing an LSL script
to a LIBOMV client deployed in Second Life. These communicate with each
other and produce near-accurate position information about avatars and objects
that move at speed.

This data extraction mechanism can only generate low-level position and
animation information, making it difficult for a multi-agent system to directly
utilize the retrieved data. Therefore the retrieved data should be further pro-
cessed to identify the high-level domain-specific information embedded in the
low-level data. In doing this, it is important that the data collected using the
LIBOMV client and the LSL script are formed into one coherent snapshot which
resembles the state of the Second Life environment. When deducing the high-
level domain-specific information, it is important that these coherent snapshots
are used, in order to make use of all the events and other related information
that took place in a given instant of time. Otherwise an agent’s decision may be
based on partial information.

3 System Design

Figure 1 shows how different components of the system are interfaced with each
other. The LIBOMV client creates and controls an avatar inside the Second Life
server. It continuously senses the environment around it, and carries out move-
ment, animation and communication acts as instructed and passes back the
result notifications to the connected agent module whenever necessary (e.g. the
result notification of the login attempt). We have used the Jason agent devel-
opment platform [7], which is based on the BDI agent model, to demonstrate
the integration of multi-agent platforms with Second Life using our framework.
Here, a Jason agent acts as the coordinator component of this system. It instan-
tiates the LIBOMV client to create the corresponding Second Life avatar, and
commands the LIBOMV client to carry out actions inside Second Life on behalf
of it.

Fig. 1. Overall System Design

3.1 The Extended Jason Platform

The Jason platform we have integrated with the framework is an extended ver-
sion [3] of Jason. The Jason agent platform contains an environment interface
that facilitates the easy integration of Jason agents with other simulations. With
this interface, it is possible to execute agent actions in an external simulated en-
vironment and it is also possible to retrieve the sensory readings of the simulated
environment to be presented as percepts for agents.

The extended version of the Jason architecture used in this work implements
a tight integration of expectation monitoring with the Jason BDI agent model.
With this Jason extension, domain-specific individual agents can directly react
to the identified fulfilments and violations of their expectations, by specifying
plans that are executed in response to those fulfilments and violations. The Jason
interpreter is extended with built-in actions to initiate and terminate monitoring
of expectations, and with these built in actions, any expectation monitoring tool
can be “plugged in” to the Jason environment.

3.2 Interface Between the LIBOMV Client and the Jason Agent

The interface between the LIBOMV client and the Jason agent is facilitated using
a simple protocol we have developed (which we intend to develop further), and
they communicate through sockets (denoted by ‘S’ in Figure 1). This decoupling
makes it possible to connect any agent platform with the LIBOMV clients easily,
and it could well be the case that different LIBOMV clients are connected with
agents in different agent platforms. The protocol currently defines how an agent
should pass commands to the LIBOMV client such as requesting the LIBOMV

client to log into the Second Life server, uttering something in the public chat
channels, sending instant messages to other avatars, moving to a given location
and executing an animation. It also defines how an agent platform can interpret
a message sent by the LIBOMV client. These messages are formulated based
on the environment information recorded and processed by the data processing
modules of the framework. The Jason environment class makes use of this pro-
tocol and converts the agent actions into the corresponding protocol constructs
and passes them to the LIBOMV client. Similarly, it interprets the messages
sent by LIBOMV clients to generate percepts for the Jason agents.

The module that contains LIBOMV clients is capable of handling multiple
concurrent LIBOMV clients and socket connections. Therefore if the correspond-
ing multi-agent system is capable of creating concurrently operating agents, this
can easily create a multi-agent simulation inside Second Life. Consequently, the
module that contains the Jason platform is designed in such a way that it is ca-
pable of handling multiple concurrent instances of socket connections connected
to the Jason agents. As shown in Figure 1, a Jason agent connects to its in-
terface socket through the Jason Environment class, and the Jason Connection
manager interface. The Jason connection manager and the LIBOMV connection
manager together ensure that all these individual Jason agents are connected to
the correct LIBOMV client, through the interface sockets.

3.3 Interface Between the LIBOMV Client and the Second Life
Server

As an attempt to overcome the limitations of data extraction using LSL and
LIBOMV, we have implemented a combined approach to extract data from Sec-
ond Life. In this new approach, a scripted object is attached to the bot deployed
in Second Life, as shown in Figure 1. Detection of the avatars and objects to
be monitored is done by the LIBOMV client, using their initial animation and
movement updates that are received. Identification information for these identi-
fied avatars and objects is then sent to the script. As the script already knows
what is to be tracked, a more efficient, light-weight function can be used to record
movement information instead of the normal LSL sensor function. Position and
velocity data recorded by the script are sent back to the LIBOMV client, while
avatar animation updates are directly captured by the LIBOMV client to make
sure animations with short durations are not missed. Any messages received as
instant messages or in the public chat channels are also directly captured by the
LIBOMV client. With this combined approach, the LSL script guarantees the
retrieval of accurate movement information, while the LIBOMV client takes the
burden of complex data processing off the Second Life servers, thus providing
an accurate and efficient data retrieval mechanism.

3.4 Data Processing Module

The data processing module consists of three main components; the data pre-
processor, the complex event detection module and the data post-processor.

The responsibility of the data processing module is to map the received sensor
readings from complex Second Life environments to a domain-specific abstract
logical model. In essence, it creates snapshots of the system which include low-
level movement and animation information of avatars and movement information
of objects in the given Second Life environment in a given instant of time, along
with the identified high-level domain-specific information and other contextual
information, which are encoded as propositions.

Data Pre-Processor: First, the low-level data received from Second Life
are used to deduce basic high-level information about the avatars and objects,
e.g. whether an avatar is moving, and if so, in which direction and the movement
type (e.g. walking, running or flying), and whether an avatar is in close proxim-
ity to another avatar or an object of interest. Other contextual information such
as the location of the avatar or the role it is playing can also be attached to this
retrieved information as needed.

As mentioned above, the LIBOMV client receives movement information of
objects and avatars from the script, and updates corresponding to avatar anima-
tions and communication messages are directly captured by the LIBOMV client.
This means that a received movement information update does not contain the
information about the current animation of the avatars, and the received ani-
mation and message updates do not contain the information about the current
position or velocity of the avatar. Moreover, these animation and communication
updates do not contain the movement information of other avatars and objects
in the environment, or animation information of avatars. However, whenever an
update is received by the LIBOMV client (whether it be the movement updates
from the script, or an animation or a communication update), it is important
that we create a snapshot that contains movement and animation information of
all the avatars and objects of interest, in order to make it a complete snapshot
representing the Second Life environment.

Therefore the data pre-processor caches the latest received animation and
movement information for all the avatars and objects of interest. When a new
set of movement information is received from the script, for all the avatars that
have a movement record in that received information set, their cached animation
values are associated with the received movement information. The LIBOMV
client receives an update corresponding to every avatar animation change (e.g. if
an avatar is currently standing, and suddenly starts running, the LIBOMV client
receives an animation update ‘run’). Therefore it is safe to assume that an avatar
keeps on performing the animation already recorded in the cache. When an an-
imation update is received for an avatar, it is associated with the extrapolated
movement information of that avatar, based on the cached movement informa-
tion. Since the LIBOMV client receives movement information from the script
every 500 milliseconds, the extrapolation error can be assumed to be very low.
We also generate the movement and animation information of other avatars and
objects in that Second Life environment, for the time instant represented by that
received animation update. This is because a received animation update does not

contain any information related to other avatars and objects in that simulation
as mentioned earlier. Whenever, a communication message is received by the LI-
BOMV client, the movement and animation information of avatars and objects
are generated for the time instant corresponding to that communication update,
using the cached information. Thus, for every set of movement information sent
by the script and every animation and communication message update sent by
the Second Life server, the data pre-processor generates a complete snapshot of
the environment that contains the avatar and object movement information and
avatar animation information. These snapshots can be easily distinguished from
each other with the use of the associated timestamp.

These processed data are then sent to another sub-component of the data pre-
processor which prepares data to be sent to the complex event detection module.
We specifically extracted this sub-component from the main data pre-processing
logic in order to make it possible to easily customize the data preparation logic
according to the selected complex event detection module. For example, for the
complex event detection module we have employed currently, this sub-component
decomposes the generated snapshot into the constituent data structures corre-
sponding to individual avatars and objects, and sends the information related
to objects to the complex event detection module before those corresponding to
avatars.

Complex Event Detection Module: An event stream processing engine
called Esper [8] is used to identify the complex high-level domain-specific events
embedded in the data streams generated by the data pre-processor. The Esper
engine allows applications to store queries and send the low-level data streams
through them in order to identify the high-level aggregated information. Esper
keeps the data received in these data streams for time periods specified in these
queries, thus acting as an in-memory database. Esper also has the ability to
process multiple parallel data streams.

Esper provides two principal methods to process events: event patterns and
event stream queries. We make use of both these methods when identifying the
high-level domain-specific events. The received data streams are sent through
the event stream queries first, to filter out the needed data. Then these filtered
data are sent through a set of defined patterns which correspond to the high-level
events that should be identified. Event identification using patterns is done in
several layers to facilitate the detection of events with a duration. The output
of each layer is subsequently passed on to the layer that follows, thus building
up hierarchical patterns.

The output of the complex event detection module is sent to the data post-
processor.

Data Post-Processor: The data post-processor is required to convert the
recognized low-level and high-level information into an abstract model to be
passed to the connected multi-agent system.

The detected low-level data, as well as high-level events and other context
information are converted to propositions and are grouped into states to be sent
to the multi-agent system. Essentially, a state should represent a snapshot of
the Second Life environment at a given instant of time. Therefore the times at
which the basic events (e.g. receipt of avatar animation, or receipt of movement
information from the script) were received by the system were selected as the
instants modelled in the output state sequence. This creates separate states
consisting all the low-level events that took place at the same basic event, high-
level events as well as the related contextual information.

Expectation Monitor Interface: The expectation monitor interface shown
in Figure 1 is an optional sub-component that processes the output of the data
post-processor a step further by adding a reference to the dependent state for
those events that depend on previous other high-level events. It sends these data
to an expectation monitor attached to it, and in this work we use an expec-
tation monitor that was developed in previous research [4]. The responsibility
of the expectation monitor is to identify the fulfilments and violation of agent
expectations that are defined using the extended version of the Jason platform
explained in Section 3.1.

When an expectation monitor is initially started, it receives a rule (a con-
dition and an expectation) and its type (fulfilment or violation) through the
expectation monitor interface to start monitoring. The rule’s condition and re-
sulting expectation are provided as separate arguments using a specific form of
temporal logic, with the expectation expressing a constraint on the future se-
quence of states [4]. When the monitor starts receiving the output of the data
post-processor as a sequence of states, it matches these against the rule’s con-
dition to determine if the expectation has become active. It also evaluates any
active expectations (created by a condition evaluating to true), progressively
simplifies the monitored expectation and finally deduces fulfilment or violation
of the expectation2.

The fulfilments and violations of agent expectations add a new level of ab-
straction above the state descriptions generated by the data post-processor,
where the expectations are introduced by the agent dynamically and the ful-
filments and violations of those expectations are detected based on the already
identified information in the snapshots. Therefore, in addition to the continu-
ous stream of domain-specific high-level events and state information that our
framework supplies to the agent from Second Life, an agent developed using this
extended version of the Jason platform can dynamically subscribe to fulfilment
and violation events for specific rules of expectation that are appropriate to its
personal or social context.

2 The system employs multiple expectation monitor instances in parallel in order to
monitor multiple concurrently active expectations an agent may have. This is due
to a limitation in the expectation monitor we have employed that it cannot monitor
for concurrently active individual expectations.

4 Example - A Jason Agent Engaged in the Football
Team Play Scenario “Give and Go”

In this section we demonstrate how a Jason agent can engage in a SecondFoot-
ball [9] virtual football training scenario with a human controlled player3, and
how it can reason based on received percepts and the detected fulfilments and
violations of its expectations.

SecondFootball is an interesting simulation in Second Life which enables
playing virtual football. It is a multi-avatar, fast-moving scenario which promises
to be a hard test case to test our framework when compared with most of the
publicly accessible environments in Second Life. This system provides scripted
stadium and ball objects that can be deployed inside Second Life, as well as a
“head-up display” object that an avatar can wear to allow the user to initiate
kick and tackle actions.

In this example, we implement a simplified version of the football team play
scenario “give and go”. Here, the Jason agent Ras Ruby is engaged in the team
play scenario with the player Su Monday, who is controlled by a human. When
Ras Ruby receives the ball, she adopts the expectation that Su Monday will
run until she reaches the PenaltyB area, so that she can pass the ball back to
Su Monday, to attempt to score a goal.

In order to implement this team-play scenario, the high-level complex events
of the SecondFootball domain we wanted to detect were whether the ball was in
the possession of a particular player, whether the ball is being advanced towards
a goal, and successful passing of the ball among players by means of up-kicks
and down-kicks. Though not used in the example, the framework is also capable
of detecting goal scoring by up-kicks and down-kicks, dribbling the ball over
the goal line, and successful or unsuccessful tackles. The developed framework
had to be customised to achieve these requirements, and in the future we intend
to introduce options(e.g. configuration files and run-time scripts) that can be
utilized to customize the framework for a given Second Life simulation more
easily.

When the system starts, the Jason agent corresponding to Ras Ruby is ini-
tialized. When the Jason agent starts executing, it first tries to log itself in
Second Life. The following Jason plan initiates the login process.

// The ‘+!’ prefix resembles a new goal addition
+!start

<-
connect_to_SL("xxxx", "Manchester United, 88, 118, 2500");
!check_connected.

The parameters specify the login password and the login location, respectively.
After sending this login request to the LIBOMV client, the agent has to wait

till it gets the confirmation of the successful login from the LIBOMV client, as
shown in the following plan:
3 One of our agents is currently controlled by a human as our Jason agents are still

not capable of handling complex reasoning involved with playing football.

+!check_connected: not connected
<-
.wait(2000);
// ‘!!’ means tail-recursion optimised posting of a goal
!!check_connected.

When it finally receives the successful login notification, the agent instructs
the LIBOMV client to run the avatar to the area MidfieldB2 using the plan
shown below.

+!check_connected: connected
<-
action("run","MidfieldB2").

Once in the area MidfieldB2, the agent Ras Ruby waits for Su Monday to
kick and pass the ball to it. Once it successfully receives the ball the agent gets
the “successful kick(su monday, ras ruby)” percept (which is generated by the
framework and states that Su Monday successfully passed the ball to Ras Ruby
through a kick), and this generates a new belief addition event (‘+success-
ful kick’) which triggers the corresponding plan given below.

In this plan, we have used the internal action start monitoring defined in
the extended version of the Jason platform [3], and initiate monitoring for the
fulfilment and violation of the expectation. Here, in the first parameter we define
the type of expectation; whether it is a fulfilment or a violation. The second
parameter assigns a name for the expectation. The third parameter is the name
of the expectation monitor used. The fourth parameter is the triggering condition
for the expectation, and in this example, it is a keyword with a special meaning
(#once). For this scenario the initiating agent wants the rule to fire precisely
once, as soon as possible, and this can be achieved in our current expectation
monitor by using a ‘nominal’ (a proposition that is true in exactly one state)
for the current state as the rule’s condition. However, the BDI execution cycle
only executes a single step of a plan at each iteration, and any knowledge of
the current state of the world retrieved by the plan may be out of date by the
time the monitor is invoked. The #once keyword instructs the monitor to insert
a nominal for the current state of the world just before the rule begins to be
monitored. Here, the actual expectation formula is given by the fifth parameter,
and the sixth parameter is a list of optional context information, which we do
not utilize in this example.

The fulfilment of this expectation occurs when Su Monday advances towards
GoalB (’advanceToGoalB(su monday)’) , until (’U’) she reaches PenaltyB,
denoted by ’penaltyB(su monday)’ . Similarly, the violation of this expectation
occurs if Su Monday stopped somewhere before reaching penaltyB, or she moves
in the opposite direction before reaching PenaltyB area4.

4 The conditions and expectations are defined in temporal logic and we do not wish
to elaborate on them in the scope of this paper. These are written as nested Python
tuples, as this is the input format for the expectation monitor written in Python.

//The ‘+’ prefix resembles an event relating to belief addition
+successful_kick(su_monday,ras_ruby)

<-
//internal actions
.start_monitoring("fulf",

"move_to_target",
"expectation_monitor",
"#once",
"(’U’,

’advanceToGoalB(su_monday)’,
’penaltyB(su_monday)’)",

[]);

.start_monitoring("viol",
"move_to_target",
"expectation_monitor",
"#once",
"(’U’,
’advanceToGoalB(su_monday)’,
’penaltyB(su_monday)’)",

[]).

If Su Monday fulfilled Ras Ruby’s expectation, the expectation monitor de-
tects this and reports back to the Jason agent. The following plan handles this
detected fulfilment and instructs the avatar to carry out the kick action5.

+fulf("move_to_target", X)
<-
//Calculate kick direction and force, turn, then ...
action("animation", "kick").

On the other hand, if Su Monday violated the expectation, the expectation
monitor reports the violation to the Jason agent, and the agent uses the first
plan below to decide the agent’s reaction to the detected violation, which creates
a goal to choose a new tactic for execution. The second plan (responding to this
new choose and enact new tactic) is then triggered, and the agent adopts the
tactic of attempting to score a goal on its own by running towards the PenaltyB
area with the ball6 .

+viol("move_to_target",X)
<-
!choose_and_enact_new_tactic.

5 Due to technical problems the Second Life avatar cannot currently perform the actual
‘kick’ animation

6 When an avatar is in possession of the ball and the avatar starts moving, the ball
moves in front of the avatar

+!choose_and_enact_new_tactic : .my_name(Me)
<-
action("run", "penaltyB").

5 Related Work

Research involved with programming with Second Life has focused either on
extracting sensory readings from Second Life, or controlling avatar movement
and conversational behaviours to create Intelligent Virtual Agents (IVA). Not
much research has attempted to model reactive agents that generate behavioural
responses to their observations on the Second Life environment, or addressed the
issue of mapping low-level sensory data to high-level domain-specific information.

Most of the research that worked on extracting sensory readings from Sec-
ond Life has utilized this retrieved information for statistical purposes. It can
be seen that both LSL scripts and LIBOMV clients have been used for sensory
data extraction from Second Life servers, but the latter had been more effective
in collecting large amounts of data. LIBOMV clients have been successfully used
to create crawler applications that collected large amounts of data about avatars
and user-created content, to statistically analyze the number of avatars and ob-
jects present in various different Second Life regions over periods of time [10, 11].
There has also been an attempt to exploit the power of both these approaches in
designing a multi-level data gathering tool which collected more than 200 mil-
lion records over a period of time [12]. There have also been several attempts to
collect data from Second Life to examine social norms related to gender, inter-
personal distance, dyantic interaction proximities and spatio-temporal dynamics
of user mobility in a virtual environment [13–15].

Cranefield and Li presented an LSL script-based framework that sensed the
Second Life environment and tried to identify the fulfilments and violations of
rules defined in structured virtual communities [16]. However, this research had
been conducted in a narrow scope which dealt only with animations of human-
controlled avatars.

Burden provided a theoretical proposal for creating IVAs inside Second Life
with the sophisticated abilities of concurrent perception, rational reasoning and
deliberation, emotion and action, and also pointed out the complexities of a
practical implementation [17]. A theoretical framework has also been proposed
which integrates different modules that handle these different capabilities [6], but
the practical implementation of both of these is still limited to simple sensory,
movement and conversational abilities.

There have been several research attempts on creating IVAs inside Second
Life using LIBOMV clients, but their main focus had been on improving the
conversational and animation abilities of virtual agents [18, 19].

Research has been carried out by Bogdanovych and colleagues who devel-
oped a number of useful libraries for connecting agents to Second Life (including
their own BDI interpreter for controlling agents inside Second Life), in specially
designed environments that were instrumented to connect to “electronic institu-

tion” middleware [20]. In contrast, our research focused on developing a frame-
work that supports connecting multi-agent systems with existing Second Life
environments. Moreover, they have not much focused on how to create coher-
ent snapshots that provide a complete view of a given Second Life environment
at a given instant of time to be presented to the multi-agent system, or how
the extracted low-level data can be used to identify much complex high-level
information, which was the main focus of our work.

6 Conclusion

In this paper we presented a framework that can be used to deploy multiple
concurrent agents in complex Second Life simulations, and mainly focused on
how the potentially unreliable data received by an agent deployed in a Second
Life simulation should be processed to create a domain-specific high-level ab-
stract model to be used by the agent’s cognitive modules. This problem has
not gained much attention from the past research on Second Life. We hope the
implementation details we provided would be a valuable road map for future
researchers hoping to use Second life for multi-agent simulations in various dif-
ferent paradigms, apart from the developed framework being a potential starting
point for further research in integrating multi-agent systems with Second Life.

We note that any multi-agent platform can be connected with Second Life
using our framework, and demonstrated this with an extended version of the
Jason BDI interpreter. With the use of an example, we demonstrated how a
Jason agent can execute actions inside Second Life and how it can respond to
the observed changes in the environment. We also integrated an expectation
monitor with our framework and demonstrated how Jason agents can use the
sensory data to identify higher level events associated with fulfiled and violated
personal expectations, based on the complex interactions that they take part in.

Although the current framework is customized for the SecondFootball simu-
lation, in the future we plan to enhance this framework to be more generalized,
and experiment with it in various simulations such as medical training scenarios.
Moreover, we intend to enhance the capabilities of Jason agents, so that they
will be able to actively participate in more complex scenarios.

References

1. Linden Lab. Second Life Home Page. http://secondlife.com
2. OpenMetaverse Organization. libopenmetaverse developer wiki. http://lib.

openmetaverse.org/wiki/Main_Page

3. Ranathunga, S., Cranefield, S., Purvis, M.: Integrating Expectation Handling into
Jason. Discussion Paper 2011/03, Department of Information Science, University
of Otago (2011). http://eprints.otago.ac.nz/1093/

4. Cranefield, S., Winikoff, M.: Verifying social expectations by model checking trun-
cated paths. Journal of Logic and Computation (2010). Advance access, doi:
10.1093/logcom/exq055

5. Veksler, V.D.: Second Life as a Simulation Environment: Rich, high-fidelity world,
minus the hassles. In: Proceedings of the 9th International Conference of Cognitive
Modeling (2009)

6. Weitnauer, E., Thomas, N., Rabe, F., Kopp, S.: Intelligent agents living in social
virtual environments bringing Max into Second Life. In: H. Prendinger, J. Lester,
M. Ishizuka (eds.) Intelligent Virtual Agents, Lecture Notes in Computer Science,
vol. 5208, pp. 552–553. Springer Berlin / Heidelberg (2008)

7. Bordini, R.H., Hubner, J.F., Wooldridge, M.: Programming Multi-Agent Systems
in AgentSpeak using Jason. John Wiley & Sons Ltd, England (2007)

8. EsperTech. Esper Tutorial. http://esper.codehaus.org/tutorials/tutorial/

tutorial.html

9. Vstex Company. SecondFootball Home Page. http://www.secondfootball.com
10. Varvello, M., Picconi, F., Diot, C., Biersack, E.: Is there life in Second Life? In:

Proceedings of the 2008 ACM CoNEXT Conference, CoNEXT ’08, pp. 1:1–1:12.
ACM, New York, NY, USA (2008)

11. Eno, J., Gauch, S., Thompson, C.: Intelligent crawling in virtual worlds. In: Pro-
ceedings of the 2009 IEEE/WIC/ACM International Joint Conference on Web In-
telligence and Intelligent Agent Technology - Volume 03, WI-IAT ’09, pp. 555–558.
IEEE Computer Society, Washington, DC, USA (2009)

12. Kappe, F., Zaka, B., Steurer, M.: Automatically detecting points of interest and
social networks from tracking positions of avatars in a virtual world. In: Proceed-
ings of the 2009 International Conference on Advances in Social Network Analysis
and Mining, pp. 89–94. IEEE Computer Society, Washington, DC, USA (2009)

13. Friedman, D., Steed, A., Slater, M.: Spatial social behavior in Second Life. In:
C. Pelachaud, J.C. Martin, E. Andr, G. Chollet, K. Karpouzis, D. Pel (eds.) Intel-
ligent Virtual Agents, Lecture Notes in Computer Science, vol. 4722, pp. 252–263.
Springer Berlin / Heidelberg (2007)

14. Yee, N., Bailenson, J.N., D, P., Urbanek, M., Chang, F., Merget, D.: The unbear-
able likeness of being digital; the persistence of nonverbal social norms in online
virtual environments. Cyberpsychology and Behavior 10, 115–121 (2007)

15. La, C.A., Michiardi, P.: Characterizing user mobility in Second Life. In: Proceed-
ings of the first workshop on Online social networks, WOSP ’08, pp. 79–84. ACM,
New York, NY, USA (2008)

16. Cranefield, S., Li, G.: Monitoring social expectations in Second Life. In: J. Padget,
A. Artikis, W. Vasconcelos, K. Stathis, V. Silva, E. Matson, A. Polleres (eds.)
Coordination, Organizations, Institutions and Norms in Agent Systems V, Lecture
Notes in Artificial Intelligence, vol. 6069, pp. 133–146. Springer (2010)

17. Burden, D.J.H.: Deploying embodied AI into virtual worlds. Knowledge-Based
Systems 22, 540–544 (2009)

18. Ullrich, S., Bruegmann, K., Prendinger, H., Ishizuka, M.: Extending MPML3D
to Second Life. In: H. Prendinger, J. Lester, M. Ishizuka (eds.) Intelligent Virtual
Agents, Lecture Notes in Computer Science, vol. 5208, pp. 281–288. Springer Berlin
/ Heidelberg (2008)

19. Jan, D., Roque, A., Leuski, A., Morie, J., Traum, D.: A virtual tour guide for
virtual worlds. In: Proceedings of the 9th International Conference on Intelligent
Virtual Agents, IVA ’09, pp. 372–378. Springer-Verlag, Berlin, Heidelberg (2009)

20. Bogdanovych, A., Rodriguez-Aguilar, J.A., Simoff, S., Cohen, A.: Authentic in-
teractive reenactment of cultural heritage with 3D virtual worlds and artificial
intelligence. Applied Artificial Intelligence 24(6), 617–647 (2010)

CIGA: A Middleware for Intelligent Agents in

Virtual Environments

Joost van Oijen1,2, Löıs Vanhée3,1, and Frank Dignum1

1 University of Utrecht
PO Box 80.089, 3508 TB Utrecht, the Netherlands

{oijen,lois,dignum}@cs.uu.nl
2 VSTEP

Weena 598, 3012 CN Rotterdam, the Netherlands
joost@vstep.nl

3 ENS de Cachan - Antenne de Bretagne

Abstract. Building intelligent behavior in (educational) games and sim-
ulations can greatly benefit from the use of agent technology. Intelligent
agents within a multi-agent system can be developed for controlling vir-
tual characters in a simulation environment within a game engine. Cou-
pling a multi-agent system to a game engine is not a trivial task and
introduces several conceptual design issues concerning embodied agent
design. In this paper we present CIGA, a middleware to facilitate this
coupling tackling the design issues in a structured approach, not only for
embodied agent design but also for the system as a whole.

Key words:Middleware, Multi-Agent Systems, Virtual Environments, In-
telligent Agents, Simulation

1 Introduction

As the technology to create more realistic, complex and dynamic virtual environ-
ments advances, there is an increasing interest to create intelligent virtual agents
(IVAs) to populate these environments for the purpose of games, simulations or
training. Designing an IVA, game engine technology can be employed to simulate
its physical embodiment, equipped with sensors and actuators interacting with
the virtual environment. The use of agent technology in the form of multi-agent
systems (MASs) is a good fit to realize the cognitive and decision-making aspects
of an IVA.

Combining these technologies is not a trivial task and introduces conceptual
and technical design issues. First of all, both technologies often work at different
abstraction levels. Games engines work with low-level data representations for
virtual environments and the characters populating it. MASs work with more
high-level semantic concepts designed to form a suitable abstraction from the
physical environment representing an agent’s perceptive view on the environ-
ment and the actions for influencing it. Second, agent actions in a typical MAS

environment are non-durative. When embodied in a real-time environment, ac-
tions become durative and low-level reasoning over their execution is required.
MASs are generally not designed to handle this aspect. Third, the designs of an
agent’s embodiment in a game engine and its cognitive counterpart in the MAS
are highly depend on each other. An agent’s view on the environment is depen-
dent on his sensory capabilities provided by its embodiment whereas its ability
to influence the environment through its embodiment is bounded by the possible
control over an avatar in the game engine. This, in turn, has implications on an
agent’s deliberation on possible goals, plans and actions. Last, the required con-
nection between the two specialized software systems introduces some technical
issues concerning software engineering.

Current attempts in combining these technologies often use a pragmatic ap-
proach when tackling these design issues. A direct connection between a game
engine and a MAS is created either with or without the help of standard tech-
nologies or interfaces that may provide access to a specific game engine [1] or
range of MASs [3]. Although such an approach can be a productive solution,
design decisions are often influenced and bounded by the individual capabilities
of the employed technologies. There is often no structured approach in bridging
the conceptual gap between the two systems. There are systems that focus more
on the conceptual issues attempting to employ agent technology by translating
the physical world model to a social world model suitable for cognitive reasoning
[5, 16]. Though, these systems don’t pretend to give a structured approach for
tackling the technical issues when using their system with alternative MASs or
game engines.

In this paper we present CIGA1, a middleware to facilitate the coupling be-
tween agent technology and game engine technology, tackling the inherent design
issues in a structured way. An architecture for using this middleware is presented
to solve technical issues when connecting agents in a MAS to their embodiments
in a game engine. Additionally we show the need for using ontologies to provide
a design contract between not only an agent’s mind and body connection but
also for the system as a whole. This can lead to a new methodology for game
design using agent technology. An initial fully functional version of CIGA has
been implemented and currently undergoes evaluation.

The paper is organized as follows. In the following section we outline the
motivation for introducing CIGA. Section 3 describes the architectural design of
the proposed middleware. In section 4 we compare the middleware with related
technologies. Finally, section 5 we conclude and discuss results.

2 Bridging the Conceptual Gap

Designing an embodied agent with current game engine and agent technology,
one must overcome several inherent conceptual design issues. In this section, we
provide a description of each issue and present the functional role CIGA plays
to overcome these issues.

1 Creating Intelligent Games with Agents

2.1 Social World Model

In a MAS, an agent’s interpretation of the environment is based on semantic
concepts forming an abstraction of the virtual physical world. The data repre-
sentations of these concepts in a game engine often are at a different abstraction
level than what is suitable for agents in a MAS to work with. For example, an
agent’s concept of ”a person sitting on a chair” may be represented in the game
engine by a character’s location in the vicinity of a chair in combination with the
positions of each skeletal bone, forming a sitting posture. Instead of the physi-
cal world state representations in a game engine, agents work with (high-level)
semantics concepts. The use of rich semantic concepts is particularly important
for the more socially-oriented simulations with communicating agents like in se-
rious games. Though, the demand for rich semantics in the more action-oriented
games is getting increasingly important [17].

CIGA overcomes the difference of data representation by translating the phys-
ical simulation to a social simulation for agents. To accomplish this, semantic
data is generated during agent sensing which is translated from raw data of
game objects or events. This semantic information forms the basis for an agent’s
view and interpretation of the environment. Inferences can be made to provide
agents with semantic concepts relevant for the social simulation. For example,
the meaning of a certain gesture performed by an embodied agent can be in-
ferred from an animation in the game engine. Making higher-level information
directly available for agents is efficient as agents don’t have to infer these them-
selves. CIGA employs domain ontologies to specify a formal representation of
the semantic concepts. The ontologies are accessible in both the game engine to
perform the required translations and in the MAS representing the agent’s social
world model.

The risk of translating raw data to semantic data is the problem of over-
inference. As implemented inferences are the same for all agents we might make
an inference we don’t want a certain agent to be able to make. Further, we might
loose the ability for an agent to interpret perceived information in his own way.
For example, how an agent interprets the meaning of a perceived gesture can
be dependent on an agent’s cultural identity. This makes it important to design
the semantic concepts in the domain ontology at the right abstraction level such
that agents don’t have to perform too much low-level inferences on their own,
but can still make different interpretations based on their individual context.
CIGA doesn’t enforce the use of any abstract level as this is dependent on the
application domain.

2.2 Perception

Agents in a MAS get information from their environment through percepts. If an
agent becomes embodied in a virtual environment, these percepts are based on
sensory information retrieved from one or more sensors attached to the embod-
iment in a game engine. When creating percepts directly from sensory informa-
tion, we do not only face the problem of information representation as described

above, but there’s also the risk for an agent to become flooded with percepts
that are irrelevant with respect to his current state of mind. An agent should
have the ability to direct his attention to selected information from the envi-
ronment such that irrelevant information can be filtered, though still allowing
an agent to be susceptible to unexpected events. Filtering sensory information
should not be performed in the game engine as this process is dependent on the
agent’s mind in a MAS. On the other hand, delegating this process to the MAS
is not ideal as the cost of communicating the unfiltered information can have
a negative performance impact on the system as a whole. Additionally, MASs
generally don’t provide standard facilities implementing perception filtering.

CIGA tackles this problem by introducing a filtering mechanism located
closely to an agent’s sensors in the game engine. Agents in a MAS can show
their interest in the environment in the form of subscriptions that define how
sensory information has to be filtered. Using the environment semantics defined
in the domain ontology introduced before, powerful subscriptions can be made
to give an agent full control over the range of percepts to receive. A description
of this mechanism can be found in [20] and falls out of the scope of this paper.

2.3 Action

In a MAS, an agent’s capability to influence the environment is defined by a set
of actions designed to change the state of an environment. The success or failure
of an action denotes that the desired state of the environment was reached or
could not be reached respectively. In a typical MAS environment, actions are
instantaneous and the result is known immediately. When an agent becomes
embodied in a virtual environment, its capability to influence the environment
becomes bounded by the available actuators of the embodiment. Since these ac-
tuators work in real-time, actions become durative and the environment may
change during the execution, possibly preventing the action from finishing suc-
cessfully. For example, an action like open door can fail during execution if the
door is opened from the other side by another agent. Further, this raises ques-
tions about the meaning of the success or failure of an action performed by
an embodied agent. Is an action said to be successfully executed if the body
performed the action or if the desired state of the environment was reached?

To deal with this different view on actions, CIGA provides a generic action

monitoring facility to deliver action requests from an agent to its embodiment
and communicate feedback about the realization of the action, allowing an agent
to follow the progress and intervene if necessary. The meaning of the success
or failure of an action is left to the designer where he can use the feedback
mechanism to specify the state of the action and how it was reached (E.g. the
agent didn’t fully perform the action in the environment, but we still consider the
action to be succeeded as the desired environment state defined by the semantics
for the action was reached). A more elaborate overview is given in section 3.2.

A well known design issue is the need for finding a suitable abstraction level
for behavior control. Choosing an abstraction level has implications on both

agent design and system performance. The use of more low-level, physically-
oriented actions gives an agent more control over its body but increases the
communication cost of delivering the instructions to the game engine. Using
more high-level, cognitive-oriented actions delegates more control to the game
engine, but the ability is lost to take an agent’s individuality into account. For
example, it becomes harder to reflect an agent’s own personality or mental state
on his behavior if this information is defined in the MAS (E.g. drunk and sober
agents will walk in the same way). Although the communication cost for sending
instructions is decreased, agents are more dependent on perception to see if the
intents of their actions have been achieved. The aim is to find the right balance
of intelligence distributed between the mind and body of an agent in the MAS
and game engine respectively. CIGA doesn’t enforce the use of any abstraction
level for actions as this is dependent on the specific application domain.

2.4 Communication

MASs often provide an inter-agent communication mechanism for agents to com-
municate. The messages being communicated usually adhere to standards like
FIPA ACL where content can be represented using formal semantics understood
by both agents. Simulating human-like communication requires agents to per-
form (non)verbal communicative behavior and perception through their body’s
actuators and sensors in the environment. Like actions, communication becomes
durative. Further, the desired effect of the communication cannot easily be de-
termined as this is dependent on mental processes within the receiving agent.
Successful reception of a communicative act is not trivial as this depends on
the available medium from sender to receiver, bounded by the simulated laws of
physics in the environment. For example, two agents may not be able to hear
each other in a noisy bar when they are at different sides of the room.

CIGA facilitates in the communication process between embodied agents by
introducing its own communication mechanism taking into account both the
durative nature of communication and environmental factors. For example, the
delivery of a communication message is only performed when the correspond-
ing action realizing the communicative act in the environment is successfully
achieved and the receiving agent is physically able to perceive this act. This
mechanism is briefly mentioned later in this section but an elaborate functional
overview falls outside the scope of this paper.

3 CIGA Framework

In this section we present an architectural framework for integrating the CIGA
middleware with both game engine and agent technology. An illustration of the
main framework is given in figure 1.

Since the proposed middleware must connect to two specialized software sys-
tems, the common design approach was taken to internally divide the middleware
into two functional components. The Physical Interface layer connects to a game

Fig. 1. Middleware Framework.

engine whereas the Cognitive Interface layer connects to a MAS. Both compo-
nents are internally connected using a communication mechanism. The Ontology

Model provides access to domain ontologies specified for a specific application
domain containing formal representations of the communicated content between
an agent’s mind and body.

This internal distributed design several advantages. First, it helps to bridge
the conceptual gap between a game engine and a MAS by dedicating separate
components for the integration with the technologies. Second, from a technical
point of view, it allows both components to be implemented in different pro-
gramming languages. It is often the case that the used game engine and MAS
are written in different languages. For the middleware as a whole to be able to
interface with both technologies while matching the language of that technology
results in an easy integration process and an efficient, tight connection. Last, the
design introduces connection transparency since the game engine and MAS can
run in different processes or distributed over different computers or platforms,
depending on the used internal connection mechanism.

Next we’ll first describe the role of ontologies within the middleware after
which we’ll look at the individual components connecting to game engine and
MAS respectively.

3.1 The Role of Ontologies

The Ontology Model represents a storage facility for semantic concepts. It con-
sists of domain ontologies designed for a specific application domain to capture
an agent’s perceptual and interactional capabilities within an environment. The
use of ontologies forces an agreement between a game engine and a MAS on the
required domain concepts. This is known as a design by contract [14], increasing
robustness and reusability within the system.

Building a domain ontology for the simulation environment encompasses
defining object and event classes with their attributes. Attributes for objects
represent their physical or functional properties whereas attributes for events
represent parameters specifying event details. Classes can be organized in a hi-
erarchical fashion where attributes are inherited from parent classes. To form an

agreement on the actions agents can perform in an environment, (parameterized)
action classes should be specified in the domain ontology.

Domain ontologies can be created using an ontology editor like Protégé. An
interesting feature is the ability to change and extend meta-classes for objects,
events or actions. This allows the ontology to support custom data fields for
specific types of concepts. For example, a perceptibility type can be assigned to
an object property to specify its perceivability (e.g. visual, auditory or tactile)
which use will be described later. Additionally, affordances can be specified for
object classes which can facilitate agents in understanding their world in terms
of interactions they can have with it. The use of Affordance Theory has been
previously explored in [6, 4]. Related to affordances, information associated with
smart objects can be stored [11, 15]. A small example showing the possibilities
of a simple domain ontology is illustrated in figure 2.

Fig. 2. Domain Ontology Example.

The left side of the illustration shows a domain ontology consisting of several
object classes and actions for human actors. The right side of the example shows
a simple scene with two human agents (A and B), a fire and two objects which
can be used to attack a fire. Now assume agent A notices a small fire starting
near agent B who is unaware of this. Agent A would like to resolve the situation
and has several options. He can pick up the fire extinguisher and use it to put out
the fire or he can use the bucket of water positioned near agent B. This choice
may depend on the size and type of the fire and the type fire extinguisher. For
example, an electrical fire should not be extinguished using water which makes
the first option preferable if it concerns a chemical fire extinguisher. Further,
agent A can communicate with agent B to advise him to deal with the fire,
although this choice may not be suitable if agent B is a small child.

Agent A is able to perform this line of reasoning based on the given domain
ontology. Here, object properties provide information about the objects (E.g. ob-
ject positions, the type of fire extinguisher or the age of Agent B). Object classes
can be annotated with conditional affordances helping an agent to understand
how he can interact with objects being perceived. For example, physical objects
of a certain size can be picked up or a bucket filled with water can be used to

attack a fire. The concepts in the domain ontology are also interesting for use
as content in communication languages between agents [21].

These domain ontologies cover concepts relevant to both an agent’s embod-
iment and his mind. In CIGA they are fully accessible at runtime to both the
game engine and MAS as will become clear in the next parts of this section.

3.2 Connecting the Game Engine

As shown in Figure 1, the Physical Interface layer of CIGA connects to a game
engine. Its main task is the administration of agent embodiments participating in
the middleware and individually control their sensors and actuators. Abstraction
from the game engine is achieved using an intermediate layer, hereafter called
the GE Interface layer, connecting a specific game engine. Figure 3 illustrates
the design focusing on the functional interfaces and data flows.

Fig. 3. Integration Middleware in Game Engine.

A prerequisite for using CIGA is the ability to modify the game engine al-
lowing implementation of the GE Interface layer. This layer is responsible for
integrating CIGA’s Physical Interface component as an external game engine
component to be included in the engine’s update loop which allows it to run
processes on its own. For example, agent sensing can be controlled to run at a
configurable frequency or the MAS can be provided with regular time updates.
This approach makes CIGA less dependent on specific features that may or may
not be available in a specific game engine. Next we describe each horizontal layer
from figure 3 in more detail.

Management The role of the Governor in the Physical Interface is to provide
a connection mechanism for synchronizing the simulation between the game en-
gine and the MAS. It monitors the creation and destruction of entities in the
environment that are candidates for agent embodiment and notifies the MAS
about their existence. Additionally, simulation time is synchronized by send-
ing regular time updates to the MAS, who often don’t have an internal clock
explicitly defined.

Semantic Processing The goal of semantic processing is to translate raw
object and event data available in the game engine to semantic data. Semantic
data is used as sensory information which allows an agent to build a social model
of the environment based on meaningful concepts. The Ontology Model can be
accessed to retrieve the formal representation of those concepts.

Creating semantic data from raw data at runtime is a process performed in
the GE Interface layer. Here, at design time, entity bridges are created asso-
ciating object classes from a domain ontology to entities defined in the game
engine (E.g. associating the fire concept to a fire class in the game engine). Dur-
ing runtime, the object’s attributes are generated from raw entity data (E.g. an
object’s size property is calculated). This translation process is performed when
agents sense environment entities. Furthermore, semantic event classes can be
generated based on raw game events or as a result of custom inferences. Inference
based on previously sensed information is achieved using a cache belonging to
an agent’s sensory processor.

Note that translation and inference rules for generating semantic data are
the same for all agents. At this stage, although agents have their individual view
of the environment determined by their sensors, their interpretation of it is the
same as specified by the domain ontology. This fact must be taken into account
when designing the ontology.

Agent Sensing Agent sensing is performed using a Sensory Processor provided
for each participating agent within CIGA. Its goal is to collect sensory informa-
tion from all sensors assigned to an agent’s embodiment and prepare them as
percepts for the MAS agent to receive.

Sensors obtain sensory information from the environment. The processing
logic for a sensor is implemented in the Physical Interface using a sensor base
class. Specific sensors must be created in the GE Interface layer and are required
to assign a perceptibility type (e.g. visual, auditory, tactile) to the sensor and
provide an implementation of the abstract method GetObservableEntities().
This method is responsible for building a list of entities from the environment the
sensor is currently able to observe. Access to game engine queries can support
this process (E.g. to determine if an agent can observe another agent standing
behind a wall or if a sound can still be heard at a certain distance from its origin).
We assume the game engine offers us the functionality to achieve the required
queries. With this approach, one can easily build a sensor library in the GE

Interface layer to store different sensors with more or less advanced algorithms.

Since sensors can be dynamically replaced, one can support different level of
details (LODs) for sensors.

Based on the list of observable entities, sensing in the base class continues by
extracting sensory information from these entities using the Semantic Processing

described before. The sensor’s perceptability type is used to filter the object
properties and events that can be sensed. E.g., In the example from figure 2, the
heat property of the fire entity can only be sensed by a tactile sensor.

After all sensors have been processed, the Sensory Processor filters the col-
lected data as further described in [20].

Agent Acting Agent behavior is performed using a Behavior Realizer provided
for each agent participating within CIGA. Its goal is to realize semantic actions
instructed by a MAS by managing an action’s life cycle and communicating
feedback about its state back to the MAS agent. Actions are executed in parallel
in an interleaved fashion driven by the game engine loop.

Actions themselves are implemented in the GE Interface layer. They are
responsible for realizing the intended action semantics by accessing game engine
instructions. The Physical Interface layer provides an abstract base class for
actions. Creating specific actions involves implementing the following methods:

• CheckPreconditions(): This method is called before the action is exe-
cuted. Here any preconditions can be checked which must pass before the
realization of the action can be started. If the preconditions are not met the
action will not continue further and the agent is notified.

• Body(): This is the main execution loop. Here game engine functionality
can be addressed to realize the intent of the action. This includes controlling
the actuators of the agent’s embodiment and monitoring its progress. For
virtual characters, this often involves interacting with an Animation System

in the game engine. The action can end prematurely when problems arise
during realization after which the agent is notified about the cause.

• CheckEffects(): This method is called after the action was successfully
realized. Here the intended effects of the action on the game state can be
validated. If the effects are not met the action will end with a corresponding
notification.

• OnAborted(): A MAS agent has the ability to abort any scheduled action.
This method is called when it decides to do so. Here logic can be implemented
to properly interrupt and clean up the action’s realization in the game engine.

Note that it is up to the MAS agent to infer success or type of failure of an
action based on the received action feedback notifications. Further, CIGA doesn’t
impose any rules for the implementation technique or data formats used for
actions. It merely provides a generic facility to deliver instructions from a MAS
agent to its embodiment and to communicate feedback about the realization
of these instructions. For example, a common technique for behavior control
is the use of parameterized actions representing an API for agents to control

their embodiment [1, 22, 2]. In CIGA, parameterized actions can be defined in
the domain ontology to form an agreement on the used API.

This does not restrict the use of more specialized techniques. For example,
upcoming language standards such as BML can still be used [12], which is an
XML-based language for communicative behavior realization. Here, a single ac-
tion can be defined for communicative behavior sending BML data and feedback
information between the MAS and the game engine.

3.3 Connecting the MAS

The Cognitive Interface layer of CIGA connects to a MAS, providing a generic
interface for agents in a MAS with their embodiment in a real-time environment.
This interface should allow for the communication of percept data and action
instructions whose data is associated with semantic concepts from the domain
ontology. Similar to the interface with the game engine, abstraction from the
MAS is achieved using an intermediate layer, hereafter called the MAS Interface

layer. Figure 4 illustrates the connection framework.

Fig. 4. Integration Middleware in MAS.

Unlike the Physical Interface, the Cognitive Interface is a pure event-based
component passing information to and from the MAS. An MAS Interface layer
must be implemented for a specific MAS to comply with the provided interfaces
by the Cognitive Interface layer. This layer is less complex than the GE Interface

layer since it’s a simple message-passing connection for data that is already
rooted in semantics (no conceptual translation is required).

Management Interface As described previously, the Governor notifies the
MAS about the creation and destruction of candidate embodiments in the sim-
ulation. Based on this information, the MAS can create and destroy agents. To
link an agent with an embodiment, the MAS must notify the Governor about

the entity it wants to embody. The Governor Bridge in the MAS Interface can
achieve this functionality for a specific MAS to be used. The Ontology Model can
be accessed to retrieve semantic data about the embodiments. This information
can support the MAS in deciding what type of agent to associate with an entity.

Agent Interface The agent interface between CIGA and a MAS consists of the
common act and sense interfaces required for MAS agents. The Agent Bridge in
the MAS Interface is responsible for converting the different message formats
used between the CIGA middleware and a specific MAS. Here, the Ontology

Model can play several roles. The model can be accessed to retrieve semantic
meta-data associated with incoming percepts. For example, agents can retrieve
the affordances associated with perceived objects. Also type hierarchies of ob-
jects in the ontology can be inspected, allowing agents to make generalizations
about objects they perceive. In addition, the model can be used to validate
the semantics of action instructions performed by a MAS agent. Being able to
validate actions can greatly support the development of agents whose code for
action-selection cannot be type-checked at design time (E.g. in 2APL).

Three types of percepts have been defined in CIGA’s Cognitive Interface layer:

• Object percepts contain semantic data about objects perceived from the en-
vironment. A unique object identifier is provided giving agents the ability to
relate subsequent percepts with the same object.

• Event percepts contain semantic data about events from the environment.
An object’s identifier provides the source where the event originated from.

• Action percepts contain feedback information about ongoing actions. The
MAS agent can associate this feedback with a dispatched action using the
included unique action identifier. Feedback information includes the progress
status of the action and possible failure conditions.

Two types of actions have been defined in CIGA’s Cognitive Interface layer:

• Action instructions are used for the physical (durative) actions agents per-
form. They correspond to the actions implemented in the GE Interface layer
described previously and are executed by the Behavior Realizer.

• Communication instructions are used for physical communication between
agents. These are special actions consisting of two parts. The first part con-
tains the physical action the agent performs to realize the communication,
corresponding to the previous type of instruction. The second part includes
the communicative intent which may be represented in an agent communica-
tion language. This part cannot be send directly to the receiving agent if the
physical communication action has not started yet. The Cognitive Interface

layer is responsible for orchestrating this process.

For the implementation of the MAS Interface layer, interface standards like
EIS [3] can be employed which has been explored to interface with multi-agent
platforms like 2APL, GOAL, Jadex and Jason. Though, such platforms focus

on high-level decision-making and deliberation aspects of agents and lack other
aspects of behavior that may be required to form a fully cognitive architecture
(E.g. the modeling of physiology, emotion or reflexive behaviors). These aspects
can play an important role in simulating virtual humans for example. This issue
has been addressed before as seen in CoJACK [8] which extends the JACK
platform by combining its symbolic decision-making module with what is called a
moderator layer for emotional and physiological factors. TheMAS Interface layer
can easily be used to connect such an additional MAS layer with its environment.

4 Related Technologies

In this section, we compare CIGA with related research and technologies with
similar functionalities. First we’ll look at technologies providing an interface to
an environment in a game engine for external access. Gamebots [1] is a modifi-
cation of the UT game engine and provides fixed sense-act interfaces for in-game
avatars accessible using socket communication. It is often used in research on
embodied agents mainly because of the lack of good alternatives for accessing
virtual environments [7, 9]. Gamebots can be compared to CIGA’s GE Inter-

face layer (see Figure 3). Though, in Gamebots, there is no methodology for
using domain ontologies as the interface messages are fixed and geared specifi-
cally towards the UT engine. Further, action monitoring is not supported since
Gamebots doesn’t offer explicit execution and monitoring of actions.

The High Level Architecture (HLA) is an architecture for distributed simu-
lations. Its goal is to synchronize environments running in separate simulations.
There have been attempts to connect external agents to simulation environments
using HLA [13]. We consider HLA not suitable for connecting MASs since it was
not designed for this purpose and therefore lacks facilities for agent-centric sens-
ing and acting. Similarities between CIGA and HLA are the use of ontologies as
a design contract and the use of a subscription mechanism to control the flow of
information send between components. For CIGA, this is described in [20].

Next we’ll compare the system of Pogamut which has a goal similar to CIGA.
Pogamut is designed as a mediation-layer between a game engine (GE) and a
decision-making system (DMS) to bridge the ”representational gap” [10]. It is
based on a general abstract framework for connecting a DMS to a GE [9]. The ar-
chitecture of a Pogamut agent consists of a WorldView component for GE facts,
augmented with optional components like a Working Memory, an Inference En-

gine, a Reactive Layer and a DMS. The main conceptual difference between
Pogamut and CIGA is that where Pogamut presents an agent architecture con-
nected to a game engine, the CIGA middleware offers facilities to connect an
agent in a MAS directly to an avatar in the game engine. It doesn’t enforce any
agent architecture as we consider this to be contained in the MAS. Providing
a tight connection with an avatar in the game engine requires CIGA to enforce
modifying the game engine. Although this is a strong requirement, we think
it is a necessity to better aid in the connection design of an agent’s mind and
body, allowing us to perform perception filtering and action monitoring in the

game engine’s native programming language. Although Pogamut is more flexible
in connecting to different game engines (using Gamebots or HLA), it is highly
dependent on the specific game engine. Here, the game engine not only dictates
the mechanisms for sensing and acting, but also the use of fixed data representa-
tions for actions and sensory information. Although ontologies can be implicitly
defined as Java classes, there is no explicit formal agreement between the GE
and a Pogamut agent.

Facilitating the connection between MAS agents and MAS environments, the
Environment Interface Standard (EIS) has been proposed. It provides a general
purpose interface for associating environment entities with MAS agents and their
sense-act interface [3]. The proposed interface is not primarily geared towards
connecting agents directly to a real-time virtual environment. Although EIS can
be used for real-time environments, little is said on how to deal with the design
issues presented in section 2. EIS has been used in connecting agents to an
environment using Pogamut [18].

Last, there are systems which have addressed a subset of the design issues
presented in the paper. For example, in [22, 16], Mimesis is presented as an
architecture to integrate special-purpose intelligent components with a game
engine. The architecture addresses both the gap of information representation
and action execution, though its design is less geared towards an agent-body
connection such that issues in perception and communication are not addressed.
In [5], a cognitive middleware layer is introduced which has a similar goal to
the semantic processing in CIGA, providing agents with a social world model.
Unlike CIGA, this system doesn’t discuss the technological issues in creating
embodied agents. In [19], the ION Framework is said to separate the simulation
environment from a realization engine. Although it recognizes similar issues, it
is unclear about the methods for implementing these guidelines.

5 Conclusion & Future Work

In this paper we presented CIGA, a middleware for facilitating the coupling of
MASs to game engines providing a connection between a MAS agent and its
embodiment in a virtual environment. It is designed as a general-purpose mid-
dleware employable in a wide range of applications with different requirements
for agents. For example, in one simulation, believable embodied conversational
agents (ECAs) are required where detailed (non)verbal communicative behav-
ior and perception is important. In another simulation an agent’s interaction
and understanding of the environment may be more important requiring a more
extended model of the environment and the actions for influencing it. A combi-
nation of such qualitative and quantitative aspects may also be desired. Here,
CIGA facilitates the development of such simulations by supporting develop-
ers to bridge the conceptual gap between a MAS and a game engine without
enforcing agent design decisions.

CIGA employs domain ontologies to form an agreement between the game
engine and the MAS on the semantics of an agent’s perceptual and behavioral

interfaces. This allows designers to formally specify the concepts used within a
specific application domain and reference them directly from within the game
engine or the MAS. A sensory processing mechanism allows an agent to per-
ceive its environment and build a social world model based on formal semantics.
Designers are able to choose the required realism for sensors and control the
way sensory information is filtered [20]. An action monitoring mechanism en-
ables agents to be synchronized with the realization of their actions performed
by their embodiments. Designers are left to provide an implementation of the
actions specified for the application domain.

CIGA has been implemented connecting several MASs to an in-house de-
veloped game engine1. The Physical Interface of CIGA has been developed in
C++ and the Cognitive Interface in Java. The internal connection mechanism
employs TCP/IP sockets. MASs that have been tested include 2APL, Jadex and
a custom developed MAS testing industry-standard techniques. On top of the
middleware platform a graphical user interface has been developed to provide
logging and debugging facilities during the development process.

Future work involves validating the principled approach taken by CIGA by
exploring different application settings where agents have different requirements.
This also involves creating an interface with an alternate game engine. On the
conceptual side, further research will be performed concerning the topic of agent
communication within CIGA, dealing with formal agent communication in MASs
on one side and believable human-like interactions in real-time environments on
the other side.

References

1. R. Adobbati, A. N. Marshall, A. Scholer, and S. Tejada. Gamebots: A 3d virtual
world test-bed for multi-agent research. In In Proceedings of the Second Interna-
tional Workshop on Infrastructure for Agents, MAS, and Scalable MAS, 2001.

2. N. I. Badler, R. Bindiganavale, J. Allbeck, W. Schuler, L. Zhao, and M. Palmer.
Parameterized action representation for virtual human agents. In Embodied Con-
versational Agents, pages 256–284. MIT Press, Cambridge, MA, USA, 2000.

3. T. Behrens, K. Hindriks, and J. Dix. Towards an environment interface standard
for agent platforms. Annals of Mathematics and Artificial Intelligence, pages 1–35,
2010.

4. C. Brom, J. Lukavskỳ, O. Šerỳ, T. Poch, and P. Šafrata. Affordances and level-of-
detail AI for virtual humans. In Proceedings of Game Set and Match 2, 2006.

5. P. H.-M. Chang, K.-T. Chen, Y.-H. Chien, E. Kao, and V.-W. Soo. From reality
to mind: A cognitive middle layer of environment concepts for believable agents.
In D. Weyns, H. V. D. Parunak, and F. Michel, editors, Environments for Multi-
Agent Systems, volume 3374 of Lecture Notes in Computer Science, pages 57–73.
Springer Berlin / Heidelberg, 2005.

6. J. Cornwell, K. O’Brien, B. Silverman, and J. Toth. Affordance theory for improv-
ing the rapid generation, composability, and reusability of synthetic agents and
objects. In Proceedings of the Twelfth Conference on Behavior Representation in
Modeling and Simulation, 2003.

1 www.vstep.nl

7. N. P. Davies, Q. Mehdi, and N. Gough. A framework for implementing deliberative
agents in computer games. In Proceedings of the 20th European Conference on
Modeling and Simulation (ECMS’06), 2006.

8. R. Evertsz, F. E. Ritter, P. Busetta, M. Pedrotti, and J. L. Bittner. CoJACK -
Achieving Principled Behaviour Variation in a Moderated Cognitive Architecture.
In Proceedings of the 17th Conference on Behavior Representation in Modeling and
Simulation, 2008.

9. J. Gemrot, C. Brom, and T. Plch. A peripherty of Pogamut: from bots to agents
and back again. In F. Dignum, editor, Agents for Games and Simulations II, Lec-
ture Notes in Computer Science, pages 19–37, Berlin, Heidelberg, 2011. Springer-
Verlag.

10. J. Gemrot, R. Kadlec, M. B́ıda, O. Burkert, R. Ṕıbil, J. Havĺıček, L. Zemčák,
J. Šimlovič, R. Vansa, M. Štolba, T. Plch, and C. Brom. Pogamut 3 can assist
developers in building ai (not only) for their videogame agents. In F. Dignum,
J. Bradshaw, B. Silverman, and W. Doesburg, editors, Agents for Games and
Simulations, pages 1–15. Springer-Verlag, Berlin, Heidelberg, 2009.

11. M. Kallmann and D. Thalmann. Modeling objects for interaction tasks. In Proc.
Eurographics Workshop on Animation and Simulation, pages 73–86, 1998.

12. B. Krenn, S. Marsella, A. N. Marshall, H. Pirker, K. R. Thórisson, and
H. Vilhjálmsson. Towards a Common Framework for Multimodal Generation in
ECAs: The Behavior Markup Language. In In Proceedings of the 6th International
Conference on Intelligent Virtual Agents, Marina del Rey, 2006.

13. M. Lees, B. Logan, and G. Theodoropoulos. Agents, games and hla. Simulation
Modelling Practice and Theory, 14(6):752–767, 2006.

14. B. Meyer. Applying ”design by contract”. Computer, 25:40–51, October 1992.
15. C. Peters, S. Dobbyn, B. MacNamee, and C. O’Sullivan. Smart objects for attentive

agents. In WSCG, 2003.
16. M. O. Riedl. Towards Integrating AI Story Controllers and Game Engines: Recon-

ciling World State Representations. In Proceedings of the 2005 IJCAI Workshop
on Reasoning, Representation and Learning in Computer Games, 2005.

17. T. Tutenel, R. Bidarra, R. M. Smelik, and K. J. D. Kraker. The role of semantics
in games and simulations. Computers in Entertainment, 6:57:1–57:35, 2008.

18. K. v Hindriks, B. van Riemsdijk, T. Behrens, R. Korstanje, N. Kraayenbrink,
W. Pasman, and L. de Rijk. Unreal GOAL Bots. In F. Dignum, editor, Agents
for Games and Simulations II, Lecture Notes in Computer Science, pages 1–18.
Springer-Verlag, Berlin, Heidelberg, 2011.

19. M. Vala, G. Raimundo, P. Sequeira, P. Cuba, R. Prada, C. Martinho, and A. Paiva.
ION Framework A Simulation Environment for Worlds with Virtual Agents. In
Z. Ruttkay, M. Kipp, A. Nijholt, and H. Vilhjálmsson, editors, Intelligent Vir-
tual Agents, volume 5773 of Lecture Notes in Computer Science, pages 418–424.
Springer Berlin / Heidelberg, 2009.

20. J. van Oijen and F. Dignum. A Perception Framework for Intelligent Characters
in Serious Games. In In Proceedings of the Tenth International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2011) to appear, 2011.

21. J. van Oijen, F. Dignum, and W. van Doesburg. Goal-Based Communication
Using BDI Agents as Virtual Humans in Training: An Ontology Driven Dialogue
System. In F. Dignum, editor, Agents for Games and Simulations II, Lecture Notes
in Computer Science, pages 38–52. Springer-Verlag, Berlin, Heidelberg, 2011.

22. R. Young, M. Riedl, M. Branly, Jhala,A, R. Martin, and Saretto,C.J. An ar-
chitecture for integrating plan-based behavior generation with interactive game
environments. Journal of Game Development, 1(1), 2004.

How to compare usability of techniques for the
specification of virtual agents’ behavior? An
experimental pilot study with human subjects

Jakub Gemrot1, Cyril Brom1, Joanna Bryson2, Michal Bída1

1 Faculty of Mathematics and Physics, Charles University in Prague,

Malostranske namesti 25,
118 00, Prague 1, Czech Republic

2 University of Bath,
Bath, BA2 7AY, United Kingdoms

Abstract. Reactive or dynamic planning is currently the dominant paradigm for
controlling virtual agents in 3D videogames. Various reactive planning
techniques are employed in the videogame industry while many reactive
planning systems and languages are being developed in the academia. Claims
about benefits of different approaches are supported by the experience of
videogame programmers and the arguments of researchers, but rigorous
empirical data corroborating alleged advantages of different methods are
lacking. Here, we present results of a pilot study in which we compare the
usability of an academic technique designed for programming intelligent
agents’ behavior with the usability of an unaltered classical programming
language. Our study seeks to replicate the situation of professional game
programmers considering using an unfamiliar academic system for
programming in-game agents. We engaged 30 computer science students
attending a university course on virtual agents in two programming
assignments. For each, the students had to code high-level behavior of a 3D
virtual agent solving a game-like task in the Unreal Tournament 2004
environment. Each student had to use Java for one task and the POSH reactive
planner with a graphical editor for the other. We collected quantitative and
qualitative usability data. The results indicate that POSH outperforms Java in
terms of usability for one of the assigned tasks but not the other. This implies
that the suitability of an AI systems-engineering approach is task sensitive. We
also discuss lessons learnt about the evaluation process itself, proposing
possible improvements in the experimental design. We conclude that
comparative studies are a useful method for analyzing benefits of different
approaches to controlling virtual agents.

1 Introduction

Reactive planning is currently the dominant paradigm for controlling virtual agents in
3D videogames and simulations. Prominent reactive planning techniques used in the
industry are derivations of finite state machines (FSMs) [1], and more recently,
behavior trees [2]. Technically, these are implemented in a scripting language, be it a

general-purpose language such as Lua [3] or a special-purpose language tailored at a
particular game, such as UnrealScript [4], or hard-coded in a game’s native language,
typically C++ [5]. Advantages and drawbacks of different approaches used by the
industry have been commented on widely [6,7,8].

At the same time, academic action-selection systems for AI planning are becoming
increasingly mature, and the question arises whether they have advantages over the
solutions employed presently by the industry. These systems include decision making
modules of several cognitive architectures, e.g., Soar and ACT-R [9, 10], stand-alone
BDI-based programming languages, e.g. GOAL [11], and stand-alone reactive
planners such as POSH [12]. It has been already demonstrated that some of these
systems, for instance Soar [9], POSH [13], GOAL [11] and Jazzyk [14], can be used
for controlling virtual agents acting in game-like environments. From the perspective
of efficacy of code execution, these systems are sluggish and can be considered as
prototypes only at the present stage of maturity; however, they could potentially
outperform some industry solutions in terms of usability (from the programmers’
perspective), re-usability (of parts of code) and agent’s cognitive performance, as
assumed, for instance, by part of the academic community studying BDI-based
languages [15].

Sound empirical data demonstrating the alleged advantages of different reactive
planning technique, both industrial and academic, are generally lacking. Tyrell
analyzed various robotics and ethology-based action selection mechanisms in terms of
agent performance given approximately equal amounts of time devoted by a
programmer [16]. This work was extended by Bryson in an effort to provide an
evaluation for her own POSH action selection. [17]. Tyrrell’s system was to test a
single action-selection mechanism over a large number of “lifespans” by agents
inhabiting an extremely rich and varied environment. The complexity of the
environment lead to enormous variation in the results, so statistical significance was
determined by running enough trials to compare the standard error rather than the
standard deviation.

 Bryson also provided a more theoretically formal but less rigorous comparison of
POSH action selection to FSMs, showing that POSH plans were able to express
action an intelligence was likely to choose to do in a more efficient way than an FSM
[18]. However, none of these studies engaged programmers other than the authors
themselves in the mechanisms’ evaluation. In contrast, Hindriks et al [19] conducted
an extensive qualitative analysis of the code of 60 first year computer science students
developing (in teams of five students) three Capture The Flag agents for the
videogame Unreal Tournament 2004 (UT 2004) using GOAL agent programming
language. Hindriks’s team aimed at “providing insight into more practical aspects of
agent development” and “better understanding problems that programmers face when
using (an agent programming) language” and identified a number of structural code
patterns, information useful for improvements to the language. However, that study
was not comparative and did not report the programmers’ feedback.

Here, we are interested in a complementary approach, namely feasibility of
quantitative comparative quasi-experimental studies (as used in psychology and social
sciences) for investigating usability of action selection systems from the users’
(programmers’) perspective. We specifically address the usability issue as opposed to
the efficiency or performance issue. This perspective encompasses various objective

and subjective measures, such as steepness of the learning curve, time spent by
development, programming vs. testing time ratio, number of bugs made by the
programmer, subjective attitude towards the technique etc. We designed and
conducted a pilot study with the following objectives:

a) to investigate the subjectively-perceived usability of an academic action
selection system designed to be useful for programming agents’ behavior, when
compared to perceived usability of an unenhanced classical programming language;
this mimics the situation of game programmers considering using an academic system
they are not familiar with for programming in-game artificial intelligence;

b) to compare the quality of solutions implemented in the academic action
selection system and in the classical programming language; this measure plays an
important role in the adoption of new systems in general;

c) to consider whether the experimental method per se is useful and whether (and
under which conditions) it can produce helpful results.
We have been running a course on virtual agents development for computer science
students at Prague University since 2005. Students are taught various techniques for
controlling virtual agents [20] and trained to program their behavior in the virtual
environment UT 2004 (similarly to Hindriks et al.). For that task, our integrated
development environment Pogamut [21] is used by the students. In the academic year
2009/10, we turned the final exam for the course into a scientific experiment engaging
30 computer science students in two programming assignments lasting 3 hours each.
Each student had to code the high-level behavior of a 3D virtual agent solving a
game-like task in the UT 2004. The conventional language and the language
underlying the academic system were both Java. We use Java because its learning
curve is less steep than that of C++ (a more usual game development language) and
because our students are expected to be at least to some extent familiar with Java. For
the academic system, we used the POSH reactive planner with a graphical editor. This
is because POSH has been already demonstrated for controlling UT agents [13] and
because POSH has previously been investigated by our postgraduates and integrated
into Pogamut.

For both the tasks and in both programming environments, the students’ task was
to organize low-level action and sensory primitives to produce complex behavior, but
not to program the primitives as such. The drag-and-drop graphical editor we
developed for POSH disguised its Lisp-like underlying plan syntax students might
have struggled with. The study was only possible because the Pogamut platform
provided the same development environment for both tasks and allowed us to
predesign the same sets of behavior primitives, isolating the features of the language
as the subject of the study.

We collected various quantitative and qualitative usability data in four
questionnaires. Our main hypothesis was that subjects’ attitude towards POSH would
be at least as high as towards Java. As this is a pilot study, we kept the research
question as simple as possible. Of course, for practical, commercial application of
POSH, it would be an advantage to specifically identify its benefits compared to Java
(and other systems), but this was not our aim for this study and is left for future work.

The rest of the paper proceeds as follows. We introduce POSH in Section 2 and
detail the methods of our study in Section 3. The results are presented in Section 4
and discussed in Section 5, and Section 6 concludes.

2 POSH

POSH action selection was originally developed in the late 1990s in response to
criticism of what was at the time an extremely popular agent design approach (at least
in academic discussion): the Subsumption Architecture (SA) [27]. SA was used to
produce considerable advances in real-time intelligent agents, particularly robotics. It
consists primarily of two components: a highly modular architecture where every
action is coded with the perception it needs to operate; and a complex, highly
distributed form of action selection to arbitrate between the actions that would be
produced by the various modules. Although extremely well-known and heavily cited,
the SA was seldom really used outside of its developers. Bryson hypothesized that the
emphasis on modular intelligence was actually the core contribution of SA, but that
the complexity of action selection, while successfully enforcing a reactive approach,
confused most programmers who were not used to thinking about concurrent systems.

POSH was developed then to simplify the construction of action selection for
modular AI. Briefly, a programmer used to thinking about conventional sequential
programs is asked to first consider a worst-case scenario for their agent, then to break
each step of the plan to resolve that scenario into a part of a reactive plan. Succeeding
at a goal is the agent’s highest priority, so should be the thing the agent does if it can.
The programmer then describes for the agent how to perceive that its goal has been
met. Then for each step leading up to the goal the same process is followed: a
perceptual condition is defined allowing the agent to recognize if it can take the action
leading most directly to its goal [12, 18]. The actions are each small chunks of code
that control the agent, so-called behavior primitives (see Tab. S2 – all supplementary
figures and tables can be found in the appendix), and the perceptions are sensory
primitives (Tab. S4).

After a period of experimenting with the system, Bryson embedded POSH in a
more formal development methodology called Behavior Oriented Design (BOD).
BOD emphasizes the above development process, and also the use of behavior
modules written in ordinary object-oriented languages to encode the majority of the
agent’s intelligence, and to provide the behaviour and sensory primitives. BOD
includes a set of heuristics for recognizing when intelligence should be refactored
either from a plan towards a behavior module or from a module into a plan. BOD and
POSH have now been adopted or recommended by a number of leading thinkers and
toolkits in AI, including Pogamut [21], RePast [28] and AIGameDev [6].

Recently, a graphical editor for POSH plans has been developed as part of the
Pogamut effort. Its new version is used in the present study (Fig. S1).

3 Method

3.1 Experimental design

As explained earlier, the study compares the usability of an academic reactive
planner, POSH, and an unenhanced classical programming language, Java. Low-level

behavior primitives were prepared for both groups in advance by the authors of the
study. The set of primitives were fully sufficient for solving the presented tasks.

The study was set in an AI course for computer science students in Charles
University in Prague. The syllabus of course is described in [20, 22]. Subjects were
given a pretest (3 hours) after the course to ensure that they have acquired elementary
skills for solving sub-problems from the final exam. Only subjects that have passed
the pretest were admitted to the final exam.

The final exam was structured to obtain comparative data on Java and POSH
usability. In the final exam, each subject had to solve two tasks, the Hunter Task (3
hours) and the Guide Task (3 hours), see Sec. 3.3. Subjects were split into two groups,
Group A and Group B. Group A was instructed to solve Hunter Task in POSH first
and Guide Task in Java second while Group B was instructed to solve Hunter Task in
Java first and Guide Task in POSH second. For both tasks, syntax highlighting was
available for Java and a graphical editor for POSH plans (Fig. S1).

Figure 1. The course of the experiment.

Subjects were given 4 questionnaires in total during the exam (15 minutes each).

There was a 30 minutes long break for a light lunch between the tasks. The course of
the experiment is summarized in Fig. 1. Subjects were informed that the study will
take about 8 hours in total in advance, but the structure and the exact content were
revealed only during the study. The assignments were administered immediately prior
to each task and the subjects given 30 minutes to read them.

3.2 Participants

We recruited 30 students for the study out of 52 attendants of the AI course. The
study was the course’s final exam and if students succeeded in its both parts, they
were given a final grade based on their agent’s performance. Students had the option
of withdrawing from the study if they preferred a different kind of final exam.

We excluded 3 students from the analysis due to data incompleteness. In total, we
analyzed data from 27 students of which 2 were female. Students were sampled into
two groups. Due to the low number of subjects, the groups were not assigned to
conditions entirely at random. Rather the students were ranked by their ability as
determined by their pretest performance, and then the two groups were matched with
as close to equal sums of rank status as possible. The number of students according to
their years of study and assigned groups is presented in Tab. S1.

3.3 Materials

The Course. The students attended an introductory course on the control of virtual
characters. The course is intended for students without previous AI or 3D graphics
knowledge but with previous programming experience. Only students from the
second or a higher year of study can attend. The course comprises of 12 theoretical
lectures (90 minutes each) and 6 practical lessons at computers (90 minutes each).
The theoretical classes are detailed in [20, 22]. During practical lessons, the students
are taught how to work with Pogamut 3 platform library (2 lessons) and develop
behavior of virtual agents using both Java (2 lessons) and POSH (2 lessons) [23].

The Pretest. The general aim of the Pretest was to rule out subjects that were not
sufficiently prepared for the final exam. Unprepared subjects would bias the data as
they would likely fail during the final exam which would influence their answers in
questionnaires.

The Pretest task was to create an agent capable of exploring the environment of
UT2004 game and collect items of a specific type only. The agent had no adversaries
in this task. Subjects were not given behavior primitives in advance; they had to
create them in Java for themselves. Regarding programming of a high-level behavior,
subjects had the opportunity of choosing between Java and POSH. This approach was
chosen to test the level of subjects’ comprehension of the Pogamut library so that they
would be able understand behavior primitives provided to them during the final exam.

Three programmers skilled in VR technology solved the pretest task in advance to
calibrate the difficulty of the test. The time allotment (3 hours) was at least three
times longer than average time needed by these programmers to finish the task.
Subjects had 3 attempts to pass the Pretest. Most passed on their first attempt.

Task Hunter. The Hunter Task was designed as a game-like scenario. Subjects were
to create an agent (called Hunter) that explores the environment collecting blood
samples of another computer-driven agent called Alien either by finding them around
in the environment or by shooting Alien. Alien was an adversary agent that was
capable of killing Hunter when nearby. If Hunter or Alien got killed, they were
restarted in the environment far from each other. In addition, Hunter started with no
weapons. Thus, the AI behavior must correctly prioritize the following intentions: 1)
finding a weapon, 2) collecting blood samples, 3) responding to Alien. For instance,
the Hunter agent should stop pursuing a blood sample item and responded to Alien if
Alien has approached, otherwise Hunter could be killed resulting in the loss of
weapons and blood samples collected so far.

In contrast to the Pretest, subjects were given a full set of behavior primitives
(canSeeEnemy, runToItem, shootEnemy etc., see list in Tab. S2) that were
sufficient to solve the task. All behavior primitives were carefully commented inside
the code to make their usage clear. Action primitives did not contain any decision
making logic, e.g., shootEnemy action did not contain any checks whether the agent
has a loaded weapon to shoot from or whether the enemy is close enough for the
weapon to be effective. Such logic was to be created by each subject using proper
sensors, e.g., hasWeapon and getEnemyDistance (example can be seen in the Fig.
S1). The task was again solved by two skilled programmers in advance using these
primitives and their feedback was used to adjust them.

After filling in a pre-exam questionnaire, each subject was given the assignment
written on the paper and was provided a sufficient time (30 minutes) to read it and ask
questions to clarify any ambiguities. Group A was then instructed to solve the task in
Java while Group B in POSH. Time allotment was 3 hours, which is roughly three
times more than was required by the skilled programmers. Both groups had the same
set of primitives. The POSH version of the primitives differed only in implementation
details so that they could be easily used inside POSH reactive plans.

Group A and Group B were working in parallel in two different rooms. Subjects
were not allowed to cooperate on the solution but they were allowed to utilize any
documentation about the Pogamut library available on the Internet [24].

Task Guide. The Guide Task was designed to be more cognitive than the Hunter
Task. Subjects were to create an agent called Guide that can find a Civilian agent
inside the environment and guide it back to its home. The Civilian agent was created
to wander aimlessly around the environment far from its home unless the Guide agent
instructed it otherwise. The Guide agent must communicate with the Civilian agent if
it wants the Civilian agent to follow its lead. The communication has a fixed and
rather simplistic protocol described in the assignment (see Tab. S3).

Communication was reliable and the two agents could hear each other up to a specific
distance. Apart from finding Civilian, there were three obstacles that Guide had to
overcome in order to successfully lead Civilian home. First, Civilian was willing to
start to follow Guide only if it can see it. Second, if Civilian lost Guide from view, it
stopped following. Third, Civilian was created to be absent-minded and ceased to
follow the Guide agent from time to time for no reason. Thus, the challenge was not
only to find Civilian and persuade it to follow the Guide agent to its home, but also to
constantly observe whether Civilian is doing so.

As in the previous task, subjects were given a full set of behavior primitives (Tab.
S4) and the task was tested by two skilled programmers both in Java and POSH. The
only exception was the handling of the communication was always in Java, but it was
sufficient to write three lines of Java code to solve the task in the POSH variant.

Group A was instructed to solve the task in POSH while Group B in Java.
Everything else (the assignment description, the space for questions, the prohibition
of cooperation, the allowance of Internet usage, slight differences in the POSH
primitives) remained the same as in the previous task.

3.4 Questionnaires

Every subject was given four questionnaires in total. Questionnaires were: 1)
PreExam questionnaire, 2) Hunter Task questionnaire (in Java and POSH variants), 3)
Guide Task questionnaire (in Java and POSH variants) and 4) PostExam
questionnaire. The timing of administration of each questionnaire is pictured in Fig. 1.

The PreExam questionnaire contained questions about the subject’s biographical
background and their AI/Agent/Programming literacy. Only relevant results are
presented in this paper. The main questions for the present interest are: “How many
person-months of programming/AI/Java experiences do you have?” and “How many
hours have you spent experimenting with Pogamut at home?”

The two task questionnaires were designed to elicit data about comprehensibility of
sensory and behavior primitives and subjects’ preferences for the programming
formalism used in the task. The main questions for present interest are: “Did you find
POSH/Java sensor/action primitives comprehensible?” (1: I had a lot of troubles
understanding them, 3: I did not understand a few primitives, 5: I had no troubles at
all, everything was perfectly clear.), “Did you find the number of POSH/Java
sensor/action primitives sufficient?” (1: totally insufficient, 3: I had to create a few for
myself, 5: totally sufficient), “Which formalism do you prefer, Java or POSH?” (1:
strong Java preference, 2: weak Java preference, 3: can not tell which is better, 4:
weak POSH preference, 5: strong POSH preference.

The PostExam questionnaire contained many questions about the comfort of the
Pogamut library API, Java, POSH GUI and other features of the Pogamut platform. It
also contained the final question about the overall preference between POSH and
Java: “Which formalism do you generally prefer for high-level behavior specification,
POSH or Java?” (1: strong POSH preference, 2: weak POSH preference, 3: can’t tell
which is better, 4: weak Java preference, 5: strong Java preference). Subjects were
also given a space for a free-text explanation of their answer.

The POSH/Java preference question was given three times in total and they have
appeared in both (POSH/Java) variants of task’s questionnaires. Our aim was to
observe subject preferences with regard to the different tasks (Hunter Task vs. Guide
Task) they had to solve as well as their overall. The questionnaires were not
anonymous so we were able to pair them with concrete agents later on (see 4.2).

3.5 Data analysis

Answers of subjects from questionnaires of both groups were analyzed. We used χ2-
tests of independence to confirm that both groups had same or different language
preferences. As the number of subjects in each group is rather small, we have grouped
subjects with Java/POSH preferences into 3 classes (instead of 5) for the purpose of
the χ2-tests. Answer 1-2 is considered as Java preference, answer 4-5 as POSH
preference and answer 3 as indifference.

Additionally, all agents were tested for quality. We executed a corresponding task
scenario for every agent 15 times and checked whether the agent fulfilled the task’s
objective within the time frame of 10 minutes. We marked every run with either 0
(agent failure) or 1 (agent success). Average number of successes was counted as the

agent success rate (ASR). Even though every run was identical (the same environment
setup was used, the same starting positions of bots were used, the same random seeds,
etc.), we had to perform multiple runs due to small non-determinism caused by
UT2004 and by asynchronous execution of agents’ behaviors which resulted in
different outcomes from the behavior deliberations.

ASR was taken as the degree of agent quality. An ASR of 1 indicates the agent
always succeeded, while an ASR of 0 indicates the agent always failed – real values
could fall between these. Logistic regression was used to identify relationships
between the agent quality and the chosen technique, subject experiences and their
understanding of the provided primitives. The regression was made for every
task/group combination (4 regressions) as well as for all agent runs for Task 1 and for
Task 2 (combining data from Group 1 and Group 2) and is presented in 4.2.

There were 4 questions testing subject understanding of the behavior primitives.
For the subsequent analysis, we averaged responses of these questions and used this
average as the Primitives apprehension variable.

4 Results

4.1 Comparison of the two groups with regards to subjective Java/POSH
preference

The attitude of the students towards the languages in the two tasks is shown in Fig. 2,
3, S2-S7 together with their means and standard deviations.

Regarding the first task, Group A exhibits a strong preference to POSH (Hunter in
POSH) while Group B (Hunter in Java) was more indifferent.

Figure 2. Left: Group A, Hunter Task (in POSH), Java/POSH preference. Right: Group B,

Hunter Task (in Java), Java/POSH preference.

The contingency table of Java/POSH preference after the first task is shown in
Tab. 1. The preferences in Group A and B are not significantly different (p-value =
0.12).

Table 1. Contingency table of the Java/POSH preferences after the first task.

 Java pref. (1-2) Can't decide (3) POSH pref. (4-5) Total
Group A 2 1 10 13
Group B 5 4 5 14
Total 7 5 15 27

Ans. # %
1 0 0
2 2 15.4
3 1 7.6
4 3 23.1
5 7 53.9

Mean 4.15±1.14

Ans. # %
1 0 0
2 5 35.7
3 4 28.6
4 1 7.1
5 4 28.6

Mean 3.29±1.27

Concerning the second task, Group A (using Java) was indifferent and Group B
(using POSH) exhibited preference to Java (Tab. 2). The preferences in Group A and
B are not significantly different (p-value = 0.36). In general, the students shifted their
preference to Java after the second task, which is summarized by Tab. S5.

General preference between Java and POSH, as assessed by PostExam
questionnaires, is not a clear one. The preferences in Group A and B were
significantly different with Group A preferring POSH while Group B preferring Java
(p-value = 0.01) (summarized in the Tab. 3).

Figure 3. From left to right: i) Group A, Guide Task (in Java), Java/POSH preference, ii)
Group B, Guide Task (in POSH), Java/POSH preference, iii) Group A, PostExam, Java/POSH
preference, iv) Group B, PostExam, Java/POSH preference.

Table 2. Contingency table of the Java/POSH preferences after the second task.

 Java pref. (1-2) Can't decide (3) POSH pref. (4-5) Total
Group 1 6 1 6 13
Group 2 10 2 2 14
Total 16 3 8 27

Table 3. Contingency table of the general Java/POSH preferences as answered in the PostExam
questionnaire.

 Java pref. (1-2) Can't decide (3) POSH pref. (4-5) Total
Group A 3 2 8 13
Group B 9 4 1 14
Total 12 6 9 27

4.2 Comparison of the two groups with regards to objective task solution
quality

Logistic regression was used to identify relationships between an agent’s quality
(dependent variable) and chosen technique (Java or POSH), subject experiences and
apprehensions of provided primitives. The parameter for the group was statistically
insignificant and was left out from the model for the sake of simplicity. We have
created 3 models (using data from both Group A and B, from Group A only and from
Group B only) for both tasks (6 models in total).

Models description. The models’ parameters are summarized in Tab. 4. Some
dependencies between model variables and agent’s quality are presented in Figs. S8 –

Ans. # %
1 2 15.4
2 4 30.8
3 1 7.6
4 4 30.8
5 2 15.4

Mean 3.00±1.41

Ans. # %
1 3 21.5
2 7 50.0
3 2 14.3
4 1 7.1
5 1 7.1

Mean 2.29±1.14

Ans. # %
1 0 0
2 3 23.1
3 2 15.4
4 3 23.1
5 5 38.4

Mean 3.77±1.19

Ans. # %
1 3 21.5
2 6 42.8
3 4 28.6
4 1 7.1
5 0 0

Mean 2.21±0.86

S10. Every figure contains graphs for Task 1 (left) and Task 2 (right) models
separately. Models using data from both groups contain the additional discrete
variable Technique (Java / POSH), therefore they are visualized with two graphs
separately in each picture (for the Java and POSH cases separately). As all models
amount to a function from the n-dimensional space (yielded from the Cartesian
product of model variables’ ranges) into <0;1> (agent success rate, model dependent
variable), every presented graph can be seen as a planar cut through chosen variable
of the whole model’s n+1-dimensional graph where all other variables are fixed at
data’s means.

Tasks comparison. Task 1 was solved considerably better by subjects from higher
years of study (Fig. S8, left). The data for Task 1 also suggests that subjects’
comprehension of provided primitives affects the quality of their agents (Fig. S9,
left); this is more pronounced in Group A’s subjects. Additionally, solutions from
Group B (implementing the Hunter agent in Java) indicate correlation with previous
Java experiences (Fig. S10, left). The chosen technique (Java or POSH) did not
influence the agents’ success (see first row POSH-influence column in Tab. 4) in
Task 1.

The interpretation of results of Task 2 is not as clear. Task 2 was also sensitive to
Java experience as well as primitive comprehension (Fig. S10, S9 right), but results
were more widely distributed this time. Also, agents of Group B driven by POSH did
considerably worse than agents of Group A that were controlled by Java (see the
fourth row POSH influence column in Tab. 4).

Table 4. Logistic models of agent success with respect to programming technique, subject’s
year of study, his/her experiences and primitives comprehension. Every row contains the
parameters of one model. Column POSH-influence (discrete variable) explains how the
probability of an agent’s success changes when the agent was programmed using POSH
(present only when data from both groups are used). All other columns (continuous variables)
show how respective variables contribute to ASR. Odds ratio describes how the variable
influences the probability of an agent’s success. Values greater than one indicate that the
probability grows proportionally with the variable and vice versa. Values in bold are discussed
in Section 5.

Data used

Model fit

comp.

against

empty

model

POSH

influence
Year of study

Java

experience

Pogamut

used at home

Primitives

comprehensi

on

P-Value
Odds

ratio
Sig.

Odds

ratio
Sig.

Odds

ratio
Sig.

Odds

ratio
Sig.

Odds

ratio
Sig.

GA+B, T1 10
-12

 1.10 2.08 *** 1.08 0.96 2.58 ***

GA, T1 (POSH) 10
-10

 X 2.10 ** 1.19 1.04 1.24 ***

GB, T1 (Java) 10
-6

 X 1.81 *** 1.30 ** 0.96 0.74

GA+B, T2 10
-5

 0.44 ** 0.88 1.11 ** 1.05 . 1.58 *

GA, T2 (Java) 0.057 X 0.99 0.91 0.91 * 2.37 **

GB, T2 (POSH) 10
-7

 X 0.81 1.09 1.23 ** 1.46

Significance (P-Value): 0 < *** < 0.001 < ** < 0.01 < * 0.05 < . < 0.1

5 Discussion

This pilot study compared the usability of an academic reactive planning system to
the usability of a common programming language when applied to programming the
behavior of virtual agents in 3D game-like tasks. The POSH reactive planner
empowered by a graphical editor of plans was chosen for the former and the Java
programming language for the latter. This quantitative experimental study is, to our
knowledge, the first in the field of virtual agent programming techniques (but see also
[29]). The purpose of the study was twofold. First, we aimed at investigating
objectively the usability of the two techniques, making a small step towards the grand
goal: isolating features that contribute to usability of different approaches to control
virtual agents in 3D videogames and simulations. Secondly, we aimed at answering
the question whether the chosen experimental method per se is promising for future
studies. We now discuss these two points.

5.1 Results

Summary of the data. The answer for the question of usability of Java and POSH
has two sides which are intertwined. First, there is a subjective answer of comfort in
using a chosen system as presented in Sec. 4.1. Second, there is an objective answer
that comes of assessing the quality of agents as presented in Sec. 4.2.

Regarding the subjective answer, there are two main outcomes. a) Subjects, in
general, reported that they preferred POSH for the first task (Fig. 2, S2, S3; Tab. 1)
while they preferred Java for the latter (see Fig. 3, S4, S5; Tab. 2). b) Group A
subjects tend to prefer POSH while Group B subjects tend to prefer Java (Tab. 3).

The objective answer as showed by logistic regression indicates several outcomes.
c) students in a higher year of study tend to perform better in the first task while there
was no such influence in the second task (see Fig. S8) d) previous Java experience
was important in Task 1 in Group B (using Java in that task) but not in Task 2 in
Group A (using Java in that task) (Fig. S10, left; Tab. 4), e) comprehension of the
provided primitives was high in general (Fig. S9 left; means in both tasks were higher
than 4.1) and seems to influence ASR a bit (Fig. S9 left; Tab. 4), f) the first task was
done equally well in both POSH and Java (see Odds ratio of POSH influence in the
first row of Tab. 4) while in the second task, subjects using POSH performed
significantly worse (see Odds ratio of POSH influence in the third row of Tab. 4).

General comments. Arguably, the main underlying theme is that the data indicates
different outcomes for the two groups. Why? Let us start with comments on
distribution of subjects into Group A and B with respect to major variables (Comment
1), proceed with comments on several uncontrolled variables that may have
influenced the outcome (Comments 2, 3, 4), and finally return to the individual
outcomes A-F above.

1. Is the average programming experience of the subjects the same for the two
groups? Tab. S6 indicates that Group B may have consisted of slightly more Java
experienced subjects, but the difference between the groups is rather small. Data for
the total previous programming experience look similarly (note that mean is not a

useful aggregative variable here since the learning curve is not linear). Students from
Group B also have higher years of study on average (A: mean=3.3; SD=1. B:
mean=4.4; SD=1.5). This is the outcome of the rank-based sampling procedure,
which will be commented in Sec. 5.2. For present purpose, it is important that Group
B may have comprised slightly more experienced programmers on average than
Group A.

2. Subjects were undergoing a coding marathon as the final exam lasted 8 hours so
the results from the second task could have been biased by subjects’ tiredness.
However, it seems reasonable to assume that both groups were equally tired.

3. It may be that the second task is harder in general, independently of the
tiredness. We did not consider the complexity of tasks beforehand; therefore we have
asked post hoc four independent VR experienced programmers to judge tasks’
complexity out of the assignments (they did not perform them, we have just presented
them written assignments) and task suitability for the chosen technique. The second
task was perceived as easier only by one of them; the others thought that the second
task is harder. Their comments regarding the suitability of techniques diverged.

4. It also may be that POSH fits better for solving the first task while Java for the
second. This idea is actually supported by free-report parts of questionnaires. Some
subjects indicated that Java was more suitable for the second task while none the
other way round. Some subject’s comments to the 2nd task:

“There were more if-then rules in the first task than here, therefore POSH would
have suited the first task more, using it here was mere overkill.”

“Using POSH for this task would be a nuisance.”
“In contrast with the first task, this was too complex to niggle with POSH plan

graphical editor. It was better to address it in Java.”

Main interpretation. In our opinion, the most plausible explanation of the results is
that they are produced by combination of two effects: the fact that the second task can
be more easily solved using Java (unlike the first task), and the fact that the graphical
drag&drop editor and POSH (it is not clear which of these or whether both of them
together) is more appealing to a less skilled audience and such an audience can use it
more effectively than Java. This statement agrees with Results (A) and (B) and partly
with (C), and is further supported by Comments 1 and 4. Of course, our data only
indicates that this can be the case; a useful hypothesis for further testing rather than a
conclusive result.

It is also possible that the essential difference was that Task 2 was best completed
by altering or adding to the provided the primitives. Because of the way POSH was
introduced with the emphasis on the graphical tool, most subjects appeared to feel
obliged not to alter any Java code while they were in the POSH condition. One
student did provide an exceptionally good agent in Task 2 by combining POSH and
altered Java primitives. This strategy is more in keeping with the way POSH is
presented in the academic literature as a part of a development methodology
(Behaviour Oriented Design) rather than a stand-alone approach. However, only one
exceptional programmer tried this strategy.

Another way of looking at the data is that POSH scored surprisingly well (Tab. 1,
8) given many subject’s initial Java experience but no initial POSH experience.
Investigation of steepness of the learning curve might be fruitful in the future. Useful

information could also come out of studies of programmers already skilled in using an
agent-based technique. Sadly, finding such a subject pool is presently a difficult task.

It is not surprising that understanding the primitives (Result (E)) has a positive
effect on ASR. In fact, the influence is rather small, which is most likely caused by a
ceiling effect: the average understanding of primitives was high in general, suggesting
that our primitives were well chosen, prepared and documented.

Several questions remain open. We do not know why there was no influence of the
students’ years of study on the agents’ performance in the 2nd task (Result (C), 2nd
part); perhaps the assignment was not sensitive enough, or perhaps the difference on
the 1st task indicated more advanced students become more adept at a new problem
more quickly, whether through learning more quickly or due to being less stressed by
exam conditions.

Concerning Result (D), it is not surprising that previous Java experience was
important in Task 1 in Group B but not A, because the former group used Java. We do
not know why previous Java experience had no influence on Group A in Task 2;
again perhaps the 2nd assignment was not sufficiently sensitive to this variable. Also
the sensitivity to previous Java experience in Task 1 suggests that classical
programming languages are not as suitable for less-experienced programmers such as
game designers as higher-level graphical tools and planning languages are.

Generalization. The results of this study indicate that academic techniques may in
certain cases provide advantages over classical programming languages, but it is too
soon to generalize based on the results of one study performed on two particular
approaches and tasks. More studies are needed to obtain more conclusive data for
further supporting or refuting such a claim. Nevertheless, it is a good sign for
developers of various agent-based languages such as Jason [26] or GOAL [11]. Closer
examination is needed to identify different complexities underlying virtual agents’
development. Such examination may help recognize possibilities and limits of various
techniques and uncover their strong and weak points. For instance, it may be that
when augmented by drag&drop graphical editors (as POSH was in our study), some
of these languages may be better suited than scripting languages for people with
mediocre programming skills, such as some game designers. We believe that without
such analysis the gaming industry would unlikely embrace academic techniques for
virtual agent’s development.

5.2 Lessons learned

As the comparative study of different techniques usable for virtual behavior
development is new, we report lessons learned and suggest improvements for future
studies. The main lessons are:

1) Performing the study in two consecutive parts promotes biased data on the
second part due to subjects’ tiredness. This can be addressed by altering the
experiment design either by a) dividing subjects into 4 groups giving every group
only one combination from the task-technique pairs, which would however require at
least twice as many subjects, or b) by dividing each group into two subgroups, which

would solve both tasks each but in the reverse order; that would allow the statistical
computation of the effect of tiredness, or c) to perform the second task in another day.

2) It would be beneficial to administer one more questionnaire during the pretest to
obtain the initial preferences of subjects regarding the techniques compared in the
study. In general, several other variables could be controlled better, e.g. the task
difficulty (see also Comments 2, 3, 4 in Sec. 6.1).

3) The analysis should be complemented with qualitative studies to gain more
insight. This may have several forms. a) Interesting data can be obtained by analyzing
the agent code as has been previously done by Hindriks and colleagues [19]. We may
still do this with the code from the present study. b) Focus groups or structured
interviews can be conducted after the main study to obtain more precise explanations
for subjects’ preferences and their solutions’ quality. c) Questionnaires should
encourage subjects to describe reasons for their preference (the importance of this has
been highlighted in Comment 4 in Sec. 5.1).

4) Attention should be paid to the evaluation’s tasks. Each task should be judged
not only for its general difficulty by programmers skilled with VR technologies, but
also for its difficulty regarding the technique being tested. In general it is presumably
a good thing to make assigned tasks varied so that an over-general conclusion is not
reached without adequate justification. After the evaluation, subjects should be asked
for their own assessment of the tasks to check if it correlates with the experts’. Note
that both subject and expert assessment should be checked against actual quantifiable
results.

5) The sampling procedure should be carefully considered. Evidently, even a rank-
based sampling may produce unequal groups (with respect to some variables). When
there are a lot of variables and a relatively small sample size, such an outcome may be
inevitable. The sampling procedure will also be different for different questions
asked, e.g., if one would like to assess group of experienced Java programmers
against inexperienced ones, the criterion for sampling would be previous Java
experience.

6) Pretests are important in order to ensure that students have certain minimal skills
for the main study, e.g. from the present study the ability to understand behavior
primitives. Pretests are also important for obtaining data for the sampling procedure.

5.3 Future work

Our results clearly indicate a need to continue with comparative studies and to begin
to identify the different aspects of the complex task of virtual behavior development.
We are considering performing another study this year, taking into account the
lessons learnt, possibly utilizing GOAL [10] as an academic reactive planning
technique that is based on the BDI paradigm. We may also run the same test again but
with POSH clearly set forward not as an alternative to Java but rather as a way to
supplement it. AI action selection systems are intended to simplify the development
of agent intelligence, not to replace it.

6 Conclusions

This pilot study compared an academic reactive planning technique (namely POSH)
against a common programming language (namely Java) with respect to their
usability for programming behaviors of virtual agents in 3D game-like tasks. The
study has investigated the performance of subjects’ agents with respect to the
technique used as well as subjects’ preferences towards the techniques.

The conclusion, stated with caution, is threefold. First, from a general perspective,
POSH scored comparable to Java. Second, in a more fine-grained manner, usability of
Java and POSH seem to be task-sensitive and subjectively perceived usability of the
techniques as well as objective quality of the subjects’ agents with respect to the
techniques may change with subjects’ programming experience. Third, the
experimental method is useful, but should be complemented by other approaches.

Taken together, these are promising news for agent-based control mechanism
developers. Future studies are needed and they should focus on isolating mechanisms’
features that contribute most to the mechanisms’ usability for different target groups
of users, e.g., game designers vs. programmers.

Acknowledgement. Students’ assignments were developed at Charles University in
Prague as part of subproject Emohawk developed under the project
CZ.2.17/3.1.00/31162 that is financed by the European Social Fund and the Budget of
the Municipality of Prague. The subsequent research was partially supported by grant
P103/10/1287 (GA ČR) (C.B., J.G., J.B.), SVV project number 263 314 (J.G., M.B.),
research project MSM0021620838 (MŠMT ČR) (C.B.) and by students grant GA UK
No. 0449/2010/A-INF/MFF (M.B.). We thank our students. The questionnaires were
designed by J.G. and C.B. Human data were collected respecting APA ethical
guidelines.

References

1. Fu, D., Houlette, R., “The Ultimate Guide to FSMs in Games,” AI Game Programming
Wisdom II, Charles River Media (2004): pp. 283-302

2. Champandard, A. J.: Behavior Trees for Next-Gen Game AI. Internet presentation. URL:
http://aigamedev.com/insider/presentations/behavior-trees (18.1.2011)

3. Schuytema, P.: Game Development with Lua. Charles River Media (2005)
4. UnrealScript programming language. URL: http://unreal.epicgames.com/UnrealScript.htm

(18.1.2011)
5. Schwab, B.: AI Game Engine Programming. 2nd edition. Charles River Media. (2008)
6. AiGameDev community. URL: http://aigamedev.com/ (18.1.2011)
7. Rabin S.: AI Game Programming Wisdom series. URL: http://www.aiwisdom.com/

(18.1.2011)
8. Gamasutra webpage. URL: http://www.gamasutra.com/ (18.1.2011)
9. Magerko, B., Laird, J. E., Assanie, M., Kerfoot, A., Stokes, D.: AI Characters and

Directors for Interactive Computer Games, Proceedings of the 2004 Innovative
Applications of Artificial Intelligence Conference, San Jose, CA, July 2004. AAAI Press
(2004)

10. Best, B. J. & Lebiere, C.: Cognitive agents interacting in real and virtual worlds. In Sun,
R. (Ed) Cognition and Multi-Agent Interaction: From Cognitive Modeling to Social
Simulation. NY, NY: Cambridge University Press. (2006)

11. Hindriks, K. V., van Riemsdijk, M. B., Behrens, T., Korstanje, R.,Kraaijenbrink, N.,
Pasman, W., de Rijk, L.: Unreal GOAL Bots: Conceptual Design of a Reusable Interface.
In: Agents for games and simulations II, LNAI 6525, pp. 1-18. (2010)

12. Bryson, J.J.: Inteligence by design: Principles of Modularity and Coordination for
Engineering Complex Adaptive Agent. PhD Thesis, MIT, Department of EECS,
Cambridge, MA. (2001)

13. Partington, S.J., Bryson, J.J.: The Behavior Oriented Design of an Unreal Tournament
Character. In: Proceedings of IVA’05, LNAI 3661, Springer-Verlag (2005)

14. Köster, M., Novák, P., Mainzer D., Fuhrmann, B.: Two Case Studies for Jazzyk BSM. In:
Proceedings of Agents for Games and Simulations: Trends in Techniques, Concepts and
Design, F. Dignum, J. Bradshaw, B. Silverman and W. van Doesburg (ed.), AGS 2009,
LNAI 5920 (2009)

15. Dignum, F.; Bradshaw, J.; Silverman, B.G.; Doesburg, W. van (Eds.): Agents for Games
and Simulations proceedings. LCNS 5920, Springer-Verlag. (2009)

16. Tyrrell, T.: Computational Mechanisms for Action Selection. Ph.D. Dissertation. Centre
for Cognitive Science, University of Edinburgh (1993)

17. Bryson, J. J.: Hierarchy and Sequence vs. Full Parallelism in Action Selection', Simulation
of Adaptive Behavior 6, Paris (2000) pp. 147-156

18. Bryson, J. J.: Action Selection and Individuation in Agent Based Modelling', in
Proceedings of Agent 2003: Challenges of Social Simulation, Argonne National
Laboratory (2003) pp. 317-330

19. Hindtriks, V. K., van Riemsdijk, M., Jonker, B., C. M., 2011, An Empirical Study of
Patterns in Agent Programs: An Unreal Tournament Case Study in GOAL, PRIMA 2010.

20. Brom, C.: Curricula of the course on modelling behaviour of human and animal-like
agents. In: Proceedings of the Frontiers in Science Education Research Conference,
Famagusta, North Cyprus. (2009)

21. Gemrot, J., Brom, C., Kadlec, R., Bída, M., Burkert, O., Zemčák, M., Píbil, R., Plch, T.
Pogamut 3 – Virtual Humans Made Simple. In: Advances in Cognitive Science, Gray, J.
eds, The Institution Of Engineering And Technology (2010) pp 211-243

22. Brom, C., Gemrot, J., Burkert, O., Kadlec, R., Bída, M.: 3D Immersion in Virtual Agents
Education In: Proceedings of First Joint International Conference on Interactive Digital
Storytelling, ICIDS 2008 Erfurt, Germany, LNCS 5334, Springer-Verlag, Berlin (2008)

23. Artifical beings course, practical lessons slides. URL:
http://diana.ms.mff.cuni.cz/pogamut-devel/doku.php?id=lectures (18.1.2011)

24. Pogamut 3 platform documentation. http://diana.ms.mff.cuni.cz/main/tiki-
index.php?page=Documentation (25.1.2011)

25. Artificial beings course, final exam package. URL: http://diana.ms.mff.cuni.cz/pogamut-
devel/doku.php?id=human-like_artifical_agents_2009-10_summer_semester_exam_info
(18.1.2011)

26. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent Systems in
AgentSpeak Using Jason. John Wiley & Sons, Ltd. (2007)

27. Brooks, R.A: Intelligence Without Representation, Artificial Intelligence 47 (1-3) (1991)
pp. 139-159.

28. Bozada, T.A., Perkins, T. K., North, M. J., Kathy, K. L., Simunich, L., Tatara, E.: An
Applied Approach to Representing Human Behavior in Military Logistics Operations. In:
Fall Simulation Interoperability Workshop, Simulation Standards Interoperability
Organization, Orlando, FL USA (September 2006)

29. Desai, N.: Using Describers To Simplify ScriptEase. In: Master Thesis. Department of
Computing Science, University of Alberta, Edmonton, Alberta, Canada. (2009)

Appendix

This section contains additional tables, figures and some additional text concerning
presented study.

Reusable package. The package containing the assignment texts, Pogamut 3
platform, template agent projects and the scenario map can be downloaded from [25].

Table S1. Number of students in groups according to their types of study and years of study.
Master students have number of years spent for their bachelor studies included into their years
of study. Note that bachelor studies last 3-4 years typically and master studies takes usually
extra 2-3 years.

Group A

Study / Year of
study

2nd 3rd 4th 5th Total

Bachelor 4 2 0 0 6
Masters 0 0 6 1 7

Total 4 2 6 1 13

Group B
Study / Year of

study
2nd 3rd 4th 5th 6th 8th Total

Bachelor 2 1 3 0 0 0 6
Masters 0 0 3 2 2 1 7

Total 2 1 6 2 2 1 14

Table S2. List of all behavior primitives that were provided in the Task 1.

Sensors
class of primitives X parameter Y parameter

canSee X AlienBlood, Ammo, Enemy,
Weapon, WeaponOrAmmo

get/know X NavPointToExplore
know X Y SpawningPoint AlienBlood, Ammo, Weapon,

WeaponOrAmmo
Spawned AlienBlood, Ammo, Weapon,

WeaponOrAmmo
get X Y Random NavPoint

Nearest NavPoint
NearestVisible AlienBlood, Ammo,

AmmoOrWeapon, Enemy,
NavPoint, Weapon

NearestSpawned AlienBlood
Ammo
Weapon
WeaponOrAmmo

AlienBlood, Ammo, Item,
Weapon, DistanceToTarget

has X Ammo, Weapon
is X Moving, Shooting,

RunningToItem,
RunningToPlayer,
RunningToNavPoint

wantToSwitchToItem

Actions
run X ToItem

ToNavPoint
ToPlayer

shootEnemy
stop X Movement, Shooting

Figure S1. Example of the code that the subjects were creating. Top: part of a POSH plan of
the Hunter task as visualized by the graphical editor. Below: Hunter code in Java. The code and
the plan were taken from an exemplary solution created by one of VR experienced
programmers.

Table S3. List of possible commands that can be issued by the Guide and corresponding
possible answers.

Guide commands Possible Civilian answers
commandCivilianCanSee answerAngry

answerDontUnderstand
answerCanSee
answerCantSee

commandCivilianFollowMe answerAngry
answerDontUnderstand
answerCantFollowingCantsee
answerFollowingOk

commandCivilianStop answerAngry
answerDontUnderstand
answerStopped

commandCivilianTurn answerAngry
answerDontUnderstand
answerTurning

Table S4. List of all behavior primitives that were provided in the Task 2.

Sensors

class of primitives X parameter Y parameter
can X Y See Civilian, Player
 FollowCivilian
get/know X NavPointToExplore
get X Y NearestVisible NavPoint, Player

DistanceTo Civilian, NearestPlayer, Target
is X CivilianFollowing,

CivilianMoving, CivilianNear
PlayerInTalkingDistance, Moving,
RunningToPlayer,

Actions

command X Y Civilian CanSee, FollowMe, Turn, Stop
faceCivilian
followCivilian
run X ToNavPoint, ToPlayer
set X CivilianSpeed, GuideSpeed
stopMovement

Figure S2. Group A, Hunter Task (in POSH), Java/POSH preference.

Figure S3. Group B, Hunter Task (in Java), Java/POSH preference.

Figure S4. Group A, Guide Task (in Java), Java/POSH preference.

Figure S5. Group B, Guide Task (in POSH), Java/POSH preference.

Ans. # %
1 0 0
2 2 15.4
3 1 7.6
4 3 23.1
5 7 53.9

Mean 4.15±1.14

Ans. # %
1 0 0
2 5 35.7
3 4 28.6
4 1 7.1
5 4 28.6

Mean 3.29±1.27

Ans. # %
1 2 15.4
2 4 30.8
3 1 7.6
4 4 30.8
5 2 15.4

Mean 3.00±1.41

Ans. # %
1 3 21.5
2 7 50.0
3 2 14.3
4 1 7.1
5 1 7.1

Mean 2.29±1.14

Figure S6. Group A, PostExam, Java/POSH preference.

Figure S7. Group B, PostExam, Java/POSH preference.

Table S5. Contingency table of the Java/POSH preferences shift.

Change in preferences of Group A

 T2 - Java T2 - Can't decide T2 - POSH Total (Task 1)
T1 - Java 2 0 0 2
T1 - Can’t decide 1 0 0 1
T1 - POSH 3 1 6 10
Total (Task 2) 6 1 6 13

Change in preferences of Group B

 T2 - Java T2 - Can't decide T2 - POSH Total (Task 1)
T1 - Java 5 0 0 5
T1 - Can’t decide 3 1 0 4
T1 - POSH 2 1 2 5
Total (Task 2) 10 2 2 14

Table S6. Table summarizing previous Java experiences in both groups (in man-months).

 0-1 months 2-5 months 6-9 months > 9 months Total
Group A 9 2 0 2 13
Group B 6 4 1 3 14
Total 15 6 1 5 27

Ans. # %
1 0 0
2 3 23.1
3 2 15.4
4 3 23.1
5 5 38.4

Mean 3.77±1.19

Ans. # %
1 3 21.5
2 6 42.8
3 4 28.6
4 1 7.1
5 0 0

Mean 2.21±0.86

Figure S8. Dependency of ASR on subject’s year of study (Left – Task 1; Right – Task 2).

Figure S9. Dependency of ASR on primitives’ comprehension (Left – Task 1; Right – Task 2).

Figure S10. Dependency of ASR on previous Java experience (Left – Task 1; Right –
 Task 2)..

ADAPT:
Abstraction Hierarchies to Better Simulate Teamwork ?

Meirav Hadad1 and Avi Rosenfeld2

1 Research Division, Elbit Systems Ltd, Rosh Ha’Ayin 48091, Israel
2 Jerusalem College of Technology, Jerusalem 91160, Israel

Meirav.Hadad@elbitsystems.com,rosenfa@jct.ac.il

Abstract. In this paper we present a lightweight teamwork implementation by
using abstraction hierarchies. The basis of this implementation is ADAPT, which
supports Autonomous Dynamic Agent Planning for Teamwork. ADAPT’s nov-
elty stems from how it succinctly decomposes teamwork problems into two sepa-
rate planners: a task network for the set of activities to be performed by a specific
agent and a separate group network for addressing team organization factors.
Because abstract search techniques are the basis for creating these two compo-
nents, ADAPT agents are able to effectively address teamwork in dynamic en-
vironments without explicitly enumerating the entire set of possible team states.
During run-time, ADAPT agents then expand the teamwork states that are nec-
essary for task completion through an association algorithm to dynamically link
its task and group planners. As a result, ADAPT uses far fewer team states than
existing teamwork models. We describe how ADAPT was implemented within
a commercial training and simulation application, and present evidence detailing
its success in concisely and effectively modeling teamwork.

1 Introduction
Effectively quantifying teamwork problems is critical in many environments [4, 10].
However, one of the key challenges in creating teamwork models is how inter-agent
rules can be encoded such that the team can still effectively behave in complex and dy-
namic environments [1, 10]. In particular, when multiple agents operate in these types
of environments, their different mental states must be resolved so that a unified behav-
ior can be formed for the team. One key research challenge for distributed artificial
intelligence researchers is how these models can be created and implemented [10].

One leading solution is to decompose the group’s actions into a set of rules which
must be solved [10]. Following this approach, the group’s actions can be represented
as a hierarchical structure of joint intentions and individual intentions and beliefs about
others’ intentions. However, this approach has two major drawbacks. First, the size of
the model might be too large to realistically solve. Previous research found that many
classes of teamwork problems exist for which finding the optimal sequence of actions
is of intractable computational complexity [9]. Second, the structure of the tree must
be flexible to dynamically changing conditions, such as changes in the environment,
goal changes, and local or general constraints. Thus, even if a solution could be found

? This research is based on work supported in part by Israel’s Ministry of Science and Technol-
ogy grant # 44115.

2 Meirav Hadad and Avi Rosenfeld

for a given time period, that solution might quickly become irrelevant. Hence, solutions
must be found that reduce the size and structure of the team model such that it may be
tractably and quickly solved, even in dynamic environments.

In this paper we present ADAPT, a novel approach for Autonomous Dynamic Agent
Planning for Teamwork. The key difference between ADAPT and other teamwork hi-
erarchical approaches [1, 4, 5, 10, 11] stems from how teamwork is modeled. Previous
approaches attempted to exhaustively depict all possible teamwork states. However, as
has been previously demonstrated [9], the number of possible interactions between team
members grows exponentially for many real-world domains, making these approaches
difficult to implement, even in small to medium-sized groups.

Instead, ADAPT uses hierarchical abstraction as its basis in order to reduce the
number of states which need to be considered. Specifically, a given teamwork prob-
lem is converted into two hierarchical networks: a task network to model the set of
activities a given agent can perform and a separate group network for addressing or-
ganization factors. Within both hierarchical networks, behaviors are decomposed such
that the general task and group problems are progressively redivided into partial plans
involving smaller sets of subtasks and subgroups. ADAPT contains two novel elements
designed to further reduce the size of these hierarchies. First, as hierarchical abstraction
is used, agents incrementally add only relevant task and group information during task
execution. Second, ADAPT uses an association algorithm to effectively perform task
allocation. Agents only check those constraints which it may possibly perform, further
adding to ADAPT’s concise nature. The net result is that ADAPT can effectively simu-
late teamwork problems, even in dynamic environments, yet uses far fewer states than
existing approaches.

While the ADAPT framework is general and is likely applicable to a variety of
teamwork problems, in this paper we focus on how ADAPT was critical in implement-
ing a multi-agent simulation. In Section 2 we present related teamwork models and
compare those approaches to ADAPT, while Section 3 formally defines ADAPT and
its algorithms. Sections 4 and 5 detail how ADAPT was implemented. Specifically,
Section 4 focuses on describing the existing commercial multi-agent simulation into
which ADAPT added. In Section 5 we discuss how ADAPT was successfully imple-
mented into this framework, detail results which demonstrate the effectiveness of this
framework in dynamic environments and show that the number of teamwork states that
must be considered within ADAPT is significantly less than in other state-of-the-art
approaches. This allowed the existing simulation to more effectively handle complex
multi-agent tasks. Section 6 provides our conclusions.

2 Background and Motivation

Because of the importance of coordination problems, a variety of teamwork frame-
works and formalizations have been proposed by the multi-agent research community
[4, 1, 10]. The SharedPlans approach [1] consists of creating teamwork recipes based
on modeling agents’ beliefs and intentions. Tambe’s STEAM teamwork engine [10]
provides a set of generalized teamwork rules. The TAEMS framework [4] consists of
hierarchical rule based approach where coordination relationships are quantified into
groups, tasks, and methods.

ADAPT: Abstraction Hierarchies to Better Simulate Teamwork 3

ADAPT decomposes teamwork in a novel fashion by creating two hierarchical net-
works: a task network which addresses how the agent must plan its actions, and a
group network that addresses how inter-agent assignments must be set. Previous work
of multi-agent planning (e.g., [2]) and teamwork structures [4, 1, 10] suggested address-
ing the team’s task planning as one multi-agent network which needs to be decomposed.
Other works from social sciences [12] address how people within a team should be or-
ganized in order to facilitate the best planning of the activity. This approach parallels
our creating a group network based on the agents in the team. However, ADAPT’s nov-
elty stems from applying abstract search techniques [7] to address multi-agent planning
in its task and group network.

Previous approaches also separate team behavior into different components. Most
similar to our approach, BITE is a behavior based teamwork architecture that separates
task behaviors from behaviors between a single agent and its organization [5]. Similarly,
ADAPT compartmentalizes teamwork between the task and the group. More generally,
the TEAMCORE architecture uses a decision-theoretic structure to select different hi-
erarchical team behaviors [11]. TAEMS separates team activities into tasks that are per-
formed by the team with methods that can be performed by the agent [4]. However, in
previous approaches, teamwork models were completely defined before task execution.
They are required to explicitly define how every agent interacts with every other agent,
and even how dynamics may affect these relationships, a process that can potentially
lead to an exponential number of inter-agent states. When implementing these models,
this state explosion can be prohibitively difficult as the number of team members grows.

In ADAPT, the task and group abstractions are incrementally built and dynamically
changed during task execution. This difference allows us to significantly reduce the
number of inter-agent states even when addressing dynamics. Additionally, ADAPT
enables replanning for specific subproblems, allowing for more effective teamwork.
Consequently, ADAPT allows for a more concise model which, in turn, facilitates easier
simulation of complex, real-world tasks. We detail this approach in the next section.

3 Technique Description

ADAPT’s model is based on taking a teamwork problem and then decomposing it into
both task and group elaboration processes. As such, each of the task and group problems
are decomposed in a top-down manner from a higher level, into progressively lower
levels. The planning strategies of the elaboration processes in ADAPT are based on ab-
stract search techniques [7]. Accordingly, the planning procedures of each elaboration
process involves three major steps: (1) A branching step identifies possible candidates
for expanding a partial plan; (2) A refinement step for adding constraint information to
the partial plan; (3) a pruning step for removing unpromising candidates based on these
constraints in order to avoid failure. While abstract-search is a well known technique
for automated task planning [7], ADAPT’s contribution stems from applying these tech-
niques to teamwork modeling.

3.1 A Dynamic Planning Teamwork Example

To clarify how we intend to use these concepts, consider the following general example.
Assume that a group must work as a team on a joint mission, say to capture a flag. A

4 Meirav Hadad and Avi Rosenfeld

group of blue agents must plan how they will infiltrate the territory of the opposing
team of red agents who are defending the flag. This type of scenario is typified in many
real-world scenarios, such as military missions involving destroying an enemy target. In
dynamic environments it is almost impossible to predict all possible event permutations
that may occur while the blue agents complete their task.

Fig. 1. Four Stages in a Mission Storyboard

Figure 1 depicts one series of group states during the execution of the “Capture the
Flag mission”. At the start, a group of 4 red agents are divided into 2 subgroups of pairs
located on either side of the flag to defend it (see the top left corner). At the same time, a
group of 8 blue agents approach the flag area. In the second stage (see top right corner),
the blue group splits into two subgroups of 4 agents according to their capabilities. One
subgroup splits again into two subgroups of 2 agents and each subgroup approaches and
engages the 2 red subgroups. In the next stage (bottom left) the blue agents engage the
red ones to attempt to capture the flag. However, during this stage an unplanned event
occurs, and one of the blue agents is incapacitated by a member of the opposing red
team. The result of this change is that the group must replan their mission with only 7
of the 8 agents. In the final stage (bottom right), we see the group of 7 remaining blue
agents still completing the task and capturing the flag.

ADAPT: Abstraction Hierarchies to Better Simulate Teamwork 5

Fig. 2. Three Stages in Building the Teamwork Model in a Mission Storyboard (see Figure 1)

3.2 High Level Overview of ADAPT

While the ADAPT agents plan their task, they use the branching, refinement and prun-
ing stages of abstract search techniques to limit the size of the teamwork model. We
depict the stages of the teamwork model formation for the blue team in Figure 2. As
previously described, ADAPT decomposes teamwork into both task and group net-
works. In the first stage (Stage 1 in Figure 2) each of these components are described
only generally in the form of one abstract node. To graphically differentiate between
the two task and group abstractions, we present the task hierarchy in rectangles, and
the group hierarchy in ovals. At the beginning of execution, one rectangular task node
describes the high level “Capture the Flag” task, and the group hierarchy “Package”
describes the blue agents’ attributes and capabilities which can be used to perform this
task. In order for the blue agents to perform the team task, “Capture the Flag”, their
group and task planners must decide exactly how they will properly connect these two
hierarchies. To make this decision, the agents’ planners must apply their branching step
to expand their abstract components of all applicable group and task options, which we
refer to as methods. This is graphically represented in Stage 2 of Figure 2. However,
unique to ADAPT and beyond similar previous teamwork approaches such as BITE
and TEAMCORE [5, 10, 11], we then apply a refinement step where each agent gen-
erates the best applicable option based on its locally available information and the set
of constraints associated with each option. We model each distributed agent as having
a planner which uses a Distributed Constraint Optimization Problem (DCOP) solver to

6 Meirav Hadad and Avi Rosenfeld

help create teamwork plans. In our implementation, the DCOP solver is based on the ex-
isting OptAPO algorithm [6]. As per the OptAPO algorithm, a mediator agent is elected
which collects each of the distributed agents’ constraints. In the next punning step, the
mediator agent selects the best option given the choices each distributed agent presents.
The mediator agent then informs each distributed agent about the option chosen, which
is then selected by the local agent and executed.

Referring again to the example in Figure 2, the distributed planner decides that the
best sequence for the blue agents to execute the team task, “Capture the Flag”, is to
first select the “Setup” subtask, then “Go to Flag”, and lastly the “Capture” subtask.
Within each subtask a further decomposition may occur into additional subtasks and
subgroups. For example, the “Capture” subtask is decomposed into two subtasks which
are assigned to 2 subgroups. One subgroup of four agents performs the “Patrol” subtask,
while the second subgroup of four agents perform the “Engage” activity, where they en-
gage the red agents defending the flag. The allocation step, where each agent is assigned
to a given subtask, is also performed by the refinement step (Stage 3 of Figure 2). The
best assignment is decided by the OptAPO mediator agent. As only a subset of all agents
can perform certain activities, we can then apply the pruning step by which we reduce
the teamwork model to only those states which are theoretically feasible. The mediator
is also responsible for checking, or associating, between the task and group networks
in order to ensure that the solution is feasible. Combining the refinement and pruning
steps allows for a significantly smaller teamwork model than previous approaches [5,
10, 11] as their approaches stop model construction at the branching step. Thus, our
work searches for a teamwork solution in a much smaller state space than in previous
approaches.

In the following sections we formally describe and further detail the exact process
by which these group and task networks are built. We also describe how these networks
are associated such that teamwork problems can be solved in real-time and yet address
dynamic changes from within the problem.

3.3 Modeling ADAPT’s Constraint Networks

We model each task and group network as having a hierarchical structure which must
be solved as a type of distributed constraint optimization problem (DCOP). Following
previous DCOP work we define a DCOP problem as a set of variables where each
variable is assigned to an agent who has control of its value. Cooperative agents must
then coordinate their choice of values so that a global utility function is optimized.
Formally, this process has previously been described as [6]:

– A set of N agents A = A1, A2 . . . , AN

– A set of n variables V = X1, X2 . . . , Xn

– A set of domains D = D1, D2 . . . , Dn where the value of Xi is taken from Di.
Each Di is assumed finite and discrete.

– A set of cost functions f = f1, f2 . . . , fm where each fi is a function fi: Di,1 × . . .
× Di,j → N ∪∞. Cost functions are also called constraints.

– A distribution mapping Q : V→ A assigning each variable to an agent. Q(Xi) = Ai

denotes that Ai is responsible for choosing a value for Xi. Ai is given knowledge
of Xi, Di and all fi involving Xi.

ADAPT: Abstraction Hierarchies to Better Simulate Teamwork 7

– An objective function F defined as an aggregation over the set of cost functions.
Summation is typically used.

In the following sections we describe how we have implemented DCOP to create
teamwork behavior in ADAPT’s task and group network.

Modeling ADAPT’s Task Network As our goal is to succinctly implement the sim-
ulation of group behavior, ADAPT contains many similarities to previous Hierarchical
Task Network (HTN) planning approaches [4, 8, 7, 3] but includes extensions for dy-
namic multi-agent environments. Formally, we define an atomic task (or primitive task)
as an action act(

→
v) that can be directly executed by the agents (e.g., FlyTo(origin, dest)).

A (higher-level) complex task c(
→
v) is one that cannot be executed directly and is de-

composed into subtasks (e.g., Defend(v1, v2, v3, v4). Each task may be associated with
two kinds of boolean formulas – a precondition rule and postcondition rule – to indi-
cate the required situations for starting and ending the task execution (e.g., (IsFuel >
200.lib) ∧ (IsT ime = 5:00PM). We define tasks as being either a single-agent task
or a multi-agent task. A single-agent task can be executed by one agent by itself and
multi-agent tasks require 2 or more cooperative agents to complete the task.

To execute a high-level complex task c(
→
v), agents must identify a method that en-

codes all constraints for how this task may be performed, including key information
about which agent can perform this task and constraints as to how it can be performed.
Specifically, we define a method, m, as a 5-tuple containing:
〈name(m), task(m), constr(m), subtasks(m), relation(m)〉, where name(m) is the name
of the method and task(m) is the name of the complex task. We define subtasks(m) as
the sequence of tasks and constr(m) as the set of constraints {ρ1 . . . ρp} that may apply
when using the method m. Each constraint ρk involves a subset of variables and speci-
fies all combinations of values for these variables. We define these variables as the set of
{X1 . . . Xn} where each value Xi is taken from a set of Di possible values for a given
problem. Constraints may include specific required capabilities that a certain number
of agents perform specific subtasks(m). For example, there may be a constraint stat-
ing that the number of agents required to perform a subtask must be between 2 and 5
(formally, 2 ≥ XagentNun ≤ 5). Alternatively, these constraints may specify the type
of agent that can perform a certain subtask, for example that the type of agent must be a
fighter plane. In our implementation, we assumed these constraints were boolean. The
relationship, relation(m), contains constraints on the execution of the subtasks(m)
and may be one of the following: (i) AND denotes that the task(m) is accomplished
iff all the subtasks(m) are accomplished; (ii) OR denotes that the task(m) is accom-
plished iff at least one of the subtasks(m) is accomplished; and (iii) NEXT orders
constraints between subtasks(m) such that one subtask must be performed before an-
other. These constraints contain similarities to the QAF and NLE constraints within the
TAEMS teamwork framework [4].

We define a task network dtask = [Gtask, ρ] as a collection of tasks that have to
be accomplished under constraints ρ. The task network is represented by an acyclic
digraph Gtask = (Vtask, Etask) in which Vtask is node set, Etask is the edge set, and
each node v ∈ Vtask contains a task. The task planning domain Dtask = (Mtask,A)

8 Meirav Hadad and Avi Rosenfeld

consists of a library task methods Mtask of methods and library A of atomic tasks. A
task planning problem is defined as a triple Ptask = 〈dtask,B,Dtask〉 where dtask is
the task network to be executed, B is the initial state and Dtask is the planning domain.
A task plan is a sequence act1 . . . actn of atomic actions.

Given a task planning problem instance, the planning process involves the branch-
ing, refinement and pruning steps. The branching step is defined by retrieving the entire
set of methods in Mtask which may be applied to the required task. Refinement then
has each local agent check its constr(m) and send what it considers to be its best option
to the mediator agent within the DCOP solver. More formally, given a set of possible
applicable methods {m1, . . . ,mt} each method contains constraints constr(mj) that
contain sets of variables {Xmj

1 . . . X
mj
n } where each value X

mj

i is taken from a set of
D

mj

i . Consistent to the general DCOP formalization, the ADAPT agent must minimize
the cost functions f = {f1, . . . , fm} where each fi(d

mj

i,1 , . . . , d
mj

i,k) is a function of
fi : D

mj

i,1 × . . .×D
mj

i,k → N ∪∞. The teamwork problem is considered solved if an as-
signment A∗ = {dmj

1 , . . . , d
mj
n |dmj

i ∈ D
mj

i } is found such that the global cost, Fmj ,
is minimized. As DCOP problems have been proven to be NP-complete [6], keeping
the search space as small as possible is critical for implementing a working application,
especially one capable of running in real-time even as it handles dynamics.

In ADAPT’s pruning stage, the mediator uses the OptAPO algorithm to search for
this teamwork solution. If a solution for Mtask cannot be constructed, the mediator
agent asks each agent to iteratively select its next possible method until a solution is
found. This process can either result with a plan being found, or a NULL plan in failure.
Assuming dynamics change the environment, the entire planning process is repeated
from the branching step.

For example, referring back to Figure 2, a complex task by the name of “Capture the
Flag” is to be performed (Stage 1). The complex task may be decomposed according to
a set of methods fromMCapturetheF lag which can be used to indicate different ways to
plan this task (Stage 2). In this example, the selected method includes the subtask Setup
which is an atomic task, while the subtask Capture is a complex subtask which must
then continue to be decomposed by additional methods. Stage 3 in Figure 2 depicts the
last stage in task network for GCapturetheF lag .

Modeling ADAPT’s Group Network In parallel to the task hierarchy, ADAPT also
deconstructs teamwork into a group component to model constraints about which agents
can perform given tasks. We refer to the hierarchy about the entities combined capabil-
ities as the group. Parallel to our task definitions, we decompose the hierarchy as per
the group decomposition into higher levels of complex entities and atomic entities
which cannot be divided into further levels.

More formally, an atomic entity indicates a single agent and its basic capabilities
agent(

→
v) (e.g., Airplane(Engine, Fuel, . . .)). A (high-level) complex entity c(

→
v) in-

dicates a multi-agent group that can be decomposed into subgroups. The decomposition
of the complex entity into subgroups is done according to group decomposition method.
Specifically, method m is defined as a 4-tuple:
〈name(m), entity(m), constr(m), subgroups(m)〉, where name(m) is the name of the
method and entity(m) is the name of the complex entity. The subgroups(m) indicates

ADAPT: Abstraction Hierarchies to Better Simulate Teamwork 9

either atomic or complex entities. Similar to task method the constr(m) indicates set
of constraints {φ1 . . . φr} that may apply when using the method m. These constraints
indicate the required capabilities from agents to be assigned to the subgroups(m) and
the different constraints on the group (e.g, maximum group members). A group net-
work dgroup = [Ggroup, φ] is a collection of groups that have been organized in a hi-
erarchical manner under constraints φ. The group network is represented by Ggroup =
(Vgroup, Egroup) in which Vgroup is a node set, Egroup is the edge set, and each node
v ∈ Vgroup contains group information.

The group planning domain Dgroup = (Mgroup, E) consists of a library Mgroup

of methods and a library E of atomic entities. A group planning problem is defined as
a triple containing Pgroup, which is defined as 〈dgroup,B,Dgroup〉 where dgroup is the
group network to be executed, B is a set of agents with their concrete capabilities and
Dgroup is the planning domain. A group plan assigns agents to the appropriate nodes in
the group network based on their capabilities in such a way that all the constraints are
satisfied.

Similar to the task planning process, given a group planning problem instance, the
planning process again involves the branching, refinement and pruning steps as well.
The branching step is defined by retrieving the entire set of methods in Mgroup which
may be applied to the complex entity. The refinement stage then has each local agent
check its constr(m) and send what it considers to be its best option to the mediator
node within the DCOP solver. In the pruning stage the mediator node then checks all
received constraints and checks if a solution for Mgroup can be constructed. If several
solutions are possible, it selects the solution with the highest expected utility (or the
lowest cost). If no plan can be formed based on these constraints, each agent iteratively
selects its next possible method until a solution is found. This process can either result
with a plan being found, or a NULL plan in failure. Assuming dynamics change the
environment, the entire planning process is repeated from the branching step.

For example, referring back to Figure 2, a complex entity, “Package” contains all
possible group configurations. The complex entity may be decomposed according to a
set of methods from MPackage which can be used to indicate different group compo-
sitions to plan this group organization. In this example, the selected method “FourShip
Formation” includes that a group decomposition of two groups of four agents to be
formed from the complex entity “Package”.

3.4 Association to Create Teamwork

It is important to stress that after the pruning stages described above in both the task
and group networks, the mediator agent must check the consistency, or what we refer
to as the association, between these two sets of constraints to see what teamwork ac-
tion should be selected. The association process serves as an intermediary between the
DCOP mediators for both the task and group planners within the two abstract networks.
The association process may connect one or more vertices of the task and group net-
works. Thus, the association enables loose coupling between the planners by allowing
each of them to modify the corresponding plan independently.

The major steps of solving a teamwork problem are given in Algorithm 1. The
teamwork problem is divided into a two separate networks, dtask and dgroup. An initial

10 Meirav Hadad and Avi Rosenfeld

network is represented as a single vertex of the highest level task or group. The group
planner is responsible to assign the initial agent(s) to the vertex of the initial network
and the association process creates a link between these initial networks (line 1). Then
the task planner creates a partial plan by expanding its task network as much as possi-
ble based on the constraint’s world state W currently available to the agents’ mediator
(line 2). These constraints will typically include data such as the current states of the
environment (e.g. weather) or the informational status of the agent (e.g. fuel level or po-
sition). During the task planning process, the mediator is responsible to assign an agent
(or agents) to subtasks in the task network. The mediator then sends a request with the
proposed assignment to the association process so possible group constraints can be
checked. The association process connects to the group mediator (line 3) which checks
all possible ways a given task can be allocated by expanding its group network under
the constraints of the task planner (line 4). This is our implementation of the branching
step. The association process is then responsible for linking the new vertices that were
added to the group network to the corresponding vertices in the task network (lines 6-7).
ADAPT then applies the partial solution on the environment through interleaving plan-
ning with execution (line 8). In this way, plans are built incrementally during real-time.
Note that steps 6–8 correspond to the refinement and pruning stages of abstract search
techniques. Next, if it is impossible to generate a partial plan because of information
obtained from the refinement step, the association sends a replanning request to either
the task planner or group planner (lines 9-10), and each local agent sends additional
constraints and the plan is expanded as described in the former section. Finally, the as-
sociation algorithm checks if the changes to the available data cause conflicts with the
existing assignments (lines 11-13). If any conflict with the existing plan is detected due
to the dynamic changes to the environment, the entire process is repeated.

Algorithm 1 The major steps for dynamic association
Input: Initial vertices vt ∈ Vtask and vg ∈ Vgroup

Output: Teamwork plan for current world state W
01 Create initial links between vt and vg;
02 while the task plan is not completed:
03 if request from task planner is received then:
04 Send request for elaboration to group planner
05 Receive the set of the vertices V

′
task and V

′
group

06 if Can-Associate (V
′
task , V

′
group) then:

07 Generate-links (V
′
task , V

′
group)

08 Apply partial teamwork plan if possible;
09 else
10 Send request for replanning (task or group)
11 Receive perceptions from the world:
12 if the new data causes to conflicts between links
13 Send request for replanning (task or group)

ADAPT: Abstraction Hierarchies to Better Simulate Teamwork 11

4 Implementation Issues

We have implemented ADAPT within a commercial training and simulation system at
Elbit Systems LTD. Elbit specializes in large-scale defense solutions in the areas of avi-
ation, land and naval military systems with ten of thousands of workers worldwide. One
division within Elbit has been developing sophisticated simulation systems such that
personnel can be trained without the cost and potential risk of using actual equipment.
Towards this goal, Elbit has already developed realistic simulators for airplane cockpits,
naval stations and ground forces. We propose a new application that builds upon Elbit’s
existing simulators to simulate more complex team training missions through using
ADAPT to help reduce the teamwork model size so it may be effectively implemented.

Fig. 3. A high level overview of the simulation system

Towards this goal, we created a working system at Elbit by integrating ADAPT
within existing single-workstation simulation systems. Figure 3 depicts a high level
description of the system’s four major components. Elbit’s previously developed simu-
lation engine is still responsible for creating the base simulation environment. As part
of this component, a Geographical Knowledge Base (GKB) contains geographical data
about the training scenario and an exercise planner (EP) database is created with ini-
tial data of the training exercise (e.g., agents types, agents’ forces, their initial location,
their initial mission). Special to the ADAPT project, a Entity Knowledge Base (EKB) is
created containing properties on each agent (e.g. aircraft type, max,min velocity). In
addition, it includes various types of entities, including complex entities (e.g., platoon,
battalion), and their decomposition methods that describes possible ways of decom-
posing the groups into subgroups. Thus, this database contains all relevant information

12 Meirav Hadad and Avi Rosenfeld

about ADAPT’s group network. Also, a Task Knowledge Base (TKB) is created con-
taining a set of tasks that the agent can perform and their appropriate methods. Within
military applications, this database represents a doctrine, or the key task that must be
performed, or ADAPT’s task network. Agents’ decisions are based on the dynamic and
static knowledge that the agents gather from the simulation engine as well as the con-
straint information in the EKB and the TKB. The Real Time (RT) control component
enables the human trainer to interact with the simulated arena. Additionally, it provides
the human interface to the simulation system.

Fig. 4. General description of an ADAPT agent

Figure 4 provides a detailed description of how ADAPT and the algorithms pre-
sented in section 3, are integrated as the basis for creating this behavior. Moving from
top to bottom within the Figure, each simulated entity is comprised of: a decision mak-
ing process; a cooperation level; a failure handling process; and two types of planners
(connected through the association process). Note that the Task Planner in Figure 2 is
used to solve ADAPT’s task network, and the Group Planner is used to solve ADAPT’s
group network. The decision maker is responsible for receiving the agent’s perceptions
and deciding on the agent’s next steps accordingly.

5 ADAPT’s Usefulness in a Simulation System

In studying ADAPT’s usefulness in Elbit’s simulation system, we focused on three key
issues: 1. Can content experts easily work with the application to effectively impart
their knowledge? 2. Does ADAPT indeed succinctly model teamwork, and how does it

ADAPT: Abstraction Hierarchies to Better Simulate Teamwork 13

compare with other state of the art models? 3. Does the system perform effectively, and
can it deal with system dynamics?

Specifically, we applied the general technique in Section 3 regarding the Capture the
Flag problem, and applied this technique to scenarios involving fighter jets attempting
to destroy an enemy target. Each scenario involved a target that needed to be destroyed,
as well as groups of attacking and defending planes. The attacking planes form the blue
group and are constructed from bomber and fighter planes (e.g. F16 fighters and Stealth
bombers), and the defending group consist exclusively of red fighter planes (F16). The
goal of the blue fighters is to disable the enemy’s red fighters after which the blue
bombers are able to destroy the target. The scenarios focused on different group sizes
for the blue and red teams. Dynamics focus on unknown issues including the number of
planes on each team that were disabled. In order to create the task and group networks,
we consulted with a group of professional fighter pilots whose expert knowledge was
then directly encoded. We relied on these experts to provide details about how they
would perform theoretical missions. We then successfully encapsulated this information
as the Doctrine and Technical databases to form ADAPT’s task and group methods. A
pictorial description of one scenario involving seven blue and six red planes is given in
Figure 5.

Fig. 5. Attack a ground target - simulation view snapshot

To study the savings in the number of states within ADAPT versus other previous
static approaches [5, 10, 11], we focused on missions with groups of 5, 8 and 12 blue
planes which needed to destroy one target on the red team guarded by a fixed number
of 5 jets. We recorded the number of task and group nodes required to encode team-
work within ADAPT throughout the task’s execution. We then compared how many

14 Meirav Hadad and Avi Rosenfeld

states would be needed in these same problems by BITE [5]. We decided to compare
the number of states needed by BITE as it too divides teamwork into Task and Group
hierarchies and thus is the closest comparable model to ADAPT. However, as ADAPT
uses abstract search as well, we would expect BITE to use a fixed number of possi-
ble task and group permutations, while ADAPT would only store those states actually
needed to deal with problem execution. Furthermore, one would expect that the number
of states in ADAPT can and will change during task execution, especially as problem
dynamics are addressed. To study this point, we assumed 2 blue agents were disabled
during task execution.

BITE ADAPT max ADAPT average
Number of Agents Task States Group States Task States Group States Task States Group States

5 561 18 44 5 37.1 3.67
8 624 146 53 8 39.65 6.29

12 829 400 68 8 56.86 6.17

Table 1. Comparing the number of task and group teamwork states in ADAPT versus BITE
teamwork models

As Table 1 demonstrates, we found that ADAPT’s use of abstraction yielded an
enormous savings in the number of teamwork states needing to be stored. In columns
2 and 3, we present the size of BITE’s task and group network within the problems we
implemented. Compare these values to the maximal size of ADAPT’s task and group
networks in columns 4 and 5. The average state size is even smaller, and is presented in
columns 6 and 7. These very significant savings are because ADAPT only stores task
and group network nodes that are found to be relevant based on the current conditions
as dictated by branching, refinement, and pruning stages. In contrast, static approaches
such as BITE must preplan for all possible contingencies. This difference becomes
more pronounced as ADAPT uses real-time planning based on the agent’s current state.
ADAPT interleaves planning and execution and thus applies partial group and task net-
works. This is why ADAPT has no need to create complete plans for all contingencies
in advance. The net result is that ADAPT’s group and task networks are initially de-
fined abstractly and incompletely and built incrementally only as needed, based on the
specific environment settings that the agents encounter during task execution based on
ADAPT’s associative algorithm. Thus, the maximum number of task and group nodes
within ADAPT is far larger than its average. This difference can be observed by com-
paring the differences in the maximal model size and the average size for task states
(columns 4 and 6) and group states (columns 5 and 7).

In addition to studying the size of ADAPT’s teamwork model, we also evaluated
the ease by which ADAPT could be implemented to verify that in fact it did facilitate
tractably computing the team’s optimal behavior even when faced with dynamics. Re-
call that the task and group planners are based on a state-of-the-art DCOP algorithm
[6] to solve these constraints. However, as these problems are NP-complete, no DCOP
algorithm can yield definite performance guarantees for all theoretical problems. As
our production simulation must be able to run without noticeable lags, even when sim-
ulating complicated scenarios with high levels of dynamics, we believe that having a

ADAPT: Abstraction Hierarchies to Better Simulate Teamwork 15

Fig. 6. The influence of dynamics on ADAPT’s teamwork planners.

smaller teamwork model is critical towards achieving this goal. To evaluate this point,
we implemented 3 variations of scenarios involving a team of 8 blue agents attempting
to achieve their joint mission, i.e. attack ground target, versus a group of 5 red agents. To
study the impact of dynamics on ADAPT, three levels of dynamic changes were tested:
low-change, middle-change and high-change. In the low-change scenario the red force
tried to defend the ground target but could not eliminate any of the blue force members
and the group planner did not need to replan due to dynamics. This case represents the
baseline of the study, as it allowed the blue force to complete its task with no changes in
its force and with little need to change its mission plans. In the middle-change scenario,
the red force succeeded in eliminating one or two of the blue fighters from the arena
(based on non-deterministic effects), triggering some changes in the group hierarchy
of fighters and requiring a moderate degree of mission and group replanning. In the
high-change scenario the red force succeeded in eliminating three or more planes from
both the fighter and bomber planes, causing more changes in the group hierarchy. This
necessitated significant replanning efforts in both the task and group networks.

We measured the total planning time needed by the blue team agents using ADAPT
to plan successful joint missions. We defined mission success as the elimination of the
ground target and the blue team returning home. To examine ADAPT’s performance, we
compared the time needed by its problem solvers in 30 trials for each of the 3 different
levels of dynamic changes (90 total trials) from sets of 5 minute simulations. We ran
the ADAPT simulation on a 2.8 GHz Pentium D computer with 2 GHz of memory.

Figure 6 shows the total time utilized by the task planner, group planner and the de-
cision maker to completely plan the joint mission. The total time represents the overall
time used by the ADAPT engine to solve the teamwork problem. This time includes the
component needed by the task planner, the group planner and the association process.
In all cases, the task and group planners operated within fractions of seconds. Similarly,
the total time used by ADAPT was under 0.12 seconds in even the most dynamic sce-
narios. Thus, we found that ADAPT facilitated real-time teamwork simulation, even in
highly dynamic environments.

16 Meirav Hadad and Avi Rosenfeld

6 Conclusions

In this paper, we present ADAPT, a framework to decompose teamwork into abstract
task and group networks. As ADAPT is the first teamwork model to use abstract search
methods, it represents a radical departure over previous models which need to exhaus-
tively describe all possible interactions prior to task completion [5, 10, 11]. As these
models can be of exponential size, the problem of finding the optimal teamwork behav-
ior can be of intractable complexity [9]. In contrast, ADAPT builds teamwork models
incrementally during task execution, thus allowing agents to apply refinement and prun-
ing steps to limit the size of the teamwork model needing to be stored. This fundamental
difference not only yields teamwork models that are smaller by several orders of magni-
tude, but allows agents to quickly find their optimal behavior within this smaller model
as described in this paper.

This paper also described how ADAPT was implemented within a challenging mil-
itary simulation domain. We present results pertaining to how ADAPT formed the basis
of a commercial system. We detail the specific task and group networks ADAPT cre-
ated, how ADAPT can handle domain dynamics, and the time required by ADAPT to
identify the optimal team behavior. While we have only implemented ADAPT to date
in one series of planning problems, we are confident that this approach can be equally
successful in other planning and scheduling problems due to ADAPT’s generality.

References

1. B. J. Grosz and S. Kraus. Collaborative plans for complex group action. AIJ, 86(2):269–357,
1996.

2. M. Hadad, S. Kraus, Y. Gal, and R. Lin. Time reasoning for a collaborative planning agent
in a dynamic environment. Annals of Math. and AI, 37(4):331–380, 2003.

3. H. Hoang, S. Lee-Urban, and H. Muoz-Avila. Hierarchical plan representations for encoding
strategic game AI. In AIIDE-05. AAAI Press, 2005.

4. B. Horling, V. Lesser, R. Vincent, T. Wagner, A. Raja, S. Zhang, K. Decker, and A. Garvey.
The TAEMS White Paper, January 1999.

5. G. A. Kaminka and I. Frenkel. Integration of coordination mechanisms in the BITE multi-
robot architecture. ICRA-07, pages 2859–2866, 2007.

6. R. Mailler and V. Lesser. Using Cooperative Mediation to Solve Distributed Constraint
Satisfaction Problems. In AAMAS ’04, pages 446–453, New York, 2004.

7. D. Nau, M. Ghallab, and P. Traverso. Automated Planning: Theory & Practice. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2004.

8. D. S. Nau, T.-C. Au, O. Ilghami, U. Kuter, J. W. Murdock, D. Wu, and F. Yaman. Shop2: An
HTN planning system. J. Artif. Intell. Res. (JAIR), 20:379–404, 2003.

9. D. V. Pynadath and M. Tambe. The communicative multiagent team decision problem: An-
alyzing teamwork theories and models. JAIR, 16:389–423, 2002.

10. M. Tambe. Toward flexible teamwork. JAIR, 7:83–124, 1997.
11. M. Tambe, D. V. Pynadath, N. Chauvat, A. Das, and G. A. Kaminka. Adaptive agent inte-

gration architectures for heterogeneous team members. pages 301–308, 2000.
12. R. W. Toseland and R. F. Rivas. An Introduction to Group Work Practice. Allyn and Bacon,

Boston, 2001.

An Architecture for Affective Behaviours Based
on Conservation of Resources

Sabrina Campano, Etienne de Sevin, Vincent Corruble, and
Nicolas Sabouret

Université Pierre et Marie Curie, Laboratoire d’Informatique de Paris 6
4, place Jussieu, 75005 Paris, France

{sabrina.campano,etienne.de-sevin,vincent.corruble,

nicolas.sabouret}@lip6.fr

Abstract. This paper presents a model for autonomous virtual agents
that enables them to display affective behaviours. Our goal is to obtain
believable behaviours, i.e. behaviours that are similar to those of human
beings, for various simulation contexts in an urban environment. The
proposed architecture is based on a principle of conservation and acqui-
sition of resources.

Keywords: affect, emotion, virtual agent, simulation, behaviour

1 Introduction

Modelling believable behaviours is required to design human-like agents that
can be used for credible simulations in domains such as security, urban plan-
ning, or video games. In this paper we present an architecture for autonomous
virtual agents that enables them to display affective behaviours. The context is
a realistic virtual city, with waiting lines as locations where conflicts can emerge
between agents, and where danger like fire or riots can arise in the environment.
Our objective is to define a model able to produce lifelike affective behaviours
compatible with these situations.

Emotions have been considered as necessary components for lifelike virtual
agents [1]. Inspired by psychological theories [2], some computational models
rely on cognitive appraisal processes, in which a category of emotion is triggered
by a specific context, and favours a set of cognitive strategies or behaviours
[4, 6]. However, neither psychology nor computational science have come to an
agreement on a basic set of emotions necessary and sufficient to cover the range
of human behaviours : some claim for only two affective variables [7], others
for six basic emotions [8], or even for twenty-two emotional variables [4], and
their choice is justified by different criteria that all seem valid. This emotional
parsing does not solve the issue of behaviour in computational models, since the
same emotion is associated with multiple behaviours, and a behaviour can be
associated with several emotions.

Considering these observations, and relying on the work of psychologist L.F.
Barrett [11], we propose to view emotions as concepts independent from the

2 An Architecture For Affective Behaviours

core architecture that generate behaviours. Our hypothesis is that emotions are
categorizations that are useful for reasoning and communication purpose, but
are not components at the origin of affective behaviour. Hence we aim at an af-
fective architecture that should be able to generate behaviours descriptible with
emotional lexicon by a human observer, without using emotional categories as
components of the model. In this paper we propose a generic model for affective
behaviours based on the theory of conservation of resources formulated by psy-
chologist S.E. Hobfoll [13]. The central tenant of this theory is that humans try
to protect their acquired resources, and seek to gain new ones.

After having considered related work, we present in this paper the core ar-
chitecture of our model. The description of resources and how they fulfill an
agent’s needs is explained, along with the selection process for resource-oriented
behaviours. Finally we discuss the proposed model.

2 Related Work

Common sense lets one think that everyone knows what an emotion is, and that
they are identifiable components of our brain system. “Fear”, “anger”, “joy”,
“sadness” are words often used in our everyday vocabulary. However a close
look at the litterature shows that emotions are all but natural kinds [11], and
that there is currently no consensus on the number of existing emotions, neither
on their role or consequences on cognition and behaviour [5, 14].

J. A. Russell [7] identifies only two types of core affect dimensions which are
valence, i.e. how good or bad a feeling is, and arousal. He points out that any
additional differenciation is based on contextual differences made upon various
non-emotional processes. In a study on culture and categorization of emotions,
Russell lists emotional words for which there is no equivalence from a language to
another, revealing that emotion categories are culture specific, and that even the
categories of fear and anger are not universal [9]. P. Ekman distinguishes among
six basic emotions, grounded on the hypothesis of universal facial expressions,
and on distinctive patterns of physiological changes during emotional episodes.
These distinctions are still under debate, because even if autonomic specificity
has solid support, it is difficult to match these patterns with definite emotional
categories [3]. Besides, it is worthy of note that, according to R. W. Levenson,
these studies do not prove the existence of emotions, but the existence of a
correlation between an autonomic response and an emotional interpretation of
this response by the subject.

Psychological theories of emotion are numerous and propose different emotion
sets based on different valid criterias. S. S. Tomkins enumerates nine affects and
three valences [16], adopting a functional approach of emotions, and Ortony,
Clore and Collins (OCC model) account for twenty-six emotions using Lazarus’
evaluation theory [4]. The OCC model has been widely used in computational
science. It aims at predicting which emotional category could be associated to
a situation. However it is not suitable for simulating behaviours. In this model
categories are considered as interpretations leading to cognitive strategies, or

An Architecture for Affective Behaviours 3

what we may call reasoning. It is not possible to match a unique behaviour with
each emotion. For example fear and anger can both lead to agressive behaviours.
This results from the fact that Lazarus’ original model of cognitive appraisal is
centered around the question of how individuals interpret a situation to cope
with it, not at how universal emotion categories could trigger behaviours.

Besides the fact that emotions are culture specific [9], they are also individual
specific [10]. According to psychologist L.F. Barret, if no set of clearly defined
emotional patterns has been found, it is because emotions are concepts instead
of being distinct entities in our affective system [11]. Human beings experience
emotions the same manner as they experience colors, they use their kwnowledge
to label their perceptions with categories. Hence if emotions are concepts, it is
possible to parse our affective space with a infinite number of emotion sets.

From this conclusion, a question arises : what components an affective archi-
tecture generating behaviours labelled as “emotional” must have ? Our hypoth-
esis is that the theory of conservation of resources by psychologist S.E. Hobfoll
[13] offers an interesting lead. In this theory, the drive for the acquisition and
protection of resources is at the core of the dynamics which explains the stress or
well-being of an individual, and is even able to predict it. But at first it should
be understood that in this theory, the notion of resource refers to many types of
objects : social ones such as self esteem or caring for others, material ones such
as a car, or physiological ones such as energy. The main principle is that individ-
uals strive to protect their resources, and to acquire new ones. This model has
been developped originally for psychotherapeutic purposes, and resources con-
sidered are the ones which are critical in the life of an individual. But we believe
that it can be adapted for the context of realistic simulations. This framework
is generic to every computational environment where a description of available
resources is provided, along with the behaviours associated with the acquisition
or protection of these resources.

3 Proposed Model

3.1 Principle of the Model

The model is based on the following principles : (a) an agent strives to acquire
resources that it desires (b) once a resource is acquired, an agent tries to protect
it (c) an agent’s well-being depends on its capacity to acquire or protect resources
(d) an agent’s well-being regulates the tendency for acquisition or protection of
resources.

A desired resource triggers acquisition behaviours, and a threatened resource
triggers protective behaviours. Each resource type is associated with a partic-
ular set of acquisition and protective behaviours. For example an acquisition
behaviour for a resource “Position” in a waiting line could be “move forward”,
and an acquisition behaviour for a resource “Social Interaction” could be “talk to
somebody”. A protective behaviour for an acquired “Position” could be “move
forward just behind next agent”, and a protective behaviour for an ongoing “So-

4 An Architecture For Affective Behaviours

cial Interaction” could be “speak loud” in order not to be interrupted by other
agents.

A need value for a resource represents the level to which an agent wants the
resource. This need level is dynamic and can change over time as a consequence
of agents’ behaviour or environment events. For example a fire will trigger a
high need level for security, and a long waiting time in a front of a ticket counter
before a train departure will increase the need for the resource “Train Ticket”.

3.2 Architecture

An agent’s affective architecture is composed of five affective sets which consti-
tute the base of the model. The presence of a resource in one of these sets is
a key factor influencing an agent’s behaviour. A distinction is made between a
type of resource and an instance of resource. For example a type “TicketCounter”
could have several instances in the simulation environment, e.g. ticket counters
situated on the map with a location and effectively usable by an agent.

Let A the set of agents and R the set of resources in a simulation world S,
with A ⊂ R. ∀i ∈ A at time t, we denote the four following affective sets :

– Ni(t), the resource types that i needs;
– DRi(t), the resource instances desired by i;
– ARi(t), the acquired resource instances of i;
– TRi(t), the threatened resource instances of i;
– LRi(t), the resource instances that i has lost.

Let V ∈ N be a finite set of values. ∀r ∈ DRi(t), we denote µr
i (t) ∈ V the

level of desire that i has for a resource r at time t. This value depends on the
need value for the resource type of r denoted as µtype(r)

i (t), and the properties of
r. For example if an agent i needs a resource of type “Ticket Counter” in order
to buy a resource of type “Train Ticket”, its desire for two instances tc1 and tc2
with type(tc1) = type(tc2) = TicketCounter depends on : (i) µTicketCounter

i (t)
(ii) the location properties of tc1 and tc2, since the closest is a ticket counter
to i, the more it is interesting for i. Of course other factors are related to this
situation, like the length of the waiting line to access a ticket counter instance,
but we simplified this situation for explanation purpose.

Affective sets are initialized before the start of a simulation. It is possi-
ble to set them empty, to generate random desired resources, or to set them
with specific resources in order to run a given scenario. Some needs for resource
types like “Food”, “Drink”, “Social Image” or “Physical Integrity” should al-
ways be added for a realistic behaviour, unless no resource and no behaviour
in the simulation environment allow to acquire or protect these resources. An
example for a default setting could be : ∀i ∈ A, Ni(t) = {Food,Drink}, with
µFood

i (0) = µDrink
i (0) = x, where x corresponds to a need value. An exam-

ple for a setting related to a scenario where an agent i ∈ A has to buy a
train ticket could be : Ni(t) = Ni(t) ∪ {TrainT icket}, with µTrainTicket

i (0) =

An Architecture for Affective Behaviours 5

f(TrainDepartureT ime), where the more train departure time is close, the more
the need for a train ticket is increased.

It is possible to set an agent’s personality in refining its need set. For example
an agent could have a strong need for type as “Luxuous Car”, “Uncrowded
Place”, “Social Interaction” or ”Candy”.
∀r ∈ R, there is compensation degree Cr

i (t) ∈ [−V, V] which is the level to
which a resource r can decrease or increase µtype(r)

i (t). Two instances of type
“Food” may not compensate agent’s need for food at the same level. Given two
instances of type “Food” in the simulation environment which are hamburger
and carrot, it is possible to set Chamburger

i (t) > Ccarrot
i (t) > 0. This means

that the instance hamburger decreases µFood
i (t) with a higher degree than the

instance carrot. It is possible to set individual characteristics for some agents
in order that they react to the same instance in a different manner : some may
satisfy their need for “Food” with the instance carrot whereas others may not.

During the simulation, addition and removal of resources in affective sets, as
well as behaviour selection, are handled by the Affective Controller. This mod-
ule takes into account resources perceived in agent’s environment, behaviours
executed by other agents, and agent’s needs level. Each behaviour selected by
this module has the purpose to acquire or protect a resource.

’

Affective Controller

Desired
Resources

R
n

Acquired
Resources

Threatened
Resources

Lost
Resources

Addition and removal
of resources

Behaviour selection

Environment

t
n

 i
1

i
n

P(b
1
,i

1
,t

0
)

t
0

b
1

b
n

Behaviour payoff

R
1

R
2

...

R
n

R
1

R
2

...

R
n

R
1

R
2

...

R
n

R
1

R
2

...

...

......

Rewards
Costs

...

Agent's needs

b
1

b
n

...

...

Fig. 1. General Architecture

3.3 Behaviour Realization

The set of behaviours that can be performed by an agent i includes the acquisi-
tion behaviours corresponding to the agent’s desired resources, and the protec-

6 An Architecture For Affective Behaviours

tive behaviours corresponding to the agent’s threatened resources. Let Bi(t) the
set of behaviours that can be performed by an agent i at time t. A behaviour
b ∈ Bi(t) has effects over resources during and after its realization for a given
set of agents denoted as patients(b). For example, if an agent i performs the
behaviour “insult” towards an agent j during a verbal confrontation in a wait-
ing line, the consequences of this behaviour is that j’s “Social Image” resource
will be threatened, and this will trigger protective behaviours from j in order to
protect this resource.
∀b ∈ Bi(t), ∀j ∈ patients(b), we denote :

– R+
b (j, t) : resource instances acquired by j at time t;

– R∼b (j, t) : resource instances of j threatened at time t;
– Ro

b(j, t) : resource instances of j protected at time t;
– R−b (j, t) : resource instances lost by j at time t;

These effects represent the agents’ knowledge upon the consequences of their
behaviours. However these effects are not guaranteed, because each agent doesn’t
know how other agents will react to a given behaviour. That means that if
an agent j engages in a protective action for its resource “Social Image”, this
may lead to an agressive physical reaction from the other agent, and this will
have consequences for j that are worse than the loss of its resource “Physical
Integrity”.

To perform behaviour selection, a utility value is computed for each behaviour
b ∈ Bi(t), taking into account the behaviour’s effects described above. This value
is computed with the compensation value of a resource upon an agent’s need level
: a decrease of a need level is considered as a reward, and an increase is considered
as a cost. Hence the loss of a resource like “Physical integrity” is a cost, since it
causes an increase in agent’s need level for “Physical Integrity” : the agent no
longer possesses the resource satisfying its need. The behaviour selected by an
agent i corresponds to the behaviour with the maximum positive utility for i.

See figure 1 for an overwiew of the general architecture of the model.

3.4 Individual Parameters

An agent knows its needs, the behaviours that it could realize in its environment
on perceived resources, and the typical effects of these behaviours. It can there-
fore anticipate gains and costs. These raw values can be modified by individual
factors such as agent’s well-being and egoism/altruism. The well-being of an
agent acts as a sensor that guides an agent towards appropriate behaviours to
readjust the state of its affectives sets. For example an agent that has endured
too many losses has a low well-being that pushes it to acquire new resources.
That means that if an agent has lost an important resource such as its job, it
may try to readjust its well-being with easy resource acquisitions like resource
instances of “Food” type. Egoistic agents give more importance to their own
payoff, and altruistic agents give more importance to other agents’ payoff.

An Architecture for Affective Behaviours 7

4 Example

We consider a situation where agents have to buy train tickets provided by ticket
counters in the simulation environment. Hence the provided resources are train
tickets and ticket counters. Agents know that when a counter is occupied by
another agent a, if they go to the waiting line it isn’t costly for a, whereas if
they go directly to the counter it is costly for a. Indeed, when an agent is in front
of a counter it considers that it has acquired the counter resource, which allows
it to purchase a ticket resource. When another agent b comes at the same time in
front of a ticket counter, the counter acquired by a is threatened. a may choose
to execute a protective behaviour in order to protect its resource, like telling b to
go away. When agents are in a waiting line, they each possess a position resource
attached to this waiting line. The acquisition of positions in waiting lines in real
life, as well as many other resources, are regulated by FIFO rule (First In, First
Out)[12]. When an agent b ignores this rule so as to gain positons, it is costly for
all agents between the current and previous position of b. If agent’s b need for a
train ticket is very strong and if b is egoistic, it gives a great importance to the
reward brought by a ticket acquisition, and a small importance to the positions
lost for other agents. So b can choose the behaviour of ignoring waiting line’s
rule.

5 Discussion and Future Work

We presented in this paper an architecture aimed at providing virtual agents
with affective behaviours in an urban simulation. Our hypothesis is that simu-
lating behaviours that can be labelled as “emotional” do not necessarily requires
an architecture grounded on emotional categories. Instead, we think that such
behaviours are strongly motivated by resources. For example, even if behaviours
in a waiting line are assumed to be driven by emotions, we tend to favor theories
that considers a waiting line as a small social system regulated by the principles
of property, that human beings are able to adopt naturally while not knowing
the legal tenants of property [12]. Our hypothesis is that the processes of re-
source acquisition and protection are the basis of affective behaviours. Actually,
this idea applies in various contexts : in case we run from a fire, we try to pro-
tect our primary resource which is our body, in case we become friends with
someone, it is because we find useful resources in this friendship (see the “social
exchange theory” by Thibaut and Kelley [15]), and so on. We believe that the
architecture presented in this paper is generic, can account for several principles
in social science and psychology theory, and is adaptable to many simulation
contexts.

On another hand, the absence of emotional categories brings limitations.
Our view is that emotions are concepts, and as concepts they are necessary for
communication and reasoning. There are cultural patterns of facial expressions
[3] which are not currently mapped in the model of conservation of resources,
and the emotional vocabulary is a large part human langage. A necessary work

8 An Architecture For Affective Behaviours

has to be done on how the model of conservation of resources can be associated
with concepts.

The model is currently under implementation for the context of a waiting
line in front of a ticket counter. More contexts will have to be implemented
in order to validate the genericity of the model. The evaluation will inlvolve
two procedures. First, agents’ behaviours in the simulation will be compared
to behaviours described in psychological and sociological studies. Second, the
credibility of agents’ behaviour will be rated by users after they have watched a
simulation video. Finally once the evaluation protocol is completed, we plan to
extend our model to groups and crowds, in order to use it for simulations with
a large amount of agents.

References

1. Bates, J. : The role of emotion in believable agents. Communications of the ACM,
vol. 37, pp. 122–125 (1994)

2. Lazarus, R.S., Folkman, S. : Stress, Appraisal and Coping. New York: Springer
(1984)

3. Levenson, R.W. : Autonomic specificity and emotion. In R.J. Davidson, K.R.
Scherer, & H.H. Goldsmith (Eds.), Handbook of Affective Sciences, pp. 212–224.
New York: Oxford University Press (2003)

4. Ortony, A., Clore, G. L., Collins, A. : The cognitive structure of emotions. New
York: Cambridge University Press (1988)

5. Ortony, A., Turner, T. J. : What’s basic about basic emotions ? Psychological Re-
view, 97, 315–331 (1990)

6. Elliott, C. : The affective reasoner : A process model of emotions in a multi-agent
system, Chicago: Northwestern University Institute for the Learning Sciences (1992)

7. Russell J.A. : Core affect and the psychological construction of emotion. Psychol
Rev. 110(1):145–72 (2003)

8. Ekman, P. : Basic Emotions. In T. Dalgleish and T. Power (Eds.) The Handbook
of Cognition and Emotion Pp. 4560. Sussex, U.K.: John Wiley & Sons, Ltd.(1999)

9. Russell, J. A. : Culture and the categorization of emotions. Psychological bulletin
110 (3): 426–50 (1991)

10. Barrett, L.F., Gross, J., Christensen, T.C., and Benvenuto, M. : Knowing what
youre feeling and knowing what to do about it: Mapping the relation between emo-
tion differentiation and emotion regulation. Cognition & Emotion, 15(6), 713–724
(2001)

11. Barrett, L. F. : Solving the emotion paradox: Categorization and the experience
of emotion. Personality and Social Psychology Review, 10, 20–46 (2006)

12. Gray, K. : The legal order of the queue. Unpublished paper, University of Cam-
bridge (2007)

13. Hobfoll, S.E. : Conservation of resources: A new attempt at conceptualizing stress.
American Psychologist 44 (3),513–524 (1989)

14. Scherer, K. R. : Appraisal theory. In T. Dalgleish & M. Power (Eds.), Handbook
of cognition and emotion, pp. 637-663. Chichester: Wiley (1999)

15. Thibaut, J. W., Kelley, H. H. :The social psychology of groups. New York: Wi-
ley(1959)

16. Tomkins, S.S. : Affect Imagery Consciousness: The Complete Edition: Volume 1-4,
Springer (2008)

Socially-aware emergent narrative

Sergio Alvarez-Napagao, Ignasi Gómez-Sebastià, Sofia Panagiotidi, Arturo
Tejeda-Gómez, Luis Oliva, and Javier Vázquez-Salceda

Universitat Politècnica de Catalunya
{salvarez,igomez,panagiotidi,jatejeda,loliva,jvazquez}@lsi.upc.edu

Abstract. In agent research, emergent narrative aims for practical so-
lutions to the narrative paradox problem in both drama and interactive
scenarios. At the same time, organisational frameworks can be used in
games to provide flexibility, adaptiveness, or social-awareness. In this
paper, we propose an extension of our cOncienS framework to sup-
port emergent narrative in games with two objectives: 1) provide social-
awareness in emergent narrative by means of an organisational model,
and 2) create convincing dynamic and flexible storytelling in games.

1 Introduction

The main objective of the use of Artificial Intelligence (AI) in both fun and seri-
ous games is to deliver the illusion of “intelligence” in the non-player characters’
(NPCs) behaviour. While some aspects – e.g., pathfinding – have evolved to a
mature state in both the industry and academic research, it is not the case with
some important ones such as individual behaviour or strategical reasoning.

Current challenges deal with high-level concepts of gaming such as realistic
virtual actors, automatic content and storyline generation, dynamic learning, or
social behavior. Tackling these issues could represent a qualitative improvement
on gaming experience from the player perspective and academic research on AI
has good opportunities to provide solutions to these challenges [10].

Solutions taken by the industry are mainly based on domain-dependent low-
level approaches. These solutions arise some obvious issues [3]: lack of flexibility
and adaptation to environmental change, predictable or strange behaviour, low
reusability, or blind specifications of NPCs – i.e. the NPCs always know how to
act, few times they know what they are doing, but very rarely they know why.

One important factor that leads to these problems is the need for a plot or
storyline. NPCs are usually mere enactors of a story previously designed, and
their main use is to help advancing the story rather than acting on their own. It
is well known that there is a compromise between narrative control and character
autonomy [11]. This has been a topic of interest from the agent community in
what has usually been called emergent narrative: stories can emerge through
simulation of a virtual world inhabited by virtual characters.

As a result of research on emergent narrative, some theoretical frameworks
and implementations have appeared, focusing on both plot and characters. In
this paper we add a social aspect to this formula by linking our previous work
on organisational frameworks for games.

2 Sergio Alvarez-Napagao, Ignasi Gómez-Sebastià, Sofia Panagiotidi et al.

2 Emergent narrative

Emergent narrative tries to break the common conception of linear narrative
being the only possible product of human authorship over a story: human au-
thorship can also be applied to the creation of a more open narrative by balancing
character models, event sequences, and narrative landmarks. Furthermore, re-
search on this topic tries to tackle the problem of the narrative paradox : virtual
environments – such as games – and narratives exist on different ontological
levels, and thus there is a fundamental conflict between free-form interactivity
provided by the virtual environment and the level of satisfaction produced by a
man-made narrative structure [11]. The main hypothesis of emergent narrative
is that this problem cannot be solved by treating both issues as separate and
combining them, but by treating narrative as a direct result of the actions of the
characters [5].

In FearNot! and its agent architecture FAtiMA [6], narrative control is achieved
by organising the story in episodes at design-time and sequencing them at run-
time. Each episode defines pre- and post-conditions, as well as sets of possible
locations, objects, choices, and goals available. However, as discussed in [11],
such a strong episodic design is limiting, as a global sense of time – and what
happens during scenes, or what happens between them in the “world”– or emo-
tional residue after each scene are not accounted for.

One way to reduce rigidness in narrative control is distributed drama manage-
ment, combined with double appraisal [9]. The main idea is that characters take
responsibility in managing the drama, including in their plan selection mecha-
nism a bias towards choices that have the greatest impact on the emotions of
other characters. This idea of distributed drama management has been adopted
by the Virtual Storyteller [11], the architecture of which is depicted in Figure 1.
Character agents are based on the FAtiMA agent architecture and the world
agent is the interface to a simulation layer. The plot agent acts as an intermedi-
ary, setting up the simulation and sending perceptions to, and receiving actions
from the character agents. Stories are stored using Fabula [11], a formal model
based on causal network theory to represent events already occurred with re-
spect to the story. Events are linked to other narrative concepts such as goals,
actions, or perceptions, via causal relationships – e.g., physical or psychological.
The resultant graph is then used by both the presentation and simulation layers,
and can be used for further analysis.

In this framework, characters enact two highly coupled roles: in-character
(IC) and out-of-character (OOC) [4]. The former refers to the character be-
haviour and is driven by individual motivations, as normal agents. The latter,
however, constrains the behaviour by trying to increase narrative impact – e.g.,
adopting goals that will probably cause conflict with other characters, looking
for a modification on the relationship with them, or making sure that there are
always goals to pursue. The action pursued by a story character will then be a
function [11] upon believability (IC role), dramatic opportunity and variability
(OOC role).

Socially-aware emergent narrative 3

Fig. 1. Virtual Storyteller architecture

In Virtual Storyteller, emergent narrative is achieved by influencing the event
sequence in order to create choices for the IC role while giving more chances
to achieve the OOC role. This can be done in two ways, taken from drama
improvisation techniques. Making events happen consists in creating an event
that will likely enforce an advancement in the plot, e.g., the Princess has been
kidnapped by a dragon, thus forcing those characters looking for brave actions
to go and save her. Late commitment is based on the assumption that parts
of the initial state of the world do not need to be fixed at authoring time, but
dynamically determined at run time when it is purposeful for narrative purposes.
In late commitment, OOC roles look for feasible and consistent properties to be
added to the initial state and which will provide opportunities to advance the
plot towards the storyline objectives, e.g., the story could advance by suddenly
discovering that the governor is, in fact, a spy of the enemy.

Although the Virtual Storyteller presents a sound architecture for emergent
narrative, it is strongly focused on non-interactive storytelling. This has already
been noted in [11], stating that games allow for more radical applications of
narrative control techniques such as late commitment. Also, from our point of
view, the social aspect of multi-agent systems is somehow ignored by keeping
character agents as a separate component from the simulation layer.

3 Organizational frameworks and games

As discussed on [3], our hypothesis is that it is possible to create elaborate
solutions for the issues of both individual behavior control and collective strategy
techniques by integrating models based on Organization Theoretical methods to
control NPCs’ behavior. This theory contributes to the systematic study of how
actors behave within organizations. Hence, the actors in a game are described
as an organization the behaviour of which is based on specific roles, norms,
dependencies, and capabilities.

In fact, organizational frameworks such as OperA are already being explored
for their use in serious games. In [12], organizational specifications are used to
create a distributed intelligent task selection system that adapts to the player
skill level and models the storyline.

4 Sergio Alvarez-Napagao, Ignasi Gómez-Sebastià, Sofia Panagiotidi et al.

cOncienS [2] advances on this line of work by generalizing the use of organi-
zational models for fun games, more focused on the realism of gaming experience,
rather than on user modeling and learning. cOncienS adapts the ALIVE frame-
work [1] to its use in games and allows Game AI developers to think in terms
of why-what-how when defining the decision-making actions for NPCs. That is,
at the Organizational level, the developer defines “why to do something” by
describing the elements of the organizational structure in terms of organization
objectives, roles, norms, and restrictions. At the Coordination level, the devel-
oper defines “what to do” based on possible solutions and tasks to realize in
specific situations; finally, at the Game Enacting level, the developer defines
“how to do it” in terms of which actual, game-specific actions to perform in
order to realize those tasks.

The set of tools and methods of cOncienS provides inherent support to
the development of complex, re-usable Game AI solutions, extending the ALIVE
environment by providing:

1. A practical solution to couple agents to the Game Engine, by defining the
Game Enactor programming interface.

2. A tool to describe the Organization Ontology, which contains a representa-
tion of agent structures.

3. The elements to describe game actors’ behavior via social structures based on
norms, roles and their enactment, promoting the balance between autonomy
and story direction.

The research aim of cOncienS is to provide solutions to the issues presented
in Section 1 by representing the interactions between players and NPCs as com-
pliant to an organisational structure. This approach provides extended flexibility
to the elements that imply intelligent behavior, e.g. actors and characters, teams
of individuals, and narrative storylines. In addition, it provides a methodology
and metrics that can be applied to evaluate the organizational behavior using
the games’ environments as simulation scenarios. Hence, it would be possible to
compare, learn, and improve NPC’s behavior with an approach based on organi-
zation theoretical solutions for Game AI, contributing to overall flexibility and
adaptiveness.

cOncienS has already been used to implement automatic and flexible team
direction in real-time strategy games [2], and to showcase an improved method
to detect and enforce traffic violations in free roaming games [3]. The next goal
in our research is to test adaptive storytelling in multiplayer games by using
narrative emergence, and we will show in Section 4 how we intend to achieve it.

4 Our proposal

In this section we present our proposal, an extension of cOncienS to adopt
the architecture and some mechanisms of Virtual Storyteller to enable emergent
narrative in games.

Socially-aware emergent narrative 5

4.1 Mapping Virtual Storyteller components to cOncienS

Fig. 2. Organisational Model Example

In cOncienS, everything starts from the organisational description (Figure
2), instanced as OperA documents. OperA consists of two main components,
the Social Structure and the Interaction Structure. The Social Structure assigns
roles to human players based on their preferences, and can be adapted to meet
player’s needs, for instance, Apprentice role can be removed if there is no player
willing to play it. The Interaction Structure shows a set of scenes important
to the overall plot. Each scene contains a set of landmarks that are important
states of the world regarding the scene. Both scenes and landmarks are connected
via transition arcs that allow navigating through them. Therefore, agents rep-
resenting NPCs and players, by using these organisational constructs, become
social-aware: they will be able to reason about their relationship with each other
in terms of joint objectives, social rules and common interaction patterns.

We intend to incorporate the components of the Virtual Storyteller (see Fig-
ure 1) as an adaptation of the cOncienS framework as depicted in Figure 3. The
components that enable emergent narrative are: the Character Agents, which
support both NPCs and players and are represented in cOncienS by the al-
ready existing agents of the agent layer; the World Agent, represented by the
Global Monitor; the Narrator layer, implemented by the Game Enactor – i.e.,
converting the world state into generic game concepts such as movement orders
or player quests –; and the Presenter layer, in our case the Game Engine. The
only new component required is the Plot Agent.

4.2 Constructing the plot

The Plot Agent will receive a storyline from the story designer. This storyline is
implemented as a set of scenes and landmark patterns: the minimal set of states
that conform the story and that have to be fulfilled in its proper order, from the

6 Sergio Alvarez-Napagao, Ignasi Gómez-Sebastià, Sofia Panagiotidi et al.

beginning to the end of the gameplay time. This agent will continuously observe
the state of the world and dynamically plan an order of the scenes needed to get
to the next storyline landmark. The roles in each scene are assigned to specific
Character Agents.

The story designer can decide, in this way, how rigid / flexible the story
should be by adding more or less landmarks, and by declaring stronger or weaker
conditions as landmarks. The designer will also design the set of possible late
commitments and non-causal related events (see Section 2) in the form of framing
operators [11], that is, sets of preconditions and a set of effects on these operators
that can be done if the change in a specific case is consistent with the history of
events – by the use of Fabula [11].

4.3 Character conflicts and personality

Fig. 3. Adapted cOncienS architecture

The Character Agent is a BDI agent
implemented inside each agent of the
cOncienS agent level. Every NPC, as
well as every player, has a represen-
tation as a Character Agent. The IC
role (as seen in Section 2) is already
implemented at the cOncienS frame-
work. Egoistic motivations, aims, ca-
pabilities, individual behaviour and or-
ganisational constraints (social objec-
tives and norms acting as constraints
to its behaviour or capabilities) are
taken into account by the agent in an
autonomous decision making process
that produces an appropriate plan.
This plan fulfills the agent’s personal
specifications bringing its own ways
into the organisational society as well.

On the other hand, as seen earlier,
the agent receives from the Plot Agent
a set of landmarks that is processed by
the OOC role to help advancing the
story. Due to this dual nature of the
Character Agents, conflicts between the IC and the OOC can – and probably
will – arise. This can be solved by applying negotiation processes, such as argu-
mentation, and will be one of the main focuses of research on this project.

In order to apply personality to the characters – including players –, we
will characterise them by using stereotypes or play styles. There are two main
taxonomies to identify play styles: DGD1 [7] (Conqueror, Manager, Wanderer,
Participant), and interaction between players: Interest Model [8] (Achievers,
Explorers, Socialisers, Killers). During gameplay, players’ behaviour – actions,
chat logs, temporal evolution – will be monitored and analysed offline to identify

Socially-aware emergent narrative 7

them into an stereotype. Actions and states will be tagged in order to influence
both the behaviour of NPCs and the way player goals should be completed.
Each Character Agent’s planner will identify the appropriate actions to fulfill a
given landmark: two characters can fulfill the same landmark in different ways,
creating the illusion of personality.

4.4 Adding interactivity to narrative

Fig. 4. System Architecture and
usage of late commitment and make
events happen

Interactivity is achieved by giving enough
choices to the player to give an illusion of
free will. The actions planned by the Char-
acter Agents representing actual players will
be enforced in the form of missions or quests
offered to the correspondent player taking
into account both the IC and the OOC roles.
The player, however, will be free to choose;
if the player gets too far from the story line,
its Character Agent can negotiate (as seen
above) changes to the environment to keep
the action in the boundaries of the storyline.

However, if the OOC role of a player’s
Character Agent predicts that the story plans
incoming from the Plot Agent are not feasi-
ble or too incompatible with the individual
plan, framing operators will be checked and
studied, and there will be a negotiation pro-
cess with the Plot Agent to propose and ap-
ply them, resulting in applications of making
events happen or late commitment.

In the example shown in Figure 4, the
player is supposed to kill the dragon (either with a sword or a bow) in order
to obtain the fire gem from it. However, instead of performing the attack, the
player decides to cast a spell on the dragon, sending it to another dimension. As
the dragon and the player are in different dimensions, the player cannot obtain
the fire gem, and thus, the plot cannot advance. The Plot Agent is able to re-
cover the plot from this deviation by: 1) receiving the event that the player has
sent the dragon to another dimension, 2) reacting by introducing an event (make
events happen) on the game via the game enactor, e.g., an old rogue appears,
as he was hiding in the shadows of the dragon cave, and 3) introducing a late
commitment in the plot, via the game enactor, e.g. it comes out that the old
rogue has the fire gem, as he had stolen it from the dragon before, and decides
to give it to the player.

8 Sergio Alvarez-Napagao, Ignasi Gómez-Sebastià, Sofia Panagiotidi et al.

5 Conclusions

In this paper we have proposed an adaptation of an already existing organisa-
tional framework for games for its use in scenarios where the narrative paradox
can be tested. The purpose is two-fold. First, we want to test storyline dynamic
adaptation in cOncienS applied to free-roaming games such as multiplayer role-
playing games. Second, we want to explore if emergent narrative can improve
with the use of organisational models, strongly focusing on the compromise be-
tween character freedom and plot design.

We use cOncienS as a sandbox for applying the research of our agents
group. By combining emergent narrative to the framework, we want to do re-
search not only on narrative in itself but also applied to social aspects, both
in-game (NPCs behaving as part of a society), and out-of-game (studying the
interaction between players and between a player and the NPCs), from different
perspectives: organisational, normative, emotion representation and detection,
user profiling, gamification, and so on.

In order to provide empirical results, we have already connected cOncienS to
an open-source World of Warcraft server. Our immediate plan is to test the
dynamic generation of missions by using the techniques described in Section 4.

References

1. Aldewereld, H., Padget, J., Vasconcelos, W., Vázquez-Salceda, J., Sergeant, P.,
Staikopoulos, A.: Adaptable, Organization-Aware, Service-Oriented Computing.
Intelligent Systems (25(4), 80–84 2010)

2. Alvarez-Napagao, S., Gómez-Sebastià, I., Vázquez-Salceda, J., Koch, F.: cOncienS:
Organizational Awareness in Real-Time Strategy Games. Proc. of the 13th Int.
Conf. of the Catalan Assoc. for Artificial Intelligence, IOS Press (220, 69–78 2010)

3. Alvarez-Napagao, S., Koch, F., Gómez-Sebastià, I., Vázquez-Salceda, J.: Making
games ALIVE: an organisational approach. Agents for Games and Simulations II,
Springer-Verlag (LNAI 6525, 112–124 2010)

4. Arinbjarnar, M., Kudenko, D.: Duality of Actor and Character Goals in Virtual
Drama. Intelligent Virtual Agents, Springer-Verlag (LNAI 5773, 386–392 2009)

5. Aylett, R.: Narrative in Virtual Environments - Towards Emergent Narrative.
AAAI Narrative Intelligence Symposium (FS-99-01, 83–86 1999)

6. Aylett, R., Louchart, S., Dias, J., Paiva, A., Vala, M.: FearNot! - An Experiment
in Emergent Narrative. Intelligent Virtual Agents, Springer-Verlag (LNAI 3661,
305–316 2005)

7. Bartle, R.: Designing Virtual Worlds. (New Riders Games 2003)
8. Bateman, C., Boon, R.: 21st Century Game Design. (Charles River Media 2005)
9. Louchart, S., Aylett, R.: Building Synthetic Actors for Interactive Dramas. AAAI

Fall Symposium on Intelligent Narrative Technologies ((FS-07-05), 63–71 2007)
10. Nareyek, A.: Game AI Is Dead. Long Live Game AI! (Intelligent Systems 2007)
11. Swartjes, I.: Whose story is it anyway? How improv informs agency and authorship

of emergent narrative. (PhD Thesis, University of Twente 2010)
12. Westra, J., van Hasselt, H., Dignum, V., Dignum, F.: On-line Adapting Games

using Agent Organizations. IEEE Symposium on Computational Intelligence and
Games (CIG’08) (pp 243–250 2008)

Organizing Scalable Adaptation in Serious games

Joost Westra1, Frank Dignum1, and Virginia Dignum2

1 Universiteit Utrecht⋆
2 Delft University of Technology

Abstract. Serious games and other training applications have the re-
quirement that they should be suitable for trainees with different skill
levels. Current approaches either use human experts or a completely cen-
tralized approach for this adaptation. These centralized approaches be-
come very impractical and will not scale if the complexity of the game in-
creases. Agents can be used in serious game implementations as a means
to reduce complexity and increase believability but without some central-
ized coordination it becomes practically impossible to follow the intended
storyline of the game and select suitable difficulties for the trainee. In this
paper we show that using agent organizations to coordinate the agents is
scalable and allows adaptation in very complex scenarios while making
sure the storyline is preserved the right difficulty level for the trainee is
preserved.

1 Introduction

In serious games, quality is measured in terms of how well the components in the
game are composed, how they encourage the player (or trainee) to take certain
actions, the extent to which they motivate the player, i.e. the level of immer-
siveness the game provides, and how well the gaming experience contributes to
the learning goals of the trainee [3]. Thus believability is a main driver of game
development. The search for enhanced believability has increasingly led game de-
velopers to exploit agent technology in games [11] in order to preserve believable
storylines.

Dynamic difficulty adjustment is an important aspect in training applica-
tions that need to be suitable for a large variety of users with different skill
levels. Having the correct difficulty level ensures that the game will contribute
to the learning goals of the trainee. Current approaches of dynamic difficulty
adjustment in games use a purely centralized approach for this adaptation [21,
9]. This becomes impractical if the complexity increases and especially if past
actions of the non player characters (NPC’s) need to be taken into account while
trying to adapt to the skill level of the trainee (as is needed for serious games [18,
20]). The use of software agents has also been advocated as a means to deal with
the complexity of serious games [11]. Distributing the responsibility of staying

⋆ This research has been supported by the GATE project, funded by the Netherlands
Organization for Scientific Research (NWO) and the Netherlands ICT Research and
Innovation Authority (ICT Regie).

believable and adjusting to game progress, over the different non player charac-
ters creates a much more manageable situation, but this might lead to unwanted
situations if their adaptation is not well coordinated.

Current agent approaches have no coordination over the adaptation at all. We
argue that a system without any coordination will not result in good adaptation
if the complexity of the game and the number of different adaptable elements in-
creases. Multiple elements could adapt in the same direction and will overshoot
the desired target difficulty for the trainee. Or the agents all adapt in a very
similar way, resulting in state where the NPC’s are not performing all the tasks
required by the scenario. We will also show in this paper that a nave centralized
approach will become too slow if the numbers of tasks that NPC’s can perform
becomes too big. While this might not be problematic with the current enter-
tainment games yet where adaptation to the user is very limited, it will be a
problem with more complex serious games. In this paper we propose to use agent
organizations plus a related adaptation engine to manage the control of the co-
ordination and adaptation of the agents, while leaving them enough autonomy
to determine their next actions. We will show that this gives the right balance
between distributing decision making (leading to scalability) and keeping the
game believable and immersive.

The paper is organized as follows. In the next section we will look at the
requirements for the adaptive serious games we are investigating. In section 3
we will look at the current approaches that are used in games. In section 4
we further explain the agent organization based framework we are using. We
show how this framework can be used to create scalable serious in section 5. In
section 6 we will show the order of magnitude of a resulting design compared to
a nave centralized approach. Conclusions are discussed in the last section.

2 Adaptation

The type of adaptive serious games we are investigating have certain require-
ments and properties that are usually not found in current entertainment games.
The biggest difference is that the NPC’s in these games can perform a lot of dif-
ferent types of actions. In most commercial games that do adapt to the user,
the NPC’s can only perform a very limited number of different tasks and the
adaptation isn’t done on the task type level but only by adjusting certain sim-
ple parameters within the same task definition. In most serious games we want
to expose the trainee to a much larger variety of different tasks. This is partly
caused by the fact that the trainee needs to learn separate skills and different
combinations of these skills. For example, the trainee needs to learn to extin-
guish fire while making sure the victims are safely extracted from the building.
For each skill we also want to expose the trainee to a larger variety of challenges
that do not only differ in simply tunable parameters but require a substantially
different response from the trainee. For example the trainee should learn to ex-
tinguish basic home fires but also chemical fires at a chemical plant. Even within

the basic home fire category we want the trainee to be able to cope with fire
that started on the ground floor and fires that started on the higher floors.

Also if current games progress each character type will keep performing very
similar throughout the game. In serious games we want the NPC to exhibit
different behaviors throughout the game. This is required because we want to
expose the trainee to significantly different scenarios with different skill com-
binations to allow the trainee to learn to handle a larger variation of different
situations. The behavior of the NPC’s also has very big influence on the diffi-
culty level for the trainee. Because we want these serious games to be suitable
for a large variation of trainees with different skill levels and different learning
rates we want the game to continuously adapt. This also requires a much larger
number of plans that can be performed by the agent (while keeping an overall
goal) because they do not only need to operate in varying scenarios but also to
operate in these scenarios with different difficulty levels.

Without a clear organization structure, adaptation can quickly lead to a
disturbed storyline and the believability of the game will be diminished and will
lead to an explosion of possible combinations. Furthermore, characters in serious
games are usually active for relatively long periods. This poses an extra burden
on the believability of the game, namely coherence of long-term behavior [13].
When there are multiple NPC’s that all have their own preferences and can
all adapt to the trainee independently, it becomes almost impossible to create
a coherent game that has a natural progression of the game and is the right
difficulty for the user. The game progression is much more controllable if there
is a monitoring system in the application where the desired progression (could
have different paths) is specified. We propose a system where we do not only
have a monitoring system that specifies the desired storyline but that also tracks
the current progression within the storyline. The NPC’s are still programmed
with their own preferences but they receive updates of the game progression.
The agents can then easily be programmed to perform different plans, not only
dependent on their own beliefs but also dependent on the game progression.

Coordination of agent actions (that are still autonomous most of the time)
also becomes a lot more manageable if there is a central control system that
allows the designer to put restrictions on the possible plans performed by the
agents. A very simple example is that the designer can specify that at a certain
point in the game, one of the NPC’s should always check the left hallway. A
possibility would be that all the agents are programmed with this restriction in
mind and that they communicate directly with each other to make sure that
one goes left. We propose an efficient coordination system where all the agents
propose multiple actions with preference weights corresponding to each of these
proposals. From these proposals the adaptation engine will select the optimal
solution that also keeps the restrictions of the designer and the preferences of
the agents in mind. In this example, this means that at least one agent prefers
to check the left hallway but it puts a lot less burden on the designer to allow
autonomy within the agents while making sure that certain critical criteria are
always met.

An added challenge for user adaptation in games is that it can only be done
while the user is playing the game [2, 5]. Online adaptation requires that the
algorithm adapts quicker with a lot less episodes and learning data. Because the
game is adapting while the user is participating in the game, it is also important
that no unwanted and unpredictable situations are introduced by the adapta-
tion. This means that the adaptation should only try promising and believable
solutions while exploring different options.

Another important aspect of adaptation in (serious) games is the distinction
between direct and indirect adaptation. Direct adaptation occurs when the de-
signer specifies possible behavior of the agents in advance and specifies how and
when to change this behavior. The designer also specifies what input informa-
tion should be used. Direct adaptation only allows adaptation to aspects that
the designer has foreseen. No unexpected behavior can emerge when using direct
adaptation. On the other hand, in indirect adaptation performance is optimized
by an algorithm that uses feedback from the game world. This requires a fitness
function and usually takes many trials to optimize. If indirect optimization is
used the algorithm also needs to be able to cope with the inherent randomness
of most computer games.

In previous work [23, 22] we proposed the use of multi-agent organizations
to define a storyline (defining coordination restrictions on the agents) in such a
way that there is room for adaptation while making sure that believability of the
game is preserved. This approach has the benefits of direct adaptation without
the need for the designer to directly specify how the adaptation should be done.
The designer is able to specify certain conditions on the adaptation to guarantee
the game flow but does not have to specify which implementations are chosen
after each state. In this paper we show how the agents are implemented and
show the coordination of tasks and proof that it is scalable enough and works in
practice

3 Current approaches

Even though many commercial games do not use any dynamic difficulty adapta-
tion [15], already some research has been done on difficulty adaptation in games.
Most of this research focuses on adaptation of certain simple quantitative ele-
ments in the game that do not influence the storyline of the game. For example
better aiming by opponents or adding more or a stronger type of opponents.

Current research on online adaptation in games is mostly based on a cen-
tralized approach [21, 10]. Centralized approaches define the difficulty of all the
subtasks from the top down. This is only feasible if the number of adaptable el-
ements is small enough and if the separate adaptable elements have no separate
time lines that need to be taken into account. In shooting games, for example,
these requirements are not problematic. The games only adapt to the shooting
skill of the trainee and most characters only exist for a very limited amount
of time. In the type of adaptable serious games we are researching, completely
centralized approaches will not be scalable enough.

Research has been done on using reinforcement learning in combination with
adaptation to the user [21, 1]. Most of these algorithms rely on learning relatively
simple subtasks. Moreover, the aim of these adaptation approaches is learning
the optimal policy (i.e. making it as difficult as possible for the user). In order
to avoid that the game becomes too difficult for the user, some approaches filter
out the best actions to adjust the level of difficulty to the user. This results
in unrealistic behavior where characters that are too successful suddenly start
behaving worse again.

Little attention is paid to preserving the storyline in present online adapta-
tion mechanisms, because they only adjust simple subtasks that do not influence
the storyline of the game. Typical adjustments are, for example, changing the
aiming accuracy of the opponents or adding more enemies.

Some work has been done on preserving the storyline with adapting agents [12,
4] but they focus on preserving the plot, not on adapting to the trainee. Other
work [16] has also been done on interaction between the agents and the storyline
while adjusting to the trainee. This framework adjusts to the trainee to preserve
and repair the plot of the game, this is very different from adapting the difficulty
level for the trainee. Some work has been done [19] on adjusting the goals of the
agents to facilitate learning of the trainee, but they also do not take skill levels
of the trainee into account.

4 Framework

Agent model
• 2APL Agent

• Game world

• Game state • User Model

Update

User Performance

Translate

Update Beliefbase

Task Weights Skill Levels

Preferences &

Temination

Agent model• Agent Bidding

• Agent interface

• Adaptation Engine

• NPC
• NPC
• NPC
• NPC

Plans Bid

External Action

SelectionGame Actions

Temination

Scene States
Applicable plans

• Game Model

Fig. 1. Framework overview

To get a better understanding of the different elements of the whole frame-
work we first briefly describe the different elements and the information that is

passed between them. Figure 1 shows a schematic overview of all the different
elements of the framework. We are currently using a custom Java environment
as our game world, but our approach is also applicable to other games. The
NPC’s and other dynamic game elements in the game are controlled by 2APL
agents. The agents in the game have the capability to perform basic actions, like
walking to a certain location or opening a door. The higher level behaviors are
specified in the 2APL agents which sent the basic external actions to the agent
interface which translates these commands to basic game actions.

The game state is used to update the beliefs of the agents, update the pro-
gression of the game and pass the performance of the trainee to the user model.
The user model uses this information and the task weights from the adaptation
engine to update the estimated skill level for each state. These updated skill
levels can then be used again to find better matching agent behaviors.

The 2APL agents can perform different actions depending on their beliefs and
dependent on the scene states. The game model contains information about the
desired storyline of the game and keeps track of how far the game has progressed
in the storyline. This information is passed to the 2APL agents to influence
the possible actions they can perform. The agent bidding module specifies the
agent preferences for all the applicable plans. The adaptation engine uses this
information and the information from the user model to find the plan assignment
for the agents that best serves the situation for the trainee. The bidding module
of the agent uses this information to control the plans that are selected by the
agents.

4.1 Agent organizations

Adapting the game to the trainee for complex learning applications requires both
learning capabilities and decentralized control. However, in order to guarantee
successful flow of the game and the fulfillment of the learning objectives, the
system needs to be able to describe global objectives and rules. Although many
applications with learning agents exist, multi-agent systems with learning agents
are usually very unpredictable [14]. In order to limit unpredictability in MAS,
organization-oriented approaches have been advocated such as OperA [7] and
MOISE+ [8]. In this framework it is possible to define conditions when certain
plans are allowed or not. The ordering of the different possible plans can also be
defined in this framework. This allows the designer to make sure that the users
are not exposed to tasks that are not suitable yet or would ruin the storyline.
In previous work we have shown how to use agent organizations to specify the
boundaries of the game [22, 23].

The OperA model for agent organizations enables the specification of organi-
zational requirements and objectives, and at the same time allows participants
to have the freedom to act according to their own capabilities and demands. In
OperA, the designer is able to specify the flow of the game by using landmarks.
The different sub-storyline definitions of the game are represented by scenes
which are partially ordered without the need to explicitly fix the duration and
real time ordering of all activities. That is, OperA enables different scenes of

the game to progress in parallel. In the scenes, the results of the interaction are
specified and how and in what order the different agents should interact.

4.2 Adaptation engine

The adaptation engine consists of two different parts. One part selects the best
combination of plans for all the different agents. The other part keeps track of
the game progress and is responsible for checking if the combinations of plans
are currently valid depending on the state of the game. The adaptation engine
has to optimize on two possibly conflicting objectives. On the one hand we want
to optimize on the preferences of the agents while on the other hand we want
to select the combination which is the optimal difficulty for the user. Because
we focus on adapting to the trainee, we give the highest priority to finding the
best match for the trainee. Remember that we optimize on different skills of the
trainee. Slight variations in difficulty level are not problematic but we do want
to prevent large deviations from the desired skill levels for each separate skill.
This means that we rather have deviations that are a bit larger for each skill
than have multiple skill levels that are perfectly chosen but a large deviation in
one remaining skill.

While optimizing on the skills of the trainee we also want to optimize on the
preferences of the agents to keep their preferences into account to keep the game
as believable as possible. This process uses a form of a combinatorial auction [17].
This needs to be a combinatorial auction because the agents can give a higher
score for performing a certain action depending on which plans the other agents
will perform. This preference dependence is only used for tasks that require co-
ordination between the agents. For example, it is more believable for a fireman
to lift a heavy object if another agent helps him. We try to limit the amount of
preference dependencies because it is much more labor intensive for the game
designer to specify the preferences of the agents and it is also more computa-
tionally expensive to find the best solution. Similar to finding the best match for
the skill level we also want to avoid large deviations from the preferences. This
means that we do not optimize on the highest combination of preferences from
the agents but on the smallest squared deviations from the preferred proposal.
The deviation in the skill levels are combined with the deviation of the agent
preferences, giving more influence to the skill deviation.

In the game model we do not only allow the designer to specify the progress
of the game but we also allow the designer to specify different difficulties corre-
sponding to certain phases in the storyline. We also allow the designer to specify
an absolute difficulty level, which can be a desired option especially for serious
games because one would like to be able to know that if the trainee finishes
the training that the skill level of the trainee is high enough. Updating the user
model can be done in different ways. Our proposed user model update function
is beyond the scope of this paper but is described in [22].

Selecting the best combination of plans from the different agents is easiest if
they all terminate at the same moment. If all plans are terminated and started at
the same time the optimal combination for the trainee can be selected. However,

the time to execute the different plans by the agents is not always the same, and
to keep the storyline flowing, it is not always a possibility to terminate plans of
all the agents when a few agents have completed their task. In our framework we
specify different subtasks of the game application by using scenes. The scenes
usually begin when certain agents start interacting and end when that group
of agents end their interaction or an organizational objective has been reached.
The end of a scene usually is a natural time for all the participating agents
to terminate or change their behavior. This gives enough control to make the
necessary changes both for the gameflow and to optimize learning for the user.

Because multiple scenes can be active at the same time, it also does not mean
that if a scene is finished all agents have terminated their plans. The goal is to
have the most suitable task combination for the trainee during the whole game.
Our solution is to assume that all plans that have not terminated are fixed and
that newly created plan combinations keep these active plans into account. This
results in a good combination for the trainee when the new plans are started.
If plans are terminated the difficulty of the task changes again (becomes easier
most of the time), but this can usually be compensated very quickly with new
plans from the same agents (instant correction) or new plans from other agents.
This results in a system that adapts quickly while keeping the behavior of the
agents realistic.

4.3 Agent implementation

The high level actions of the NPC’s are implemented using the 2APL [6] lan-
guage. This allows modeling of the NPC’s using the BDI architecture. Using
BDI agents is a suitable implementation because it allows us to create intelli-
gent characters that are goal directed and able to deliberate on their actions.
2APL is an effective integration of programming constructs that support the
implementation of declarative concepts such as belief and goals with imperative
style programming such as events and plans. Like most BDI-based programming
languages, different types of actions such as belief and goal update actions, test
actions, external actions, and communication actions are distinguished. These
actions are composed by conditional choice operator, iteration operator, and se-
quence operator. The composed actions constitute the plans of the agents. The
agents are created with the game model structure in mind. This is done in such a
way that the applicable plans are not only dependent on the game state and the
internal state of the agent but also on the scenes that are currently active. This
process makes it a lot easier for the developer to ensure the certain behaviors
are only performed at the right moment in the game progress. The 2APL agents
are created in such a way that multiple plans are applicable at the same time.
These applicable plans can vary in difficulty for the trainee but they can also
have the NPC perform substantially different tasks in the game.

When the agents receive a request to perform a new behavior they reply with
a number of different applicable plans according to the game state, the active
scenes and the internal state of the agent. This bidding process is not part of the
normal 2APL deliberation cycle but is a separate part of the agent. We separated

these tasks because it would be very inefficient and unnecessarily complex if the
agents use the BDI reasoning process to decide why they want to perform a
certain plan. This separate bidding part of the agent is also responsible for
estimating the believability of each action. One important factor in estimating
the believability of a new plan is dependent on the difference compared to the
previous plan.

5 Designing scalable AI

Gather Info
Search

Building

Secure Area
Evacuate

Victims

Extinguish

Fire
Get to site

Kitchen Fire

Multiple

victims

EndStart

Fig. 2. Interaction structure

In this section we will show how our design approach can be used and why
it gives a natural and effective implementation. One simple example is used
throughout this section to show how the different aspects of the framework
function. Figure 2 shows part of an interaction structure of a possible game.
In the same figure we also display the partial ordering of the Evacuate Victims
scene. On the interaction structure level we only define the ordering of the scenes
and when it is allowed to transition to the next scene. The scenes are defined by
scene scripts that specify which roles participate and how they interact with each
other. The definition of the organization can be so strict that it almost completely
defines the strategy. But it is also possible to specify the organization in such a
way that all the agents in the game work towards achieving the goals of the game
but are still able to do this using different strategies. In these scenes the results
of the entire scene is specified and how and in what order the different agents
should interact. It is also possible to defines norms in the scene description. This
makes it possible to put extra restriction on the behavior of the agents. The
agents can be programmed to break the norms. Agents that do not follow norms
can be an essential part of the training. In a scene script is also possible to define
certain time constraints to make sure that the game progresses fast enough.

When scripting languages or hard coding of NPC behavior is used, it will
become very difficult to read and understand the intended behavior if the project
becomes more complex. In our approach we use NPC’s that are based on BDI
agents. This means that agent behavior is specified using high level goals and act

according to their internal believes. This makes it much easier to identify why
a NPC why an agent performs a certain plan. We specially use the term ”high
level” goals because some of the lower level behaviors can better by specified
by other approaches then BDI. For example path planning can much better be
handled by an A* algorithm then to incorporate this into the BDI part of the
NPC. The BDI part still selects where to go but the lower level behavior handles
exactly how this is done. This also results in a nice and modular approach. Using
a combination of BDI agents with an agent organization architecture, results in
very natural agent objectives. The whole storyline of the game is build from a
collection of partially ordered different scenes. In each scene we specify the scene
objective and the roles that are being played in this scene. Each participating
agent plays one of these roles and therefore helps to complete the scene objective.
This results in agents goals and plans that are very natural and relevant to the
scene and therefore relevant to the storyline.

An obvious danger of coordinating actions between agents is that, if all pos-
sibilities are always sent to a central point which finds the best the combination,
we can run into scaling problems and you might as well use completely central
control instead of an agent based approach. One of the differences between a
completely centralized approach and our approach is that the agents make a
pre-selection of the plans that are applicable in regards to their internal state
and the current game state.

5.1 Scenes

As discussed earlier the rough outline of the game is specified in the interac-
tion structure. This interaction structure is build up from the scenes where the
action required behavior of the participating agents is outlined. Only a limited
number of scenes can be active at the same time. Each arrow in the interaction
structure defines a scene transition with its corresponding transitions require-
ment. A transition always means that the old scene is no longer active (a scene
transition could spawn multiple new scenes). From Figure 2, where we show a
small part of an interaction structure, it can be seen that in this specific case
only one or two scenes can be active at the same time. The scene get to site
has two outgoing arrows, this type of arrow is used for situations where both
transition are valid at the same time. In our framework the agents are always
informed which scenes are currently active. The agents are designed in such a
way that they know which plans are applicable in which scene. This allows the
agents to make a very fast selection on all the plans. They do not have to check
the applicability of these plans according to their believes. Because the kind of
serious games we investigate have a lot of specialized plans for each scene this
filtering has a very big influence on the performance of the whole system. Every
scene is also build of a partial ordered collection of sub-scenes. This allows the
agents to make an even more fine grained pre-selection.

Technically it functions as follows. As can be seen in Figure 1 the adaptation
engine updates every 2APL agent with the most current scene states. Each 2APL
agent extends a basic GameCharacter agent. From this definition every agent

Example 1.
I n c l ude : GameCharacter . 2 ap l
// hand l e s s cene t r a n s i t i o n messages
//and c h a r a c t e r s movement

Be l i e fUpdate s :
[. . .]

Be l i e f s :
SubScene (Mu l t i p l eV i c t im s)
Subscene (K i t c h e nF i r e)

Goals :
E x t r a c tV i c t im s (d i s a s t e r A r e a)

StoveOf f (d i s a s t e r A r a e)

P lans :
@d i s a s t e rA r e a (e n t e r (8 , 8 , r ed) ,)

PG−r u l e s :
t rue<−SubScene (Mu l t i p l eV i c t im s) // i n i t sub−s cene
| { [. . .] }

t rue<−Scene (K i t c h e nF i r e) // i n i t sub−s cene
| { [. . .] }

Ex t r a c tV i c t im s (d i s a s t e r A r e a)<−SubScene (Mu l t i p l eV i c t im s)
// easy
| { [. . .] }

Ex t r a c tV i c t im s (d i s a s t e r A r e a)<−SubScene (Mu l t i p l eV i c t im s
) // hard
| { [. . .] }

StoveOf f (d i s a s t e r A r a e)<−Scene (K i t c h e nF i r e) // easy
| { [. . .] }

StoveOf f (d i s a s t e r A r a e)<−Scene (K i t c h e nF i r e) // hard
| { [. . .] }

PC−r u l e s :
[. . .]

will inherit the standard ability to update its believes according to the scene
states update. This specific 2APL plan adds the current active sub-scene to the
beliefbase of the agent.

Example 1 shows a simplified version of the code of a fireman agent. In this
example only the Evacuate victims scene is active. As can be seen the agent
has the current active sub-scene available as beliefs. These beliefs are used as
conditions for the PG-rules of the agents. A planning goal rule (PG-rule) specifies
that an agent should generate a plan if it has certain goals and beliefs. This
means that these plans are only generated if the sub-scene conditions is true.
Some generic plans can be used in multiple scenes. This can easily be achieved
because the conditions check is a belief query that can also include the logical
OR.

For every sub-scene we use a special rule that will be applicable when the
corresponding belief is added to the belief base. These specific rules will be

applicable independent of the agents current goals (it could have no goal at
all). In this plan we specify which goals should be added to the added goals
base (and which should be removed). These goals that are added to goal base
match the goals that should be fulfilled in the scene. For example in the evacuate
victims scene each victim agent will have the goal to play a victim in that specific
scenario while a fireman agent could have a goal to locate the victims and a goal
protect them from harm. In Example 1 it can be seen that the scenes are already
initialized because the corresponding goals are already active.

Most of the time when a sub-scene is finished the participating agents are
finished with their sub-scene specific goals and plans. However this is not always
true. In some cases a different agent satisfies the requirements to move to the
next sub-goal while a different agent is in the middle of a task. The agent will
now have more applicable plans then just the new plans corresponding to the
new sub-scene. In other systems it would be very difficult to manage these kinds
of situations. In our system the agent would just propose the applicable from
the old task and from the new sub-scene. The agent can also give a much higher
believability rating to the old plan if terminating the plan would disrupt the flow
of the game.

An important thing to note is that the scenes start and end in natural situa-
tions in the games, it is not just split up into arbitrary pieces. Scenes correspond
to natural occurring phases in the training game. The scene Get to site in Fig-
ure 2 for example is clearly a separate and phase in the progress of the game.
The goals of the agents that are active during this scene will correspond to the
goal of the scene and will usually be fulfilled when the termination criteria of
the scene are reached. This also makes the transition between scenes a very nat-
ural moment to adapt to the trainee and to coordinate this adaptation with the
participating agents.

5.2 Believability

Besides the pre-selection on the scene level we also prune the number of suggested
plans that the agent can suggest by using their believability preferences. This
means that the agents will estimate the believability for all the remaining and
exclude the plans that have a believability below the set threshold. In quite a
number of cases there will be plans that have a believability that is very low or
even zero. This is mainly caused by past events that are already observed by the
trainee. It could happen for example, that the agent is currently playing a victim
with a broken leg because that was the best fit with the current skill levels of the
trainee. It would then be completely unbelievable if the agent suddenly switches
to a plan where he runs away.

The believability filtering will have a larger influence if the characters are
interacting for a larger part of the game. The trainee will have more knowledge
about the NPC and the numbers of believable actions will be more limited. A
factor that is frequently limited because of this is the intelligence or autonomy
of the NPC. It is possible for an NPC to perform a task a bit more intelligent

(as if the NPC would have learned) but it would be very strange if the NPC
suddenly becomes much more intelligent or very stupid.

On the implementations level it works as follows. 2APL builds a list of all the
applicable plans exactly in the same way as the default 2APL implementation.
This list is already quite limited because of the scene restrictions we discussed
earlier. For all these we calculate the believability number. This is always between
zero and one. The actual calculation of the believability is domain dependent. For
example, a fire agent can only increase or decrease the fire expansion rate within
certain limits. NPC’s that simulate humans will have very different limitations
in order to make sure the agent does not appear schizophrenic while adapting
to the trainee.

The calculation of the believability is done in a separate module in our in-
tended 2APL implementation. The believability is usually dependent on past
actions and believes from the agent. The agents for example need to keep track
of the level of intelligence of its past actions to make sure it will stay consistent
from the perspective of the trainee. We also store this data in the belief base of
the agent. This means that not only the extra believability module has access to
this but that the reasoning part of the agent is also able to use this data. This
means that the agent can reason that it cannot run away because it is aware that
it has a broken leg. This allows the designer to implement these dependencies on
the past more naturally. It also helps to make the framework to scale better be-
cause more plans are excluded in an earlier phase. The believability calculations
are allowed to be a bit more computationally expensive then some of the calcu-
lations in the framework because they only have to be performed on a relatively
small number of plans. A cutoff threshold is set and all the plans that fall below
this level will be excluded from the agent proposal. The threshold level for a part
defines the tradeoff between accurate adaptation and believability. Only filtering
out plans with believability zero will already help a lot in solving the disruptive
changes that can be observed in some more traditional adaptive games.

5.3 Combinations

After all the agents have finished selecting the possible plans that possible fit in
the current situation they send this proposal to the adaptation which checks the
tasks that are currently performed by agents and then checks all the new pro-
posals from possibly different agents (remember that the agents can use the co-
ordination asynchronously). The adaptation engine uses the specifications from
the game model of the scenes that are currently active (for example only the
extract victims scene could be active). This means that number of plan combi-
nations is not only limited by the number of plans proposed by the agents but
also by checking the validity of the combinations before they are evaluated on
skill difficulties. In some cases this pruning can have a big influence. If we for
example assume that the (sub)scene defines that at least fireman should explore
the left corridor and that there is currently only one fireman active then we
can very quickly throw away all the combinations that contain the fireman per-
forming a different plan than exploring the left corridor. In most cases however

this pruning is little less efficient because most requirements require to really
check the plans of multiple agents. For example, if the (sub)scene specifies that
a stretcher needs to be carried by at least two agents then we need to check each
combination until from all the corresponding plans there are at least two agents
that perform the carry stretcher plan.

The agents also do not use the adaptation engine for all their plan selections.
If there is no need for adaptation, then the agents will keep running their normal
2APL program with the current preferences. The adaptation engine will request
a new bidding round if the deviation from the intended difficulty becomes too
large. The bidding process is also started at fixed points in the game scenario
where it is logical for the agents to start performing different actions. Updated
preferences also do not mean that the agents have to stop performing their
current plan but the selection of the first new plan is influenced. A third way
of managing the scaling problem is that multiple scenes can be active at the
same time and not all agents are part every scene. This splits the optimization
problem into smaller subtasks which makes it more efficient to optimize.

6 Scalability analysis

In this section we will analyze the scaling difference between a näıve centralized
approach and our coordinated distributed approach. Both approaches will have
a very similar approach of combining the actions of the NPC’s but the main
difference will be in the remaining number of plans proposed by the agents.
We aim to use reasonable assumptions that correspond to the type of serious
games we have encountered during our research. The example in Figure2 shows
a part an interaction structure of a game. This part of the interaction structure
shows six scenes. A reasonable assumption is that a whole game can be split
into 30 different scenes of which on average two scenes are active at the same
time. Because the scenes are independent of each other, the total number of
scenes hardly influences the execution time if our distributed approach is used.
In Figure 2 only one or two scenes can be active at the same time. In practice
most interaction structures are very similar and it hardly ever happens that more
than two scenes can be active at the same time. Using an average of two scenes
at the same time will therefore give a pessimistic estimation of the performance.
The ability of the agents to filter the possible actions depending on the active
scenes makes a huge difference in the number of possible actions that can be
proposed by the agents. In this example the agent will filter out more than 93%
((30-2)/30) from its complete plan base. In the same figure we also see an example
of scene with different sub-scenes. In this case there are only two sub-scenes but
an average of four will give a more realistic estimation. We again pessimistically
assume that on average two sub-scenes are active at the same time (per scene).
We assume that every agent has 6 unique plans for each sub-scene. The ability
to also select plans according to the sub-scenes will cut the remaining number of
plan in half again (2 of 4 sub-scenes are active for each scene). As explained in
section 5 the agents can also filter out some of the remaining plans by cutting out

the plan that are not believable enough. In some cases this filtering percentage
will be very low but in the kind of serious games where the NPC also cooperate
with the trainee a reasonable assuming will be that 50% of the remaining plans
are filtered out. We will leave out the optimization on the invalid combinations
because it is very difficult to give accurate estimations for this and it will also
make it more difficult to compare to the nave approach. This means that we
will compare the number of combinations that can be made from the actions
proposed by the agents. For each of these combinations the difficulties for the
different skill levels needs to be calculated. Even though this calculation itself is
not very time consuming the exponential nature of making these combinations
will really become a factor in complex scenarios.

The purely nave approach will have 720 (30 scenes * 4 sub-scenes * 6 actions
per sub-scene) different plans for each agent active at the same time. Our ap-
proach will have 12 (6 actions per sub-scene *2 sub-scenes active per scene * 2
active scenes /2 for believability filtering) In figure 3 we plotted the out the num-
ber of combinations for both approaches depending on the number of agents. As
can be seen the number of combinations already add up very quickly with our
distributed filtering but it is much more manageable then without the filtering.
Even with four agents the filtered approach is already 12960000 times as slow.
With more than four agents the nave approach becomes completely impractical.

1E 10

1E+12

1E+14

1E+16

1E+18

1E+20

1E+22

1E+24

1E+26

1E+28

naïve

filtered

1

100

10000

1000000

100000000

1E+10

1E+12

1E+14

1E+16

1E+18

1E+20

1E+22

1E+24

1E+26

1E+28

1 2 3 4 5 6 7 8 9 10

naïve

filtered

Fig. 3. Number of possible action combinations

Keep in mind that in practice our distributed approach will be much faster
because we are also efficiently filtering out impossible combinations. This means
that in practice the number of combinations that will be evaluated will be much
lower than the estimations from our graph. We, however, also realize that the
term scaling is relative. The coordination is fast enough by using our distributed
approach for the type of games we are investigating and is much faster than
the nave approach. But because of the exponential nature of the remaining
coordination it will not scale to games with massive numbers of NPC’s.

7 Conclusion

In this paper we discussed online adaptation in serious games. The adaptation
is based on the use of learning agents. In order to coordinate the adaption of the
agents we use an organizational framework that specifies the boundaries of the
adaptation in each context. We argue that an agent based approach for adapting
complex tasks is more practical than a centralized approach. It is much more
natural when the different elements are implemented by separate software agents
that are responsible for their own believability.

We mainly concentrated on the different phases of plan selection performed
on the agent level. However, we also have shown that by using an agent organiza-
tion framework we can segment the game in scenes in a natural way to describe
which of the possible actions of the agents are relevant at the current moment.
Every selection phases reduces the number of plans that need to be coordinated.
This greatly reduces the scaling problems when coordination multiple agent with
a large variety of possible actions.

The system is implemented using 2APL for the agents and tested with arti-
ficial trainees on the fire fighting example also used in this paper. The next step
is to couple the system to a game engine and test it with real trainees.

References

1. G. Andrade, G. Ramalho, H. Santana, and V. Corruble. Extending Reinforcement
Learning to Provide Dynamic Game Balancing. Reasoning, Representation, and
Learning in Computer Games, 2005.

2. C. Beal, J. Beck, D. Westbrook, M. Atkin, and P. Cohen. Intelligent modeling
of the user in interactive entertainment. AAAI Spring Symposium on Artificial
Intelligence and Interactive Entertainment. Stanford, CA, 2002.

3. J. Brusk, T. Lager, A. Hjalmarsson, and P. Wik. Deal: dialogue management in
scxml for believable game characters. In Future Play ’07: Proceedings of the 2007
conference on Future Play, pages 137–144, New York, NY, USA, 2007. ACM.

4. M. Cavazza, F. Charles, and S. Mead. Characters in search of an author: AI-based
virtual storytelling. Virtual Storytelling Using Virtual Reality Technologies for
Storytelling, pages 145–154.

5. J. Chen. Flow in games. Communications of the ACM, 50(4):31–34, 2007.
6. M. Dastani. 2APL: A practical agent programming language. Autonomous Agents

and Multi-Agent Systems, 16:214–248, 2008.
7. V. Dignum. A Model for Organizational Interaction: based on Agents, founded in

Logic. SIKS Dissertation, series, 2004.
8. J. Hübner, J. Sichman, and O. Boissier. S-Moise+: A Middleware for Developing

Organised Multi-agent Systems. Coordination, Organizations, Institutions, and
Norms in Multi-Agent Systems, pages 64–78, 2006.

9. R. Hunicke and V. Chapman. AI for Dynamic Difficulty Adjustment in Games.
Proceedings of the Challenges in Game AI Workshop, Nineteenth National Con-
ference on Artificial Intelligence (AAAI’04).

10. R. Hunicke and V. Chapman. AI for dynamic difficulty adjustment in games. In
Challenges in Game Artificial Intelligence AAAI Workshop, pages 91–96, 2004.

11. M. Lees, B. Logan, and G. Theodoropoulos. Agents, games and HLA. Simulation
Modelling Practice and Theory, 14(6):752–767, 2006.

12. B. Magerko, J. Laird, M. Assanie, A. Kerfoot, and D. Stokes. AI characters and
directors for interactive computer games. Ann Arbor, 1001:48109–2110.

13. D. Moffat. Personality parameters and programs. In Creating Personalities for
Synthetic Actors, Towards Autonomous Personality Agents, pages 120–165, Lon-
don, UK, 1997. Springer-Verlag.

14. L. Panait and S. Luke. Cooperative multi-agent learning: The state of the art.
Autonomous Agents and Multi-Agent Systems, 11(3):387–434, 2005.

15. S. Rabin. AI Game Programming Wisdom. Charles River Media, 2002.
16. M. Riedl and A. Stern. Failing believably: Toward drama management with au-

tonomous actors in interactive narratives. Technologies for Interactive Digital Sto-
rytelling and Entertainment, pages 195–206.

17. T. Sandholm. Algorithm for optimal winner determination in combinatorial auc-
tions. Artificial Intelligence, 135(1-2):1–54, 2002.

18. N. Schurr, J. Marecki, J. P. Lewis, M. Tambe, and P. Scerri. The DEFACTO sys-
tem: Training tool for incident commanders. In M. M. Veloso and S. Kambhampati,
editors, AAAI, pages 1555–1562. AAAI Press / The MIT Press, 2005.

19. M. Si, S. Marsella, and D. Pynadath. Thespian: An architecture for interactive
pedagogical drama. In Proc. Of AIED. Citeseer, 2005.

20. B. Silverman, G. Bharathy, K. O’Brien, and J. Cornwell. Human behavior models
for agents in simulators and games: part II: gamebot engineering with PMFserv.
Presence: Teleoperators and Virtual Environments, 15(2):163–185, 2006.

21. P. Spronck, M. Ponsen, I. Sprinkhuizen-Kuyper, and E. Postma. Adaptive game
AI with dynamic scripting. Machine Learning, 63(3):217–248, 2006.

22. J. Westra, F. Dignum, and V. Dignum. Modeling agent adaptation in games.
Proceedings of OAMAS 2008, 2008.

23. J. Westra, H. Hasselt, F. Dignum, and V. Dignum. Adaptive Serious Games Us-
ing Agent Organizations. In Agents for Games and Simulations, pages 206–220.
Springer, 2009.

Inferring Pragmatics from Dialogue Contexts in
Simulated Virtual Agent Games

Yu-Hung Chien1 and Von-Wun Soo1,2

1 Department of Computer Science
2 Institute of Information Systems and Applications,

Nationial Tsing Hua University,
30013 No. 101, Section 2, Kuang-Fu Road, Hsinchu, Taiwan, R.O.C.

knightsot@gmail.com, soo@cs.nthu.edu.tw

Abstract. In emergent narrative for virtual agents or human machine
interactions, the pragmatics hidden in the dialogue cannot easily be in-
ferred based on the Grice’s maxims alone. We model the speech acts
in terms of the change of unobservable mental states of agents includ-
ing in several dialogue contexts such as emotion state, social relation,
social norm, social commitment, personality and preference. With the
speech act model virtual addressee agents could infer the pragmatics
of the addresser agents from the dialogue contexts and vice versus us-
ing probabilistic reasoning of Dynamic Bayesian Networks. We adopt a
scene in the famous movie Doubt that has 53 dialogue sentences as the
test corpus and implement 21 types of speech acts in the experiments
to show that agents with dialogue context awareness ability can infer
indirect speech acts from given direct speech acts.

Keywords: Speech act theory, Bayesian networks, Pragmatics, Context
awareness, Agent dialogue, Virtual games

1 Introduction

While computer entertainment and education games have become a big industry
in recent years, they have brought us into a new era full of imagination and
creativity. Computer games today could be simulated in more believable than
before and could allow people immerse their cognition and feelings in the virtual
worlds. Various techniques including 3D graphics and sound effects have been
implemented in the latest games to make them more vividly and lively in the
virtual worlds. We can act as a virtual character role and interact with non-
player characters (NPCs) and the virtual environment in the virtual games for
entertainment or education. Therefore, in virtual world, we need to enrich the
NPCs ability in their reasoning, dialogues and context awareness. NPCs are
usually treated as intelligent automatic agents and the game engine as a multi-
agent system (MAS).

In MAS, either rational or non-rational agents rely on communication to solve
problems, resolve the conflicts, argue about disagreements, form teams for coop-
eration, come up with a joint plan, and conduct social activities, etc. Different

modes of communication for agents have been developed in different platforms
for a MAS. In 1993, DARPA KES defined a standard of agent communication
language (ACL) called Knowledge Query Manipulation Language (KQML) that
was based on the speech act theory for intelligent agents [6]. FIPA-ACL extended
KQML and defined 22 performatives for agents to communicate. Both KQML
and FIPA-ACL [7] basically pre-suppose that agent’s dialogue pragmatics must
to some extent follow Grice’s maxims [9] in order to achieve effective communi-
cation and avoid ambiguity and misunderstanding. However, in computer games,
the ability for NPCs to accurately interpret the semantics and pragmatics in a
dialogue can be restricted merely under the sanction of Grice’s maxims. To in-
teract with intelligent agents, the indirect speech acts such as metaphors, jokes,
ironies, or even lies can easily violate the Grice’s maxims. Therefore if we insist
an ACL of agents to follow strictly to Grice’s maxims, it would be impossible for
agents to infer different pragmatics from its semantic in the dialogue context.

Our research objective is to establish a dialogue context awareness model
for virtual agents who play as a NPC in a computer game so that they can
”understand” the dialogue context to some extent and infer the true intentions
of other agents in the dialogue conversation in an emergent narrative. From our
point of view, a virtual agent who can conduct dialogue properly with other
agents must have at least the following capabilities: 1. be aware of the situations
in the dialogue including the observable environment and dialogue history; 2. be
able to reason about other agent’s mental states; 3. be able to predict possible
consequence or other agent’s possible reactions at current dialogue situations; 4.
be able to explain what might have possibly happened based on current dialogue
context situations. We consider these abilities all relate to the dialogue context
awareness that is needed for a dialogue agent to be able to infer semantics of a
dialogue to its pragmatic under various dialogue contexts. On the other hand,
for an agent to conduct dialogue properly, it implies the agent can select a proper
speech act at the proper dialogue context. Therefore we must be able to model
speech acts well so that the virtual agent can base upon to select a speech act
properly not only by considering its preconditions but also by projecting its post-
conditions and effects in a dialogue. However, unlike physical actions, speech acts
normally involve contexts that are related to human mental states and social
situations and are difficult to specify. We need to clarify these context models
first before we could model the speech act well. Besides, since mental states of
agents and dialogue pragmatics are in general unobservable and uncertain, we
need a probabilistic reasoning model to support the uncertain reasoning both
forward and backward between the dialogue pragmatics and dialogue contexts.
We adopt dynamic Bayesian networks [12] (DBN) as the framework to support
the simulation of the context awareness reasoning based on a sequence of dialogue
sentences in the dialogue.

This paper focuses on how to model the speech acts so that they can facilitate
agents to be aware of dialogue contexts by mapping from the dialogue semantics
to its pragmatics. In section 2, we survey some related works. In section 3 we
describe our method of modeling speech acts and various dialogue contexts, the

computation models of DBN for context awareness. In section 4, we describe
the simulation experiments against a test dialogue corpus from a movie script
and we show our results and discuss their significance. In section 5, we make
conclusions.

2 Related Works

In traditional context-awareness domains, researches focused on extracting and
abstracting information from the low-level signals in real world [14]. For example,
emotion detection from texts, speeches or videos is a kind of context awareness
in human-machine interactions [10][11]. Dey [5] gave a definition of a context
as any relevant information for interactions between users and applications, or
themselves. For multi-agents application domains, the MAS can process every
low-level signal from internet, I/Os and other applications and then deliver the
events or other high-level concepts to intelligent agents. To make agents interact
reasonably and appropriately, modeling an abstract context is necessary in a
complex virtual environment.

Agent communication is a complex problem domain for knowledge querying,
delivering and exchanging between various agents and applications. For the ef-
ficiency of knowledge exchange, researchers designed various protocols in terms
of Agent Communication Languages (ACLs) for agents to follow. Jamal [3] de-
signed a logical model called Commitment and Argument Network, to make
agents reason about the communicative acts and the states in the conversation.
However, we assume agents might not follow the Grace’s maxims in the vir-
tual drama or in emergent narrative approach. So we adopt a probability model
instead of a logical one to describe the dialogue context.

Stolcke et al. [15] use 42 dialogue acts to tag 1,155 Switchboard conversations
with a probability model to recognize the conversation speech act. They used
hidden Markov model (HMM) as Bayesian network to compute the likelihoods
P (U |E) (E for evidence of complete speech signal and U for sequence of dia-
logue act labels) and reached high accuracy on speech act recognition. We differ
from Stolcke et al. in that we attempt to relate pragmatics with various dialogue
contexts which is important for virtual agents to achieve context awareness in
many virtual simulated games. In this paper, we focus on inferring the prag-
matic speech act from a semantic-tagged sentence and various dialogue context
information. Galley [8] demonstrated a statistical approach for modeling agree-
ments and disagreements in interactions. They ranked maximum entropy based
on several observable features to identify participants in conversation. Besides
the observable contexts, we modeled several unobservable dialogue contexts to
infer speech acts. In contrast to previous work, our approach could be applied
to emergent narratives and virtual interactive drama.

3 Methods

In speech act theory, all speech acts must accompany some context to become
meaningful. We illustrate possible contexts involved to dialogue in figure 1.
Agents can obtain part of dialogue context information through the observation
on the environment such as the physical states of location, room arrangement,
temperature, brightness and etc. In additional, agents can also memorize all
previous dialogues as contextual information. The kind of context information
can be obtained via agent sensors as evidence and can become more reliable
and refined as the sensor technologies available to the agents are improved and
diversified.

Fig. 1. Agents mental states and physical context.

Another part of context information is unobservable and agents must obtain
by reasoning based on prior knowledge and evidence gathered from the envi-
ronment. The mental states of other agents including their emotions, cognition
of social relations, personalities, beliefs, goals, intentions or even atmosphere of
dialogue are usually hidden and unobservable context information. Even reason-
ing with sound logic, agents cannot one hundred percent sure that the context
information inferred is correct. Since no Grices maxims can be assumed, the
agents cannot believe that other agents are not lying. Although there is un-
certainty in unobservable context information, most agents must rely on it to
make decision. Therefore its importance is no less than the directly observable
context information. We call the two kinds of context information as dialogue
context in the speech act model and use them to define speech acts. This will
be described in detail in section 3.1.2. To design the reasoning of contextual
information based on the observable evidence and unobservable information we
adopt dynamic Bayesian networks which are described in details in section 4.

In a dialogue, agents could directly obtain contextual information from not
only tones of speech, facial expressions of other agents, but also the dialogue
content of a sentence. The dialogue content of a sentence could in general be
obtained from complicated natural language processing steps. To simplify the
discussions and focus on the theme of the paper, we assume the content semantics
of a dialogue have been extracted to the speech act and we only do experiments
with speech acts.

3.1 Models of Speech Acts and Dialogue Context

Speech Acts. In traditional planning, each action must satisfy some physical
states called as pre-conditions to be executed and after its execution it can cause
the change of the world states as effects or post-conditions. These states are in
general observable to ensure the action be executed or successfully carried out.

In dialogue speech act, it is similar except that a speech act only changes the
mental states of agents that cannot be verified via direct observation without
some mode of reasoning. Therefore we must define first what dialogue contexts a
particular speech act can affect and how and to what degree it affects a dialogue
context.

An action can only be applied when all pre-conditions are matched in the
action model. However, the speech act model is more relax than the action
model. Although there are many related dialogue contexts can trigger a speech
act, we think a speech act can be fired by partially match with related dialogue
contexts. For example, emotion contexts anger and reproach are related to the
speech act blame, but an angry agent might still blame someone even if he/she
didnt have the reproach emotion. Its a major difference between the speech act
model and action model. In our speech act model, a speech act affects not only
speakers mind but also listeners mind. The reason that we cant combine all agent
mental contexts into a big one is that we use the dynamic Bayesian network to
model each agents mental model, and the DBN models are independent between
dialogue agents. We will explain this in more details in section 3.2.

In figure 2, we show that a speech act is modeled as the change of various
contexts, in which (1) indicates mental states of an agent can affect the selection
of a speech act, (2) indicates a speech act can affect the mental states of agents
own and others, based on the observation from current dialogue contexts.

As discussed above if we believe all agents dialogues obey Grices maxims
then we could convert the dialogue content semantics directly in some way to
pragmatics, namely, infer speech acts from the their dialogue content seman-
tics directly. However, in emergent narratives, we have relaxed the assumption
of Grice maxims for agent communication so we could not directly obtain the
pragmatics, or speech acts, from the dialogue content semantics. Since the agent
mental states are essentially unobservable, we cannot confirm for sure whether
the inferred speaker agents pragmatics in a dialogue sequence are indeed the
true intentions (or speech acts) of the speakers. Therefore we distinguish two
different dialogue sequences; a coherent semantic sequence which means that all
the dialogue semantics of speech acts in the dialogue sequence can be treated

Fig. 2. A speech act affects both speakers and audiences mental contexts. The effects
to audience are hard to know until the agent conduct some speech acts in conversation.

as pragmatics and no incompatible speech acts can be found in the sequence
while an incoherent semantic sequence; which means if the dialogue semantics of
speech acts are treated directly as pragmatics, there are some speech acts whose
dialogue semantics might be in conflict with their true pragmatics. For most
cases of dialogues in the emergent narratives, they are more or less incoherent
semantic sequences and therefore we need to find an explanation as the most
likely pragmatic speech act sequence for a given dialogue sequence.

Dialogue Context. In the work of speech act classification [1], 4800 speech
acts and 600 categories are divided into four major layers: expression, appeal,
interaction and discourse. Each speech act can be defined by changing or trigger
by specific contexts. Surely, to list all possible applicable context conditions for
a speech act is impossible as it falls into the frame problem that we could not
possibly specify all contingent conditions involved. To make it worse, due to
the unobservable property of the mental states of other agents, the ramification
effects of a speech act on other agents mental states sometimes cannot be easily
and clearly framed.

In designing the dialogue context model, we only aim at the major conditions
and effects that a given speech act can achieve in a dialogue while ignore com-
pleteness of all possible contingent conditions. It seems to be somewhat ad-hoc,
however, some principles and commonly encountered contexts and can still be
adopted in the dialogue context modeling to make the context awareness feasible.

In describing the relations between the dialogue context and a speech act,
in order to distinguish that an agent is more likely to choose some speech act
rather than the others under certain context, or some speech act may have
more likely to affect a given context than the others, we often encounter the
matter of the degree of effect. Our solution is to divide the degree of effect in

terms of five levels. Each level is mapping a probability in Bayesian network:
Level 1: 15%, Level 2: 35%, Level 3: 50%, Level 4: 65% and Level 5: 85%. We
then subjectively annotate such information in each speech act. Although at
beginning, the subjective annotation can cause inaccurate predictions, we could
dynamically adjust the degree of effect later at a separate learning stage based on
the dialogue records when we find the inaccurate predictions. For example, when
we find that all agents tend to have low estimation toward the angry emotion,
we could raise the levels of the effects of all speech acts that have affected the
angry emotion.

Emotion Context. The OCC emotion model [2] proposed an emotion model for
22 types of emotions according to their triggering conditions in terms of an
agents appraisal on objects, agents and events with respect to his/her utility.
Using OCC model to logically describe the emotion context for speech acts
encounters not much difficulty. However, the strength of an emotion cannot
have a common standard way to model. For example, if Peter requests Mary
something, he will have emotions of hope if Mary accepts or have emotion of fear
if Mary rejects. However, if there is no difference in the strength of emotions, it
is hard to distinguish the emotional differences that could be brought from the
use of three different speech acts: request, beg, and order. Intuitively speaking,
speaker agents using order should have less fear and hope emotion than beg
after using it. Table 1 shows an example of speech act models of beg and order
respectively in their post-conditions to distinguish such a difference.

Table 1. The effects on speakers emotion of speech acts of order and beg.

As discussed above, not only can a speech act affect an emotion at a different
degree to an agent, but the strength of an emotion can also affect the selection
of a speech act for an agent. In Ballmers speech act classification, 155 speech
acts have been identified under Expression Layer that are used to express agents
self-emotion. In other word, in dialogue context, expressing self-emotion can play
a very important role in agent communication that can help an agent to make
other agents understand his reactions to previous conversation or release his
emotional pressure.

In Table 2, we show an example of possibility model to emotion expression
speech act blow-up that is adopted by a speaker whose angry emotion has reached

a higher degree than a specified threshold (according to his personality) in the
precondition and that might also affect its listeners emotion toward negative in
the post-condition.

Table 2. The emotion context of speech act blow up.

Social Context. Besides emotion, a dialogue can be directed to different styles
and directions according to different social relations among speakers and the
listeners. After all, a dialogue can be conducted with more than one agent. To
maintain a normal dialogue, agents will more or less respond with a proper speech
act that follows some conventions or protocols. Random selection of speech acts
among dialogue agents cannot possibly make the dialogue be pursued smoothly.
Therefore under most situations, agents would choose certain speech acts ac-
cording to the social context in the dialogue. For example, a subordinate rarely
yells to his/her boss under a normal social context, while we would more than
often see a warm greeting among friends. We therefore include social norms,
agent social roles and social relations in the social context modeling for a speech
act.

Social Relation. The social relations refer to organizational relations, friend-
ship/enemy relations, or family relations. We focus on those relations in two
aspects that need to be specified in the speech act: the relations that can be
suggested or implied when a given speech act is adopted and the relations that
can be affected by the speech act. Of course, the social relations can affect the
speech act at different degrees of influence toward the emotions of listener agent.

Social Role. Some speech acts can only be used by the agents having certain
social roles. The speech acts Sentence in court or Diagnose a disease must be
adopted by a judge or a medical doctor respectively to be considered as the
proper utilization of a speech act. On the other hand, when a speech act is
adopted by an agent, it might be naturally to make other agents believe that
the speaker agent actually plays the social role that is implied in the speech act.

Social Norm. The social norm refers to the rules or conventions that are usually
the common knowledge for all agents and that in a dialogue context can usually
specify whether a given speech act should be or should not be used under certain
social contexts. However, social norms can also be violated. For example, take
greeting as an example, someone can ignore the step of greeting and directly

cut in the main topics of the dialogue. To deal with this, we would maintain a
personality context of an agent and record the frequency of violation of norms
in the speech act behaviors of the agent so that it could predict more accurately
the pragmatics and dialogue context of the agent in the future dialogue.

Social Commitment. Agent may have social commitments in conversations. How-
ever, since we have not modeled in detail about the social commitment, so the
agent cant realize when or how to comply with their social commitments. But
we model the relation between social commitment and speech act. With Social
Commitment context model, agent may or may not use certain kinds of speech
acts in the conversation, and the conditional probability model could be the
same model as Social Relation context model.

Personality Context. Personality context specifies the tendencies of the reac-
tions of an agent toward certain emotions and social norms. Since personality is
relatively fixed in dialogue, without affect the performance evaluation of other
context models in this paper we could assume they are fixed at some prior con-
stant for all dialogue agents.

Preference Context. In the preference context, we record the frequencies of
speech acts used by a particular agent toward other agents under certain di-
alogue situations so that the tendency of choosing a particular speech act for
the agent can be analyzed for future prediction. Similar to Personality context,
we could assume preferences are also fixed at some prior constant for all dialogue
agents.

Discourse Act Context. Discourse context refers to a sequence of speech acts
that often appear together under certain patterns to achieve a particular social
functions for the dialogue agents. For example, in a quarrel discourse context, the
dialogue agents might interleave with such speech acts as angry, disagreement,
scolding, argue, attack, etc. while negotiating discourse context there can be
speech acts as proposal, counter-offer, acceptance or rejection.

3.2 Computational Model of Context Awareness Reasoning Using
DBN

In DBN modeling and implementation [13], in general we need to specify the
domain sensor model and the transition model in terms of conditional probabil-
ities P (Et|Xt) and P (Xt+1|Xt) respectively, where Et represents the evidence
collected from sensors at time t and Xt+1 and Xt represent the domain states
at time t+1 and t. With an assigned initial state P (X0), we can get the states
of X at any t :

Since each speech act is modeled as the change of dialogue contexts, we
could subjectively attach the probability of the possible change of context pre-
conditions and post conditions in the speech act as a transition model. Basically
the sensor model gathers evidence from the physical environment which includes
the content semantics of the dialogue sentence and other information cues via
observations such as tone of a speech, facial expression, gesture and object loca-
tion, etc. In the figure 3, we used two DBN model for two participants, agent A
and agent B, in conversation. At and Bt are unobservable dialogue contexts for
their mental state in dialogue step t. The observable data (Obt) that includes
the speech act (SAt) is the sensor model that reflects states of observable dia-
logue contexts evidence Et, and the speech act could also affects the dialogue
context. The effects of speech act could cause the dialogue context to change
with probability P (Xt|Xt−1, SAt−1) in which SAt is speech act at dialogue step
t. Using DBN, we can infer context states we designed based on the observation
in the conversation. So with the speech act model, we can get the states of X at
dialogue step t:

Fig. 3. Two DBN models for both the speakers and the listeners dialogue contexts.
The speech act and observation information in the dialogue are treated as the sensor
model in the DBNs.

Combine CPT with Noise-or Model. To combine those related conditional
probability, we use noisy-or model under the assumption that all the contexts
with conditional probabilities are independent. The idea of Noisy-OR [4] func-
tion is that a speech act SA with n precondition contexts Ci, then there are n
probability values pi where pi is the probability that {SA = true} on {Ci =
true} and {Cj = false} for all j ̸= i.

The limitation of using the noisy-or model to calculate the CPT is that
we can only design triggers to fire a speech act. We cant describe the kind of
condition that a context might reduce the possibility of firing a speech act with
the noisy-or model. Moreover, in order to use the noisy-or model, the assumption
that all dialogue contexts are independent could be too strong. However, using
the noise-or model, we can simplify the computation complexity of calculating
the conditional probabilities table (CPT) by reducing all 2n combinations of
true-false possible conditions to only n-item computation.

4 Experiments

We collected a dialogue sequence from a script in a famous movie Doubt [16]
which is a 2008 film adapted from John Patrick Shanley’s Pulitzer Prize winning
fictional stage play Doubt: A Parable. In the movie there is a scene where three
characters Father Flyn, Sister Aloysius and Sister James were having an argu-
ment dialogue. We adopt the scene that has 53 dialogue sentences as in Table 3
and annotated manually the dialogue sentence with observable evidence, possi-
ble mental states (such as emotions and other context) as well as correct speech
acts as our test corpus. We modeled and implemented 21 types of speech acts
according to the approaches discussed in section 3 among which 18 are actually
appeared in the scene of the selected movie script.

Table 3. The dialogue sentences from a scene script from the file Doubt.

4.1 Speech Act Model with Multiple Contexts

Speech Act Classification. In the Doubt scenarios, the pragmatic speech
acts: ask and interrogations are frequently used in the conversation. Lack of
well-designed domain ontology for the dialogue semantic content in the commu-
nication language, the two pragmatic speech acts are hard to be distinguished. It
is because both of them belong to semantic speech act ask. However, the prag-
matic speech act ask affects the listeners emotion merely in general sense. In
table 4, we defined four kinds of semantic speech act classification and each can
be elaborated or interpreted as three to six pragmatic speech acts according to

its context. Some of the speech acts can change the emotion context, and some of
them need to have special social roles or social relations involved. To distinguish
speech acts in such speech act classifications can show that the agent has the
ability to identify a proper pragmatic speech act under different context states.

Table 4. Four semantic speech acts and their elaborated pragmatic speech acts in
Doubts scene.

Dialogue Context Scheme. Although we describe a lot of dialogue contexts
in section 3, due to the limited effort and computation as well as the test bed
domain for obtaining the full performance, we only focus on 7 negative emotions
and one positive emotion (Shame, remorse, fear-confirmed, reproach, disappoint-
ment, anger, fear and hope) from OCC emotion model into emotion context. The
rationale to choose more negative emotions than positive is that the agent in the
chosen domain will tend to show more negative emotional speech acts than pos-
itive. And we use emotions fear and hope to model speech acts ask and request
that can have some effects due to the accept or reject speech acts for the dialogue
agent.

In addition to emotion context, we also model several social relation contexts
such as friend to model the positive relation,be authority to and be subordinate to
to model the precondition of a pragmatic speech act order, and et al.

4.2 Experiment 1: Pragmatic Prediction with Dialogue Contexts

In experiment 1, we intend to show that a dialogue agent can predict the correct
pragmatic speech act to some extent from its semantic speech act of a dialogue
sentence in the agent dialogue conversation given the dialogue contexts of the
speech act model.

In Table 5, we showed 21 speech acts occurred in the conversation, all 21
semantic and pragmatic speech acts used in the Doubt script of 53 dialogue
sentences and are labeled with a symbol from a to u in which a: Announce, b:
Controvert, c: Dissatisfied, d: Recount, e: Ask, f: Reply, g: Interrogate, h: Reject,
i: Censure, j: Rebut , k: Say-goodbye, l:Accuse, m: Agree-with, n: Request, o:

Propose, p: Be-glad, q: Threaten; r: Not-intimidated, s: Pride, t: Praise, and u:
Grumble. The annotations of semantic speech act sequence and pragmatic speech
act sequence corresponding to the 53 dialogue sentences in the dialogue script
are annotated in A and B respectively. Each dialogue character is labeled with
a number: 1. Father Flynn, 2. Sister Aloysius, 3. Sister James and each dialogue
sentence can be abbreviated as (speaker + audience + speech act). For example
Sister Aloysius makes an announcement speech act (a) to Father Flynn that will
be annotated as (21a) as in the semantic speech act sequence. And the pragmatic
speech act is the same as its semantic speech act in this dialogue context and
therefore it is annotated as the same (21a) in the pragmatic speech act sequence.

Table 5. 21 Semantic and pragmatic speech act sequences in Doubt scenario.

We assume the correct pragmatic speech acts in the first half of the speech
acts in the script are given as known, and then each dialogue sentence is input
one by one by continuing the second half of the dialogue. We model two different
agents as a test. The first agent will be given the preloaded context information
in the first half part of dialogue log. By the pre-loaded context information, we
mean all the pragmatic speech acts in the dialogue sequence that have been
conducted so far. We observe it prediction ability on the pragmatics on every
dialogue sentence in the dialogue sentences at the second half. The second agent
will not be given any preloaded context information, so he/she is the third party
agent and join in the conversation in the middle. Of course, we expect the second
agent to have a lower accuracy for prediction than the first one as a contrast. In
the Table 6, the first row is the pragmatic speech act sequence for the second half
part in the scenario. The second row is the predicted results of the first agent
with pre-loaded context information. The third row is the predicted result from
the second agent without pre-loaded context information. The third column in
row 2 and 3, we calculated the accuracy ratios of precition of the two agent
respectively. All the mismatchs are indicated in grey shade.

Table 6. The accuracy of pragmatic speech act prediction with/without preloaded
context.

We only calculate the accuracy with the predicted result for the speech act
classification. There are 16 classified speech acts, and 5 speech acts are not
classified. It means that if a semantic speech act is not classified, the pragmatic
speech act will be equivalent to the semantic speech act. In this experiment, only
19 of 26 sentences have classified semantic speech acts.

The first result in the experiment 1 with preloaded context knowledge has
four error predictions with accuracy rate 15/19. The reason of error is due to, in
the end of the conversation, emotion intensity is at normal level, so agent cant
easily distinguish the pragmatic speech acts using Emotion context.

The second result shows a worse performance of an agent without context
information. However, it still has an accuracy rate of 11/19. Its because the
Discourse Act context used to predict the speech act pair ask-reply actually
make effects.

In the experiment 1, we show that the accuracy with preloaded context knowl-
edge (namely, the accumulated context information during dialogue) helps in
predicting the pragmatic speech act from a semantic one.

4.3 Experiment 2: The Most Likely Pragmatic Speech Acts
Sequence

In experiment 2, we assume only semantics of dialogue sentences are given as
known, we attempt to assess if the speech act model could find out the most
likely explanation of the dialogue context. Since most dialogue sentences are
ask/reply speech acts, but sometimes emotions of dialogue agents can become
incompatible with the contexts, we wish to know to what extent the model
could find an explanation of pragmatic context (as interrogation in this case) for
each dialogue speech act (as ask in this case) sentence. With the same reason
mentioned in section 4.2, we calculate the accuracy based on the classified speech
acts.

Using DBN, we calculate a most likely pragmatic speech act sequence from it
corresponding semantic sequence whose overall probability is 6.792e-11 with 29
correct pragmatic speech acts matching out of 40 semantic speech acts as shown
in Table 7. We reason that the error could be due to the peaceful conversation
at the beginning of the scenario that provides little emotional context. So the
prediction of the pragmatic speech act interrogate from semantic speech act ask
is incorrect at the beginning for about the first one third of conversation.

Table 7. The probability and accuracy of the most likely pragmatic speech act se-
quence.

5 Conclusion

We have established a speech act model to serve as a bridge for virtual agents to
reason about multiple sophisticated dialogue contexts that include norms, social
relations, emotion, personality, intention or goals among agents in a dialogue
scene. We have relaxed the traditional agent communication assumption of ACL
that assumes speech acts used by virtual agents be modeled as precisely and
as sincerely possible as suggested by the Grice maxims to avoid ambiguity in
communication. By proper modeling the preconditions and post conditions of
these contexts in speech acts of various types, and adopt DBN to conduct the
uncertain reasoning and inference among the contexts, it provides a powerful
and flexible method to support complicated context awareness reasoning. We
illustrate with a scenario using the dialogue script in a movie as a test bed and
show the performance feasibility of this approach. We show that with proper
model of speech acts in terms of change of dialogue contexts, it could support
agent reasoning about pragmatics of other agents in the dialogue. This is im-
portant in supporting virtual agents toward more context awareness in various
simulated virtual games.

DBN model is adopted and the probabilities are devised based on evidences
from the domain and data corpus. We implemented it with customizing sub-
jective conditional probabilities that are reconciled under various constraints to
show the feasibilities. It could possibly lead to poor accuracy and some bias in
rigorous evaluation. However, after the implementation when an agent detects
mass error predictions or encounters misunderstandings of a particular semantic
speech act with high frequency, it has a space for incorporating some learning
mechanism to automatically refine the parameters in the speech act model.

Therefore the study has not only shed some light on the context awareness for
virtual agents to conduct dialogue but also points out many interesting research
directions. The future work includes more elaborated design of the speech acts
in various types as well as the automated acquisitions of proper parameters in
supporting DBN reasoning. Since we have simplified the semantics of an entire
dialogue sentence into a dialogue semantic label (speaker-audience-speechact)
by ignoring its actual dialogue content semantic, we are aware that in some
situations, context awareness does require the content semantics of a dialogue
sentence as well as its background context knowledge to resolve semantic ambi-
guities. The refined content semantics and background knowledge can not only
improve the accuracy of the awareness but also lead to deeper context awareness

in dialogue. For this aim, we need to augment not only the speech act model
but also augment the domain content ontology and sentence parsing and under-
stand. Another direction of future research is to integrate with various signal
sensor technologies to collect more evidence cues from environment and other
agents that can support DBN to achieve a full-fledge context awareness model
for the virtual agents to conduct various believable conversations in dialogue.

References

[1] Ballmer, T., & Brennenstuhl, W. Speech Act Classification. Springer-Verlag, Berlin,
Heidelberg (1981)

[2] Bartneck, C.: Integrating the OCC model of emotions in embodied characters.
Proceedings of the Workshop on Virtual Conversational Characters: Applications,
Methods, and Research Challenges, Melbourne (2002)

[3] Bentahar, J.: A pragmatic and semantic unified framework for agent communica-
tion. Ph.D. Thesis, Laval University, Canada May (2005)

[4] Cozman, F.G.: Axiomatizing Noisy-OR. In: 16th European Conference on Artificial
Intelligence, Valencia, pp. 979–980. Valencia, Spain, IOS Press (2004)

[5] Dey, A.K, & Abowd, G.D.: Towards a better understanding of context and context-
awareness. In: Proceedings of the 1st international symposium on Handheld and
Ubiquitous Computing (HUC99), pp. 304–307 (1999)

[6] Finin, T., Fritzson, R., McKay, D. & McEntire, R.: KQML as an agent communica-
tion language. In: Proceedings of the third international conference on Information
and knowledge management, pp. 456–463, Gaithersburg, Maryland, ACM. (1994)

[7] Foundation for Intelligent Physical Agents (FIPA). FIPA Communicative Act Li-
brary Specification. FIPA00037, http://www.fipa.org/specs/fipa00037/

[8] Galley, M., Mckeown, K., Hirschberg, J., & Shriberg E.: Identifying agreement and
disagreement in conversational speech: use of Bayesian network to model prag-
matic dependencies. Proceedings of the 42nd Annual Meeting on Association for
Computational Linguistics, Stroudsburg, article 669, PA, USA (2004)

[9] Grice, P., Studies in the Way of Words, pages 22-40. Harvard University Press.
(1989)

[10] Inanoglu, Z., & Caneel, R.: Emotive alert: HMM-Based emotion detection in voice-
mail messages. In: Proceedings of the 10th international conference on Intelligent
user interfaces, pp. 251–253, San Diego, California, USA, ACM. (2005)

[11] Kim, S., Georgiou, P.G., Sungbok, L., & Narayanan, S. Real-time emotion de-
tection system using speech: multi-model fusion of different timescale features. In:
Proceedings of IEEE 9th Workshop Multimedia Signal Processing (MMSP), pp.
48–51, Chania, Greece, (2007)

[12] Murphy K.P.: Dynamic Bayesian Networks: Representation, Inference and Learn-
ing. Ph.D. Thesis, UC Berkley, USA, July (2002)

[13] Russell, S., & Norvig, P., Artificial Intelligence: A Modern Approach 3rd Edition,
pp. 566–599. Prentice Hall. (2009)

[14] Schilit, B.N., Adams, N., & Want, R.: Context-aware computing applications. in
Proceedings of the workshop on mobile computing system and applications (1994)

[15] Stolcke, A., Ries, K., Coccaro. N., et al.: Dialogue act modeling for automatic
tagging and recognition of conversational speech. Computational Linguistics, 26(3):
pp. 339–373 (2000)

[16] The script of the movie: Doubt, http://www.screenplaydb.com/film/scripts/doubt/

Dialog Designs in Virtual Drama: Balancing
Agency and Scripted Dialogs

Edward Chao-Chun Kao and Von-Wun Soo

Institute of Information Systems and Applications, National Tsing Hua University
101, Section 2, Kuang-Fu Road, Hsinchu City, Taiwan 30013, R.O.C.

edkao@cs.nthu.edu.tw, soo@cs.nthu.edu.tw

Abstract. With a story generator, scripts would be automatically gen-
erated and then played by virtual agents. While scripts for actors consist
of two parts: movements and dialogs, the latter is little addressed in
current research of story generation, and hence limiting the generated
stories. Therefore, our initial goal is to enable story generators to gen-
erate dialogs as sets of character-based actions integrated with original
story plots. This paper firstly presents a speech-act-based dialog genera-
tion framework to define the relationship between dialogs and story plots.
Secondly, we introduce how agents may improvise scripted dialogs by se-
lecting different courses of actions. Finally, a sample scenario is generated
according to this framework and demonstrated by virtual agents with Un-
real Development Kit. Our initial results indicate that this framework
strikes at a balance between agency and scripted dialogs; that improvised
dialogs of virtual agents would not break the consistency of stories.

Keywords: speech act theory, dialog generation, virtual drama

1 Introduction

The rise of intelligent virtual agents has formed a new interdisciplinary research
community spanning across artificial intelligence, computer graphics, cognitive
science, natural language processing, and narrative theories.

While the future direction of virtual agents may vary according to the major
domain of researchers, a significant one would be virtual drama, as it takes
place in existing applications such as computer games, emotion counseling and
simulation-based training. Here, we identify virtual drama as a play with the
following characteristics:

1. Virtual environments: rendering computer graphics with either realistic or
cartoon-style pictures as the scenes in the play, the virtual environments
often serve as the engine that integrates other components such as camera
controllers and physics.

2. Virtual actors: virtual agents may be implemented in different methods from
virtual environments, yet intended to act as characters in the play, equipped
with the abilities to make believable gestures, facial expressions, synthesize
voice, and other interactions.

3. Play scripts: actions of virtual actors and virtual environments are described
in the play scripts, either manually written or automatically generated.
While different from movie scripts intended for human actors and direc-
tors, play scripts in virtual drama are often defined with formalisms and/or
markup languages, e.g. PDDL [14] in planning domain, and BML [29] to
describe the action timing of virtual actors.

While the first and the second parts remain important research issues in
virtual agents, we focus on the generation of the third part, which is identified
as story generation or narrative generation in academic terms.

The potential need of automated story generation exists as the speed of
consuming stories by audience is greatly larger than that of writing stories by
human authors. With a story generator, scripts would be automatically gener-
ated and then played by virtual actors situated in virtual environments. Thereby
we argue that story generation is the starting point for virtual drama to become
completely automated and on-demand digital contents.

However, while recent research in story generation applies various types of
planning [8][25] and theories in narrative analysis to generate plots, these plots
contains only high level actions containing physical actions only , and the dialogs
between characters are often left unattended or vastly hand-crafted, resulting in
speechless or very domain-specific scenarios. While the former require human
authors to fill in the dialogs, the dialogs of the latter are confined in current
storylines, difficult to be re-applied to other generated stories.

To fill the gap, the primary purpose of our research is to model a generative
framework of dialogs, so that it would be able to generate dialogs for different
stories and actors without losing its generality. Since the whole domain of natural
language generation is way beyond our research problem, our framework is based
on a simplified yet well-structured form of language, which is known as speech
acts and treated as ordinary actions in the planning domain, so the state-of-the-
art techniques of story planning may utilize them during the planning process
without many modifications.

In particular, this novel dialog framework is flexible to both virtual actors
and story plots: allowing virtual agents to choose more detailed dialogs based
on internal character profiles and the play scripts, while it also allows human
authors to specify constraints at the level of story discourse.

The remainder of this paper is described as follows. First, section 2 reviews
related literatures in the domains of agent communication and story genera-
tion, situating our work and identifying its scope. In section 3, we describe our
desiderata and explain why we choose hierarchical speech acts as the foundation
of our framework. Within this context, section 4 gives a formal representation of
virtual drama and our dialog framework in Z notation. Next, section 5 applies
this framework to an abstract scenario to evaluate how our model can be used to
generate balanced dialogs between characters and plots. We conclude in section
6 by summarizing our main findings and future work.

2 Related Work

2.1 Narrative Generation

In general, research of narrative generation is rooted in literary structuralism.
Based on their work, a narrative world is described by a series of events, which are
known as fabula. Pieces of fabula chosen by storytellers to retell the audience are
identified as sujet. Since story discourse (the sequence of sujet) may be different
from fabula in temporal order and appearance (e.g. not every piece of fabula
will appear in sujet), different stories may be generated even based on the same
fabula.

Formulated as actions, fabula and sujet may be generated with POP-based
planning. Whereas structuralists [7][24] analyzed stories as a set of specific pat-
terns of sujet, the goal of narrative generation is to generate stories according
to these patterns. Further decompositions of these overall story patterns lead
to the formulation of causal constraints in planning. On the other hand, the
continuity of character intention expressed in sujet is also an important factor
to stories and identified as intentional constraints by Riedl et al. and utilized by
their story planner IPOCL [25].

POP-based narrative planning yield sound results of stories, which can be
further processed into different styles of sujet such as suspense. Besides, Riedl
further extended his method with incorporating vignettes [27], which are consid-
ered good scenarios and used as existing plan fragments during planning process,
making story reuse possible. Nevertheless, the actions used by planners are de-
fined as major events, rather at the level of overall fabula than at the level of
sujet, which consists of lines of dialogs between characters.

2.2 Interactive Narratives

A parallel trend of research in narrative intelligence is interactive narratives,
which focus on interactions between human users and virtual actors. In I-Storytelling
system [4] and its following, each virtual actor interacts with users and other
virtual actors based on a pre-scripted HTN plan, allowing others to change its
behavior based on the actual interactions on-stage. Without definite fabula, the
sujet emerges from real-time interactions and thus this method is also identified
as emergent narratives. The method of emergent narratives lead to multiple pos-
sible fabula, as it may generate inconsistent stories with the same set of HTN
plans.

Intuitively, the formulation of interactive narratives should be more suit-
able describe dialogs since dialogs are a type of interaction. As the number of
pre-scripted interactions increase, users may experience more different dialogs.
In most applications, defining story directions at different levels is still desired,
avoiding virtual actors to become completely random chat bots and lose the grip
of intended stories. Therefore, a drama manager is needed to pick up appropri-
ate interactions according to current development of stories. With fine-grained
interaction segments, such systems can yield highly interactive stories with good

quality, exemplified by Façade [19]. However, contrary to those actions which
are general events in POP-based story planning, all the dialogs and other inter-
actions in interactive narratives are domain (story) specific. As a result, recent
development about dialog generation in interactive narratives leads to demon-
strate differences among characters respect to different forms of expressions [5],
character archetype [28], personality [18], culture [11], and multi-modal dialogs
[22]. These dialogs require significant time to build and polish, yet the lack of
explicit notations related to high level plots makes them difficult to reuse in new
stories since they intertwine with implicit and possibly multiple fabula.

2.3 Simulation-based Training

On the other hand, negotiation formalisms from agent communication languages
are introduced into applications of simulation-based training [30]. As their goal
is to train human users with virtual agents in virtual environments, the virtual
actors also need to interact with users through protocols of normal coordination
and communication. While actual lines of dialogs are pre-recorded, virtual actors
reason about their communication with users and evaluate it as different states,
based on explicit task models of standard operation procedures. To allow users
negotiate with virtual actors, a set of negotiation-related speech acts are adopted,
and either actors or the user interact each other via speech acts and related
parameters defined in the task models, while users speech acts are identified
automatically with voice recognition and further natural language processing. If
negotiated properly, virtual actors would take different courses of actions and
hence change the following story.

This method is applied in several related training projects [10][31]. In our
point of view, task models and speech acts are defined explicitly within inter-
actions, the gestures, facial expressions, and other movements of virtual actors
are configured independently in the visualization process, making this dialog
model modularized and plausible to stories. Inspired by this research, our work
introduces a speech act classification system to serve as the foundation of dialog
framework shown in the next section, and further integrate it with the narrative
generation process.

3 Dialog Framework

In this section, we attempt to clarify the purpose and the definition of dialogs
with formalisms.

Dialogs, either ones monologue or conversation involving multiple partici-
pants, can be conducted in any part of narratives, describing a part of the story
from the point of view from particular characters. The presented story may even
become different, depending on different characters point of view [23]. However,
as Austin pointed out that the purpose of statements is not only to describe,
but also to do things with words [1], the purpose of dialogs in narratives is not
just to describe the story, but also to represent characters actions toward the

narrative world. To model these actions, we adopt the theory of speech acts and
view dialogs as sequences of different speech acts.

While the model of domain knowledge in dialog contents are conducted in
recent research [17], speech acts in interactive narratives are usually tailor made
according to the tasks in stories [6][19][30] in an ad-hoc fashion without certain
hierarchy or relations among different speech acts, making them hard to be
utilized by either story planners or virtual actors intending to emerge narratives.
Against this background, in the following we progressively introduce what we
believe to be the essential classification of speech acts, and how we apply it to
build a consistent schema that captures the dialogs in narratives.

While we only intend to allow virtual actors to adopt and mimic the struc-
tures of human dialogs to generate similar sentences, first we need to categorize
and identify the relations among numerous speech acts used by human. Our
approach is inspired by Ballmer and Brennenstuhls speech act classification [2]
as it provides explicit relationship among different groups of speech acts. Their
classification indicates there are four major groups of speech activities as hier-
archical linguistic functions. Though a semantic verb may appear in different
categories, the functional effect of each category of speech acts does not overlap.
In this way, we believe it is possible for story generators to select based on the
effects of speech acts. Here we explain them in the context of narratives:

Fig. 1. Speech Act Classification from [2].

– Level1-Expression: including all emotional reactions, Expression has the most
primitive and direct speech acts that present characters profiles, such as an-
gry, afraid, grateful, and etc.

– Level2-Appeal: Appeal represents speech acts in a narrower sense, where
the speaker tries to influence and control the hearer (e.g. order, threaten,
encourage).

– Level3-Interaction: similar to Appeal, yet the hearer has the ability to influ-
ence the speaker, whereas the speaker may try to avoid, which forms a series
of Appeals in different directions.

– Level4-Discourse: Better-behaved and more rigidly organized Interaction(s),
which implies these Interactions have certain order and appearance according
to the definition of this Discourse.

While currently we only use a subset of speech acts in our system, we argue
that it is the relationship among these levels that link character dialogs (low
levels) to narrative discourses (high levels). As indicated in the classification
definition, there is an important property that allows us to utilize this speech
act model in narratives.

Property 1. (Speech Act Hierarchy): Being the higher linguistic functions imply
being the lower ones.

That is, if a Discourse is described between two actors, then it should contain
one or more interactions, all leads to many Appeals in both directions. These
Appeals occurs with different (emotional) Expressions.

With this property, any plot symbols in narrative structures can be expanded
into one or more speech acts (which are later realized as dialogs) in addition to
ordinary actions. For example, when two persons A and B start to argue over
something in a play script (which its performance is sujet), if we describe this
speech act as primitive actions in domain theory of planning, then this speech
act can be shown as:

argue(A,B, sth) (1)

During the process of argue, some forms of protocols must exist in the knowl-
edge of both sides, such as rebut, undercut, negotiate, and etc. These protocols
contain a series of speech acts designating verbal attacks and defenses toward
each other, waiting to be chosen by both parties during run time. When A and
B execute these speech acts, they may also express their current emotions.

In the previous example, argue itself belongs to Discourse (level-4); rebut,
undercut, and negotiate are its associated Interaction (level-3). Those attacks,
defend, evade, and etc. following Interaction protocols are Appeal (level-2), and
their emotional behaviors are seen as Expression (level-1).

Inspired by this property, we further define a dialog frame based on speech
acts within narratives.

Definition 1. (Speech Act): There are four major groups of speech acts, which
are Expression, Appeal, Interaction, and Discourse from lower level to higher
level.

A high level speech act may include speech acts in lower levels.

Definition 2. (Dialog Frame): a dialog frame must contain more than one
speech act.

While these definitions do not give precise information to what kind of speech
acts are included in each model, we merely point out that the rules among each
groups. While our focus is not to re-examine whether speech acts in each model
are appropriate in human language, we give several examples to demonstrate
how to utilize these models as parameters for virtual drama, explaining the pros
and cons with different approaches. It is up to users to customize their own sets
of speech acts in each level, and the associated relations among these groups.
Interested readers may refer to speech act classification for more details.

4 Virtual Drama

As we stated in section 1, an automated virtual drama system should has at
least 3 components: story generators to generate play scripts, virtual actors
to play according to the scripts, and virtual environment that integrates these
components. While the mechanism of story generation is outside the scope of
this paper, we assume the scripts are already generated as a sequence of high
level actions such as those in [13][25]. Under this assumption, we specify how
dialog frames can be elaborated in virtual drama as these high level actions, and
how virtual actors may improvise during the play of dialog frames.

4.1 Virtual Actors

To specify without losing generality, we define schema of each component based
on environment and autonomous agents of SMART Agent Framework [9] in Z
notation.

Virtual Enviromnent. The major difference between virtual drama systems
and general agent systems is the existence of play scripts. These play scripts
should be perceived by virtual actors to indicate the play, so they should be
defined in virtual environment, on top of original environment schema Env.

Definition 3. (Virtual Environment)

In the above definition, virtual environment includes not only play scripts, but
also social commitments and social relations among virtual actors. All of these
attributes may affect the play of virtual actors. As Karunatillake et al. point out
that, since most (social) relationships involve the related parties carrying out
certain actions for each other, we can view a relationship as an encapsulation of
social commitments between the associated roles. 16 Here we omitted the notion
of social roles and adopted this notion, as we only use them as parameters during
the play, especially the play of dialog frames.

Character Profiles. Besides social relations, virtual actors should have cer-
tain internal parameters to maintain consistency between different states during
the play, so they will not break the character believability proposed by Riedl
and Young [26]. Nevertheless, besides intention of characters, we argue that the
continuity of affective states also plays an important role on maintaining char-
acter believability, as a character suddenly laughs whereas it cries a few minute
ago would bring unpredictable expressions to the audience. During a scene of
dialogs, a virtual actor should be able to interact in different manners based on
its affective states and the changes of them.

Here we define the affective states as character profiles, following the ALMA
affective model [12]. The reason we adopt ALMA is its elegant notation, inte-
grating emotions, mood, and personality in a single three-dimension space where
axes are pleasure, arousal, and dominance, rather than defining each of them in
a different model [3][20][21].

Definition 4. (Character Profile)

Virtual Actors. The difference between virtual actors and autonomous agents
is its definition of motivation, which is based on script and character profiles.

Scripts and character profiles are independent from each other, while their
combination will determine the motivation of virtual actors. As we only define

motivation on terms of scripts and character profiles, the definitions of agent
perceptions and actions may not need further modification from those in au-
tonomous agents beside they percept and act upon virtual environments instead
of environments. To keep clarity of this paper, we omitted the action and per-
ception schema of virtual actors.

Based on previous definition, we may define virtual actor state as follows:

Definition 5. (Virtual Actor State)

There are three possible effects on virtual environments and virtual actors
during the play:

1. Change of character profiles: which change the motivation of virtual actors,
and lead to different choices of Interaction made in the case of dialogs.

2. Change of social commitments: it leads to change of available options in
Interaction since social commitments serve as preconditions of Interaction.

3. Changes of scripts: since scripts are also a part of virtual environment, the
result of speech acts may also change the scripts themselves, and cause re-
planning of scripts. While we acknowledge its importance and effects, this
issue of story replanning is outside the scope of this paper.

Dialog Frame. Here we summarize the usage of dialog frames. First, as dialog
frames are taken as high level actions in play script, the mapping of speech
act models should also be specified in the script, giving virtual actors available
courses of actions during the play. Second, character profiles of each virtual actor
will determine its goal selection on the courses of actions. On the other hand,
the effects of dialogs would not only change character profiles, but also change
social commitments, which will alter available options of speech acts within given
script. Last but not least, speech acts may also changes scripts in the Discourse
level, will leads to replanning of scripts.

4.2 Improvisation of Dialog Frames

While dialog frames provide virtual actors different options to select during
the play, yet sometimes these options are still insufficient to reflect character
profiles of virtual actors because a script is a linear sequence of action events.
Although each event may be decomposed into different sub events (speech acts
in lower levels), these sub events are still limited to the script itself, and defining
specialized mapping between speech act models for individual virtual actors
would be ad-hoc and inflexible. Inspired by Gebhards justification to ALMA
model [12], we propose an improvisation mechanism to achieve higher degree
of believability. This improvisation allows virtual actors to use certain speech
acts in Appeal and Expression level to reflect extreme cases of character profile
values and changes.

It is important to notice that, the add-on of improvisation mechanisms still
satisfy the previous specs of virtual actors. Since character profiles are one of the
determinants of motivation, improvisation is defined in terms of affect thresholds
and changes of < p, a, d > vectors in virtual actors instead of virtual environ-
ments.

Furthermore, improvisation will be triggered despite of current script, so
other virtual actors should be able to cope with improvisation in the time im-
provisation occurs; otherwise the following behaviors will be against audience
prediction and sabotage character believability. These coping behaviors are lim-
ited to insert right after improvisation occurs, and thus need not to replan the
whole play script. By defining coping behaviors in secondary scripts parallel to
play scripts, virtual actors may conduct improvisation and coping speech acts
by selecting different scripts to play, without replanning primary play scripts.
The coping behaviors between improvised speech acts and coping ones can be
defined as follows:

Definition 6. (Script of Coping Behaviors)

The overview of dialog frames is shown in fig. 2, with an intuitive script of
detective story, which will be illustrated in section 6.

Fig. 2. Dialog Frames in Detective Scenario.

5 System Implementation

To demonstrate this dialog framework, we have a first-stage implementation of
virtual drama system according to the specs. The system overview is shown in
fig 3.

Fig. 3. System Implementation Overview.

The system can be divided into two main parts:

1. Virtual Drama Server: The server is implemented with JACK [15] agent
platform for it supports in capacity, plan, and communication of autonomous

agents. The Virtual Environment is also implemented in JACK as named
data set. As a result, the server alone may generate different sujet of play
scripts in a plain-text fashion.

2. Visualization Frontend: The frontend is responsible for providing visual and
audio experience for the audience of virtual drama. We choose UDK3 (Unreal
Development Kit 3) [32] as our frontend platform, as it has built-in full
functional GUI editor, and APIs written in Unreal Scripts that allow us
to write drama manager within it. Once the server pass sujet of a play
script, the drama manager allocates corresponding virtual actor, customized
SoundNodeWave library corresponding to speech acts with built-in text-to-
speech function, and gestures, treating all of them as parameters of matinee
in cinematic mode.

At this stage of implementation, the purpose of virtual drama system is to at-
tempt to achieve fully automation of sujet performance; thereby user interaction
is not implemented to simplify the process.

6 Sample Scenarios

In this section, we provide a sample scenario to demonstrate the effect of dialog
frames in our implemented system, which is shown in fig. 2.

This sample scenario is a typical detective story, as the play script only
contains three high level speech actions in Discourse: search for alibi, question
the witness, and identify the criminal. Assuming this play script is easy enough to
be generated by state-of-the-art story planners; our system is able to demonstrate
the following functionalities:

1. This sample scenario is a typical detective story, as the play script only
contains three high level speech actions in Discourse: search for alibi, question
the witness, and identify the criminal. Assuming this play script is easy
enough to be generated by state-of-the-art story planners; our system is able
to demonstrate the following functionalities:

2. Given these protocols as dialog options, each virtual actor choose protocols
which preconditions match its character profiles while playing that part of
the script.

3. Improvised dialogs may occur during the play, because each move in Inter-
action protocol has effects on the opponents character profiles, which will
trigger improvisation in given thresholds. After improvisation, virtual actors
return to former part of script and continue the main storyline.

7 Conclusion and Future Work

The development of story planning led to the possibility of automated drama
system, in which play scripts are firstly generated by story generators, and then
played by virtual actors, all on top of virtual environment with the ability of

visual and audio expression. While few attempted to further generate dialogs
based on given fabula, here we made a first step toward dialog generation in
virtual drama based on speech act classification derived from empirical studies
of speech act designating verbs. The contribution is threefold:

1. We propose a dialog framework with the ability to promote flexible dialog
selection and to improvise character-based dialogs from given play scripts.

2. Core specs of virtual actors and virtual environment are specified in Z nota-
tion to elaborate the desiderata of virtual drama components without losing
generality.

3. A first-stage virtual drama system is implemented to demonstrate the selec-
tion of dialogs during a sample scenario.

While the initial results are fruitful, there are several components remain as
future work to achieve fully automated virtual drama system:

1. Generating natural from speech acts to advance the automation of dialogs.
2. Treating Discourse-level speech acts as vignettes [27] in story planning may

lead to improvements in script generation. As Discourse-level speech acts are
combinations of Interaction-level protocols, they may stand as a source of
vignettes.

3. The domain knowledge of speech acts and their parameters may be further
elaborated as more structured data, so virtual actors may reason with the
play script rather than profile-based selection in available options.

References

[1] Austin, J. L.: How to Do Things with Words. Oxford University Press, London
(1962)

[2] Ballmer, Th., Brennenstuhl, W.: Speech Act Classification: a Study of the Lexi-
cal Analysis of English Speech Activity Verbs. Springer-Verlag, Berlin; New York
(1981)

[3] Campos, A. M., Santos, E. B., Canuto, A. M., Soares, R. G., Alchieri, J. C.: Flex-
ible Framework for Representing Personality in Agents. In: 5th International Joint
Conference on Autonomous Agents and Multiagent Systems, pp. 97–104. ACM,
New York (2006)

[4] Cavazza, M., Charles, F., Mead, S. J.: Interacting with Virtual Characters in Inter-
active Storytelling. In: 1st International Joint Conference on Autonomous Agents
and Multiagent Systems, pp. 318–325. ACM, New York (2002)

[5] Cavazza, M., Charles, F.: Dialogue Generation in Character-based Interactive Sto-
rytelling. In: AAAI First Annual Artificial Intelligence and Interactive Digital En-
tertainment Conference, Marina del Rey, California, USA (2005)

[6] Cavazza, M., Pizzi, D., Charles, F., Vogt, T., Andr, E.: Emotional Input for
Character-based Interactive Storytelling. In: 8th International Conference on Au-
tonomous Agents and Multiagent Systems, pp. 313–320. ACM, New York (2009)

[7] Cavazza, M., Pizzi, D.: Narratology for Interactive Storytelling: a Critical Introduc-
tion. In: Gbel, S., Malkewitz, R., and Iurgel, I. (eds.) Technologies for Interactive
Digital Storytelling and Entertainment 2006. LNCS, vol. 4326, pp.72–83. Springer,
Heidelberg (2006)

[8] Charles, F., Lozano, M., Mead, S.J., Bisquerra, A.F., Cavazza, M.: Planning For-
malisms and Authoring in Interactive Storytelling. In: Gobel, S. et al. (eds.) 1st
International Conference on Technologies for Interactive Digital Storytelling and
Entertainment. Fraunhofer IRB Verlag, Darmstadt, Germany (2003)

[9] D’Inverno, M., Luck, M.: Understanding Agent Systems. Springer, New York (2004)
[10] Endrass, B., Andr, E., Huang, L., Gratch, J.: A Data-driven Approach to Model

Culture-specific Communication Management Styles for Virtual Agents. In: 9th
International Conference on Autonomous Agents and Multiagent Systems, pp. 99–
108. ACM, New York (2010)

[11] Endrass, B., Rehm, M., Andr, E.: Planning Small Talk Behavior with Cultural
Influences for Multiagent Systems. Comput. Speech Lang. 25, 158–174 (2011)

[12] Gebhard, P.: ALMA: A Layered Model of Affect. In: 4th International Joint Con-
ference on Autonomous Agents and Multiagent Systems, pp. 29–36. ACM, New
York (2005)

[13] Gervs, P., Daz-Agudo, B., Peinado, F., Hervs, R.: Story Plot Generation Based
on CBR. Know.-Based Syst. 18, 4-5, 235–242 (2005)

[14] Helmert, M.: Concise Finite-domain Representations for PDDL Planning Tasks.
Artif. Intell. 173, 5-6, 503–535 (2009)

[15] JACK (Java Agent Compiler and Kernel), http://aosgrp.com/index.html
[16] Karunatillake, N. C., Jennings, N. R., Rahwan, I., and McBurney, P.: Dialogue

Games that Agents Play Within a Society. Artif. Intell. 173, 9-10, 935–981 (2009)
[17] Larsson, S. and Traum, D. R.: Information State and Dialogue Management in the

TRINDI Dialogue Move Engine Toolkit. Nat. Lang. Eng. 6, 3-4, 323–340 (2000)
[18] Mairesse, F., Walker, M.: PERSONAGE: Personality Generation for Dialogue. In:

45th Annual Meeting of the Association of Computational Linguistics, pp. 496–503.
ACL, Stroudsburg (2007)

[19] Mateas, M, Stern, A.: Structuring Content in the Faade Interactive Drama Ar-
chitecture. In: First Artificial Intelligence and Interactive Digital Entertainment
Conference, pp. 93–98. AAAI, Palo Alto (2005)

[20] Mehrabian, A.: Pleasure-arousal-dominance: A General Framework for Describing
and Measuring Individual Differences in Temperament. Curr. Psychol., 14, 4, 261–
292. (1996)

[21] Ortony, A., Clore, G. L., Collins, A.: The Cognitive Structure of Emotions. Cam-
bridge University Press, Cambridge, UK (1988)

[22] Piwek, P., Hernault, H., Prendinger, H., Ishizuka, M.: T2D: Generating Dialogues
between Virtual Agents Automatically from Text. In: Pelachaud, C., Martin, J.-C.,
Andr, E., Chollet, G., Karpouzis, K., Pel, D. (eds.) 7th International Conference
on Intelligent Virtual Agents. LNCS, vol. 4722, pp. 161–174. Springer, Heidelberg
(2007)

[23] Porteous, J., Cavazza, M., Charles, F.: Narrative Generation through Characters’
Point of View. In: 9th International Conference on Autonomous Agents and Mul-
tiagent Systems, pp. 1297–1304. ACM, New York (2010)

[24] Propp, V.: Morphology of the Folktale. University of Texas Press. (1968)
[25] Riedl, M. O., Young, R. M.: An Intent-Driven Planner for Multi-Agent Story

Generation. In: 3rd International Joint Conference on Autonomous Agents and
Multiagent Systems, pp. 186–193. ACM, New York (2004)

[26] Riedl, M. O., Young, R. M.: Narrative Planning: Balancing Plot and Character.
J. Artif. Intell. Res. 39, 217–268. (2010)

[27] Riedl, M. O., Sugandh, N.: Story Planning with Vignettes: Toward Overcoming
the Content Production Bottleneck. In: Spierling, U., N. Szilas. (eds.) 1st Joint In-

ternational Conference on Interactive Digital Storytelling: interactive Storytelling.
LNCS, vol. 5334, pp. 168–179. Springer, Heidelberg (2008)

[28] Rowe, J. P., Ha, E. Y., Lester, J. C.: Archetype-Driven Character Dialogue Gen-
eration for Interactive Narrative. In: Goebel, R., Siekmann, J., Wahlster, W. (eds.)
8th International Conference on Intelligent Virtual Agents. LNCS, vol. 5208, pp.
45–58. Springer, Heidelberg (2008)

[29] Thiebaux, M., Marsella, S., Marshall, A. N., Kallmann, M.: SmartBody: Behavior
Realization for Embodied Conversational Agents. In: 7th International Joint Con-
ference on Autonomous Agents and Multiagent Systems, pp. 151–158. ACM, New
York (2008)

[30] Traum, D., Rickel, J., Gratch, J., Marsella, S.: Negotiation over Tasks in Hybrid
Human-agent Teams for Simulation-based Training. In: 2nd International Joint
Conference on Autonomous Agents and Multiagent Systems, pp. 441–448. ACM,
New York (2003)

[31] Traum, D., Swartout, W., Marsella, S., Gratch, J.: Virtual Humans for Non-team
Interaction Training. In: AAMAS Workshop on Creating Bonds with Embodied
Conversational Agents (2005)

[32] Unreal Development Kit 3, http://www.udk.com/

8 Appendix

Collection and Analysis of Multimodal
Interaction in Direction Giving Dialogues:
Towards an Automatic Gesture Selection

Mechanism for Metaverse Avatars

Takeo Tsukamoto†, Yumi Muroya‡, Masashi Okamoto‡, and Yukiko Nakano‡

†Seikei University, Graduate School of Science and Technology, Tokyo, Japan
‡Seikei University, Faculty of Science and Technology, Tokyo, Japan

{dm106216,us072149}@cc.seikei.ac.jp,
explicature@gmail.com,y.nakano@st.seikei.ac.jp

Abstract. With the goal of building a spatial gesture generation mech-
anism in Metaverse avatars, this paper reports an empirical study for
multimodal direction giving dialogues. First, we conducted an experi-
ment where a direction receiver asked the way to some places in a uni-
versity campus, and the direction giver gave a direction to there. Then,
using a machine learning technique, we annotated direction giver’s right
hand gestures automatically, and analyzed the distribution of the direc-
tion of their gestures. As the result, we proposed four types of proxemics,
and found that the distribution of gesture directions is different depend-
ing on the type of proxemics between the conversational participants. In
future work, we plan to establish a method for spatial gesture generation,
and implement it into a Metaverse application.

Keywords: Gesture, Direction giving, Proxemics, Empirical study, Meta-
verse

1 Introduction

Online three-dimensional virtual worlds based on the Metaverse applications as
typified by Second Life have been growing steadily in popularity. The communi-
cation method in such a virtual world is mainly an online chat using an avatar,
which is a user’s representation of himself/herself. However, the current avatar’s
chat has a limitation in its expressiveness in that it largely depends on speech
balloons except for some extended systems that allow avatars to communicate
based on speech and gesture.

On the other hand, many communication studies suggest that a large part of
human face-to-face communication is dependent on non-verbal behavior, which
can compensate for verbal information [1, 4, 5]. In particular, many spatial ges-
tures are used in direction giving dialogues in order to illustrate directions and
physical relationships of buildings and landmarks. Therefore, it is expected that
a spatial gesture generation mechanism in multimodal direction giving dialogues

2 T. Tsukamoto, et al.

between two avatars in a virtual world would facilitate their users’ communica-
tion.

We thus report an empirical study for multimodal direction giving dialogues
with the goal of building a spatial gesture generation mechanism in Metaverse
avatars. First, we collected multimodal interaction data by conducting an exper-
iment where a direction receiver asked the ways to some places in a university
campus, and the direction giver gave him/her a direction to there. Then, using a
machine learning technique, we annotated direction giver’s right hand gestures
automatically, and analyzed the distribution of the direction of their gestures.
As a result, it is illustrated that the distribution of gesture directions differs
depending on the proxemics of the conversational participants.

2 Related Work

Gestures frequently accompany speech, emphasizing its important points or coor-
dinating its rhythm. McNeill [6] classifies speech-accompanying gestures, in view
of function, into iconic gestures, metaphoric gestures, beats, and so on. Based on
the classification, several automatic gesture generation systems have been devel-
oped. Nakano, et al. [7] implemented an embodied conversational agent system,
which selects appropriate gestures and facial expressions based on the linguistic
information, and calculates a time schedule for the set of agent actions. Breit-
fuss, et al. [3] builds a system that automatically adds different types of gestural
behavior and eye gaze to a given dialogue script between two virtual embodied
agents. Their gestures, generated based on the analysis of linguistic and con-
textual information of the input text, are generally limited to ‘beat’ gestures
represented by the repetitive up-and-down motion of hands or arms.

However, these studies have not fully dealt with iconic or metaphoric gestures,
the shape and motion of which should be decided according to their meaning.
The difficulty of implementing these types of gestures lies in their differences
among individuals, thus preventing the coherent sub-classification of them. It is
nevertheless indispensable for achieving a genuine automatic gesture generation
to precisely determine the shape and motion of gesture as well as the functional
type.

In order to tackle this problem, Tepper, et al. [8] focused on direction-giving
dialogues and proposed a new method for the generation of novel iconic ges-
tures. They used spatial information about locations and shape of landmarks to
represent concept of words with multi-dimensional properties. From a set of pa-
rameters, novel iconic gestures can be generated without relying on a lexicon of
gesture shapes. Moreover, Bergmann & Kopp [2] represents the individual varia-
tion of gesture shape using the Bayesian network. Based on the transcription of
spoken words and the segmentation and coding of coverbal gestures, they built
an extensive corpus of multimodal behaviors in direction-giving and landmark
description task, from which both general and personalized networks were built.
As the result, they could simulate a variety of gestures of different speakers for
the same referent in the same situation.

Multimodal Interaction in Direction Giving Dialogues 3

Fig. 1. Snapshot of experiment

We thus focus on the direction-giving situation, aiming at establishing an
automatic gesture selection. Though the previous methods above were largely
dependent upon the form of landmarks, we pay more attention to the relationship
between the proxemics and the gesture distribution of interlocutors.

3 Experiment

To determine appropriate gesture shapes for direction giving utterances in Meta-
verse avatars, we conducted an experiment to collect direction giving conversa-
tions, and analyzed human gestures used in the conversations.

3.1 Experimental Procedure

A student of Seikei University, who played as a direction giver (DG), stood
in front of a big screen where a snap shot of a virtual university campus was
displayed (Fig. 1). Direction givers were the students of that university, and
they knew the directions to any place on campus. The other student playing
as a direction receiver (DR) was approaching to the DG and asked a way to a
specific building. Then, the DG explained how to get to the building.

Instruction: The DR was instructed to completely understand the direction
to the goal through a conversation with the DG. On the other hand, the DG
was instructed to make sure that the DR understood the direction correctly. To
confirm the DR’s understanding, the DG asked the DR to explain the way to
the goal after the explanation from the DG was finished. If the explanation by
the DR was not correct, the DG explained the direction again. In each session,
the DG was requested to remember two landmarks to which the DG must refer
during the conversation.

4 T. Tsukamoto, et al.

!"#$$%!

!&'$! ()"*!+#,%-!

!"!!#$%&'()*"#+%$!

!,!!#$%&'()*,%&%#+%$!

*****!!#$%&'()*(-*.//$(.&0#)1!

!"!

!"!

!"!

!,!

!,!

!,!

Fig. 2. Three experimental conditions

Experimental materials: As the experimental materials, 6 pictures were cre-
ated by capturing the screen, and goal places, which were not visible in the
picture, were assigned to each picture.

Experimental conditions: The following three types of initial positions of the
DG were used as experimental conditions (Fig. 2).

(a) Side: The screen was on the left hand side of the DR. The DG was facing
toward the screen.

(b) Front: The screen was in front of the DR, and was on the right hand side
of the DG.

(c) Back: The screen was on the back of the DR, and was on the left hand side
of the DG.

Note that a 50cm square sheet was used to mark the position of the DG, and
the DG was instructed to keep one of his legs on the sheet. By this procedure,
the movement of the DG was restricted. Since we plan to implement a proxemics
coordination system by guiding (or automatically moving) the DR avatar, we
needed to collect human interaction data in a similar situation.

In all the conditions, the DR was approaching to the DG from her/his side,
and initiated the conversation by asking a direction. Six scene pictures were ran-
domly assigned to three conditions. Therefore, two conversations were recorded
for each condition.

Equipments: Each subject used a wireless (Bluetooth) headset microphone
to record her/his voice, and wore a cardigan on which motion capture markers
were mounted. OptiTrack motion capture system with 10 cameras was used to
capture the subject’s upper body motions. The subject’s interactions were video-
recorded from their side and above. Fig. 3-(a) (side) and Fig. 3-(b) (overhead)
are the pictures in the ‘Back’ experimental condition.

Multimodal Interaction in Direction Giving Dialogues 5

(a) Side camera (b) Overhead camera

Fig. 3. Videos in ‘Back’ condition

Subject: 14 university students (7 male and 7 female) joined as DRs, and 14
male students of Seikei University joined as DGs. Thus, we had 14 pairs of
subjects in this experiment.

3.2 Collected Data

We collected video data from two directions, speech audio of each subject, tran-
scription of utterances, and motion capture data tracking each subject’s upper
body motions. Each subject’s motion was tracked for her/his head, shoulder,
back, right arm, and left arm in 100 fps.

We had 14 pairs of subjects, and each pair had 6 sessions. So, we collected
84 direction giving dialogues in all. The average length of conversation was 68.6
sec.

4 Analysis

Analyzing the collected data, this section investigates how DG’s gesture direc-
tions for indicating the spatial information are different depending on the prox-
emics between DR and DG. We analyzed 30 dialogues collected from 10 pairs
for further analysis.

4.1 Automatic Gesture Annotation

Since it is very time consuming to manually annotate nonverbal behaviors, we
automatically annotated the gesture occurrence (start and end time of a gesture).

Since more than 77% of the gestures observed in this study were right hand
gestures, we built a decision tree that judges the occurrence of right hand gestures
using Weka J48. From the motion capture data of the DG’s right arm and the
right shoulder, 10 features were extracted: position (x, y, z), rotation (x, y, z),
movement of z position, relative position of the right arm to the right shoulder

6 T. Tsukamoto, et al.

!!!!"!

!#$%&'()*

"%&%#+%$!

!#$%&'()*

,#+%$!

,%-./$%*!#-0123*

402&%!

5%).%$!

!#-.2)&%*(6*!,**

6$(7*.8%*&%).%$!

!#-.2)&%*(6*!"**

6$(7*.8%*&%).%$!

!,9-*:(;3**

;#$%&'()*+%&.($!

!"9-*:(;3**

;#$%&'()*+%&.($!

Fig. 4. Definition of proxemics

(x, y, z), and distance between the centroid of the right arm and that of the
right shoulder. We annotated right hand gestures for two subjects for 6 sessions
to create training data.

As the result of 10-fold cross validation, the accuracy of binary judge (ges-
turing or not gesturing) was 97.5%, which is accurate enough for automatic
annotation. Thus, we applied the decision tree to the rest of the data, and auto-
matically annotated right hand gestures. Through this process, we obtained 161
right hand gestures for further analysis.

4.2 Proxemics between the Direction Giver and the Direction
Receiver

To characterize the proxemics between DG and DR, we defined a gesture display
space. As illustrated in Fig. 4, the gesture display space is specified as the overlap
between the DG’s front area and the DR’s front field of vision towards the screen.
The width of the DG’s front area is determined by the distance between the
left shoulder and the right shoulder. Then, the center of the display space is
calculated as follows. First, a shoulder vector is defined by connecting the left
shoulder position and the right shoulder position. Then, another vector, which
is orthogonal to the shoulder vector, is defined as a body direction vector. The
intersection between the DG’s body direction vector and the DR’s body direction
vector is defined as the center of the gesture display space.

Then, we categorized the pair’s proxemics based on the distance from the
center of the gesture display space. We assumed that if the gesture display space
is far from the DG, s/he needs to stretch her/his arm to show her/his gestures
to the DR. On the contrary, if the gesture display space is very close to both

Multimodal Interaction in Direction Giving Dialogues 7

Normal Close to DG Close to DR Close to Both

Fig. 5. Distribution of gestures WRT proxemics

participants, the DG, s/he does not need to use large motions, but small gestures
are enough to communicate. Since human arm length is 60cm to 80cm, by adding
15cm margin we defined 450mm to 950mm as the standard distance from the
center of the gesture display space. Based on this, we defined the following five
categories of proxemics.

(i) Normal: Both participants are standing within the standard distance (450mm
to 950mm) from the center of the gesture display space.

(ii) Close to DG: The DG is standing close (less than 450mm from the center)
to the gesture display space, and the DR is keeping the standard distance.

(iii) Close to DR: The DR is standing close to the gesture display space, and
the DG is keeping the standard distance.

(iv) Close to Both: Both participants are standing close to the gesture dis-
play space.

(v) Far from Both: Either of the participants is standing far (more than 950mm
from the center) from the gesture display space.

As the result of analyzing the motion data for 30 sessions, 11 were catego-
rized as Normal, 4 as Close to DG, 9 as Close to DR, 2 as Close to Both, and 4
as Far from Both. Far from Both is a very inconvenient proxemics because it is
almost impossible for the DR to see the DG’s gesture. For example, both partic-
ipants were facing to the screen, or the DG was standing behind the DR. Thus,
for gesture analysis in the next section, we will exclude the data classified as
this category. Table 1 shows the average distances from the center of the gesture
display space for each category.

4.3 Relationship between Proxemics and Gesture Distribution

To investigate the relationship between the proxemics and the DG’s right hand
gestures, we analyzed the distribution of gestures by plotting the DG’s right
arm position, which was the centroid of the right forearm calculated from four
data points: one on the right elbow and three on the right wrist. Fig. 5 shows
some examples. As shown in the plots, Normal and Close to DG are similar in
gesture distribution range. In Close to Both, the range of gesture distribution
is much smaller. This suggests that the DG uses smaller gestures because both
participants were close to each other and the gesture display space was smaller
than that in other proxemics. On the contrary, in Close to DR, the range of

8 T. Tsukamoto, et al.

gesture distribution was much wider, specifically in z position. This suggests
that the DG was little bit far from the display space, and tried to show her/his
gestures by stretching her/his arm to the front.

To confirm this observation, we measured the area of the gesture distribution.
Table 1 shows the average width, length, and the square measure for 4 types of
proxemics.

Table 1. Gesture distribution area

Normal Close to DG Close to DR Close to Both

Dis DG (mm) 665.9 395.0 596.4 392.0

Dis DR (mm) 706.5 638.7 281.9 359.0

Width (mm) 197.2 214.0 237.6 189.5

Length (mm) 246.2 188.0 368.9 119.5

Area (mm2) 48557.1 46388.0 91257.8 23218.0

The data support our discussion above. The gesture distribution range (Area)
is similar in Normal and Close to DG because in both categories, the gesture
display space is not far from the DG and the DG can widely choose the directions
of gestures. In Close to DR, the distribution range is much larger, specifically
in length (z position) because the gesture display space is a little bit far from
the DG and the DG needs to stretch her/his arm to make the gestures reach to
the gesture display space. In Close to Both, the gesture space is not very wide
because the participants are too close to each other and there is not enough
space for gesturing.

4.4 Applying the Proxemics Model to a Metaverse Avatar

To test whether the findings in the previous sections are applicable to Meta-
verse environment, we created avatar gestures based on the proxemics model
illustrated in Fig. 4. Fig. 6 shows the pictures from the DR’s point of view and
from a bird’s eye view. Fig. 6(a) shows pictures for Close to DG proxemics. In
this situation, the user as a DR can see the whole picture of DG avatar. As the
gesture display space is close to the DG avatar, the avatar is doing a small ges-
ture by bending her right arm. On the contrary, Fig. 6(b) shows the pictures for
Close to DR proxemics. In this situation, DG avatar is not close to the gesture
display space, the user as a DR cannot see the avatar’s body but can only see
her right arm. Therefore, the DG avatar needs to stretch her right arm to show
her gestures in the gesture display place.

5 Conclusion and future work

With the goal of automatic generation of direction giving gestures in Metaverse
avatars, this study conducted an empirical study to collect human gestures in

Multimodal Interaction in Direction Giving Dialogues 9

!"!

!#!

!"!

!#!

(a) Close to DG (b) Close to DR

Fig. 6. Creating avatar gestures based on the empirical results

direction giving dialogues. Then, we investigated the relationship between the
proxemics and the gesture distribution. As the result, we proposed four types of
proxemics characterized by the distance from the gesture display space.

As the future work, we need to investigate other factors that may influence
the gesture shape. One important aspect is the relationship between the exper-
imental conditions and the gesture distributions. We plan to analyze whether
preferable proxemics is different depending on the direction from which the di-
rection receiver is approaching. In addition to categorizing the proxemics, it is
also important to investigate how two people approach and coordinate the posi-
tion to each other as a process of determining the proxemics. Another important
future direction is to establish a computational model of determining gesture di-
rection, implement it into Metaverse avatars, and then examine the effectiveness
of the model by testing whether the users perceive the avatar’s gestures being
appropriate and informative.

Acknowledgment
This work is partially funded by JSPS under a Grant-in-Aid for Scientific

Research in a Grant-in-Aid for Scientific Research (S) (19100001) and MEXT
Grant-in-Aid for Building Strategic Research Infrastructures.

References

1. Argyle, M.: Non-verbal communication in human social interaction. In: Hinde, R. A.
(ed.), Non-verbal communication. Cambridge: CambridgeUniversity Press (1972)

10 T. Tsukamoto, et al.

2. Bergmann, K. and Kopp, S.: GNetIc—Using Bayesian Decision Networks for Iconic
Gesture Generation. In: Proc. of the 9th Int’l Conference on Intelligent Virtual
Agents (2009)

3. Breitfuss, W., Predinger, H., and Ishizuka, M.: Automatic generation of gaze and
gestures for dialogues between embodied conversational agents. Int’l Journal of Se-
mantic Computing, 2(1): 71-90 (2008)

4. Bull, P. E.: Posture and Gesture. Elmsford, NY: Pergamon Press (1987)
5. Kendon, A.: Some functions of gaze-direction in social interaction. Acta Psycholig-

ica, 26, 22-63 (1967)
6. McNeill, D.: Hand and Mind: What Gestures Reveal about Thought. Chicago,

IL/London, UK: University of Chicago Press (1992)
7. Nakano, Y. I., Okamoto, M., Kawahara, D., Li, Q., and Nishida, T.: Converting

Text into Agent Animations: Assigning Gestures to Text. In: Human Language
Technology Conference of the North American Chapter of the Association for Com-
putational Linguistics (HLT-NAACL 2004), Companion Volume, Boston (2004)

8. Tepper, P., Kopp, S. and Cassell, J.: Content in Context: Generating Language
and Iconic Gesture without a Gestionary. In: Proc. of the Workshop on Balanced
Perception and Action in ECAs at AAMAS ’04 (2004)

Learning by Playing in Agent-oriented Virtual
Learning Environment

Yundong Cai1 and Zhiqi Shen2

1School of Computer Engineering,
2School of Electrical and Electronic Engineering,

Nanyang Technological University, Singapore
{ydcai, zqshen}@ntu.edu.sg

Abstract. Virtual environments have gained tremendous popularity among
young generation in recent years. Learning in the virtual environment
becomes a new learning perspective that helps to promote the learn-
ing interests of students. However, there is a lack of methodology to
develop and deploy a virtual learning environment to various learning
subjects that can be personalized and engaged. In our paper, we propose
an Agent-oriented VI rtual Learning Environment (AVILE) as a new
“learning by playing” paradigm, in which each learning object is built
up as a goal-oriented learning agent (GOLA). Students are able to con-
duct the personalized virtual experiments through the simulations and
personalized role-playing games for knowledge acquisition by interacting
with the intelligent GOLAs. Each GOLA provides proper instructions
by analyzing the students’ learning process, and stimulates the students
to make the deeper learning by encouraging exploration and knowledge
application on real problems in the virtual learning environment. We
adopted this methodology to teach plant transportation for secondary
school students and received very positive results.

Key words: Virtual Learning Environment, Agent, Virtual Experiment,
Personalization

1 Introduction

Virtual environments have gained tremendous popularity among young users
in recent years for its openness, convenience, and mobility. People are able to
communicate with each other in the virtual community and share information
easily and efficiently, which is limited in the real world. Learning in the vir-
tual environment becomes a new learning perspective that helps to promote the
learning interests of students in the new era. The potential for innovative and
ground breaking research in virtual learning environments has been recognized
by leading scientists [3] [5]. Preliminary studies on the use of virtual worlds as
learning environments to promote highly immersive experiential learning have
achieved encouraging results [1]. However, it is still a big challenge to make a
personalized virtual learning experience based on the students’ preferences and

2 Lecture Notes in Computer Science

real-time interactions, due to a lack of systematic methodology. Agent-based
learning environment has been studied by researchers as a research tool for in-
vestigating teaching and learning [6], which provides a new perspective to the
future learning method in virtual environment.
In this paper, we propose an agent-oriented virtual learning environment (AVILE)
as a “teaching by learning” paradigm targeting to the raised challenges. In
our system, each learning object is modeled as a goal-oriented learning agent
(GOLA). AVILE is constructed as a multi-agent system of GOLAs, which con-
struct the virtual laboratory that students perform the virtual simulations, and
a virtual environment that students can engage and interact with. GOLAs are
created to percept the players’ actions and provide customized laboratory simu-
lation or playing experience in the virtual environment, which can be visible as
non-player characters or invisible as observers or instructors. In order to model
different learning objects with consequences, Fuzzy Cognitive Goal Net (FCGN)
is used to model the hierarchical goals with alternatives, through which GOLA
selects the goals and actions by reasoning the real-time interactions and context
variables. Evolutionary Fuzzy Cognitive Maps (E-FCMs) is used as the reason-
ing model about the dynamic causal relationships among the user interactions,
contexts and agent goals, thus GOLA can provide a personalized learning object.
The rest of the paper is organized as below. Section 2 will illustrate our agent
oriented virtual learning environment system and the involved agents. Section
3 will focus on Fuzzy Cognitive Goal Net which models leaning objects as the
goals and cognition model to provide personalized playing and learning. We will
show a case study of using the paradigm to teach secondary school students
plant transportation system and assessments in Section 4. Lastly we will draw
the conclusions and future plan.

2 Agent-oriented Virtual Learning Environment (AVILE)

Agent-oriented virtual learning environment (AVILE) provides a new approach
for students to learn by playing in the virtual environment, which might not
be easy to achieve in the conventional classroom learning (CL) or the real-
life experiments, due to the communication constraint, physical limitation, and
building cost etc. Each student is unique, in terms of the learning curve of new
knowledge and learning habit. A generic virtual learning environment or virtual
laboratory might not suit the needs of all the students easily. Therefore, there is
a need to find a way to customize the virtual learning experience for the learners
with many alternatives.
In current agent-based virtual learning environment, the learning contents are
mainly delivered by the non-player character agents [8–11], with limitations of
the knowledge delivering. In our approach, agents are not only used to model
non-player characters, but also to model any learning objects which can be visible
or invisible.

Learning by Playing in Agent-oriented Virtual Learning Environment 3

2.1 Learning Structure

Providing a personalized learning experience is a key to promote the learning ex-
perience of the student at knowledge acquisition. Agent-oriented virtual learning
environment (AVILE) augments the virtual learning environment with a number
of intelligent goal-oriented learning agents (GOLAs), which provide personalized
virtual learning for the students based on reasoning over the students’ prefer-
ences and real-time interactions with the students.

Virtual Laboratory
(2D/3D)

Role-Playing
Learning

AVILE

Learning Content

LO LO LO...

GOLA GOLA GOLA...Player

Preference

Interactions

Fig. 1. Learning Structure in the Agent-oriented Virtual Learning Environment

Figure 2 shows the learning structure of agent based virtual learning environ-
ment. Learning content is decomposed to a series of learning objects (LO), e.g.
diffusion and osmosis in plant transportation. Each LO is assigned to one or
more GOLAs as their goals. For example, water molecules and plat root are
two GOLAs to show the “diffusion” concept. The GOLAs are created in the
role-playing learning virtual environment and virtual laboratory that the player
can interact with and learn from.
In order to provide a fast-responsive and personalized learning experience, the
user preferences are firstly gathered off-line for each student, e.g. age, gender,
interests and prior knowledge. After that, the students play and learn in the
agent mediated virtual learning environment, using two methods: virtual labo-
ratory and role-playing learning. In the virtual laboratory, the students are able
to conduct 2D or 3D simulations of learning objects, by acting as a “God”. More-
over, the students are able to immerse though a role-playing learning by acting
as a “Player”, to verify the concepts they have learnt in the virtual laboratory.
Stories are used to motivate the students in the role-playing learning by linking
the learning objects seamlessly. Agents percept the real-time interactions of the
students, reason about them and act back to the player, i.e. to provide a unique
learning experience eventually.
There are three phases of learning in AVILE, which are carried out iteratively:

Experiment: The students conduct the virtual simulation in the virtual labo-
ratory to study the basic concepts of learning objects.

4 Lecture Notes in Computer Science

Experiment Explore
Apply

Knowledge

Fig. 2. Learning Model in AVILE

Explore: The students explore the virtual environment and interact with GO-
LAs to verify the concepts they have learnt in the virtual laboratory.

Apply Knowledge: The students transfer their knowledge they have learnt to
solve real problems in the virtual world.

2.2 Goal Oriented Learning Agent (GOLA)

Different from other agent-based virtual environment, each learning object can
be modeled as a goal-oriented learning agent (GOLA), which can be visible or
invisible in the virtual environment. Visible GOLAs include the non-player char-
acters (e.g. humans, animals, and context objects) that deliver the knowledge
to students directly; while invisible GOLAs include the invisible contexts (e.g.
temperature, weather, time and instructions) that deliver the knowledge indi-
rectly.
A capable agent is able to percept, reason and act in the virtual environment by
defining the goals and cognitive variables initially. Fuzzy Cognitive Goal Net is
used as the goal model for GOLAs to act in the agent-oriented virtual learning
environment, which is explained in details in next section.
In the AVILE, the following agents interact with students, help the students and
analyze the learning process in real-time:

– Instructor Agent Each instructor agent is capable to provide instructions
to the students. By monitoring the learning process of the students, the agent
is able to tune the instructions in terms of difficulty level and instruction
details.

– Assessment Agent An assessment agent evaluates the learning progress of
the students, in order to master the learning efficiency of the students. Then
it will send feedbacks to the instructor agent to adjust the virtual learning,
in terms of speed and difficulties.

– Inhabitant Agent Inhabitant agents are the believable non-player char-
acters to deliver the learning contents in the virtual learning environments,
which could be a human or a tree, etc.

In order to provide an engaging learning experience, each GOLA presents the
following properties:

Interactive: The agents are able to interact with the students in real-time.
Intelligent: The agents are able to “percept, reason and act” in real-time, which

enables to create intelligent interactions.

Learning by Playing in Agent-oriented Virtual Learning Environment 5

Adaptive: The agents are able to learn from the players’ behaviors and context
changes, in order to provide “believable” interactions to the players.

Emotional: The agents are emotional to the interactions with students as a
feedback to user interactions.

As a result, the students are able to be immersive in the virtual learning envi-
ronment.

2.3 Virtual Laboratory

3D virtual laboratory allows students to do the experiments immersively. In our
AVILE, both 2D and 3D virtual experiments are designed as simulations in the
virtual laboratory.
2D or 3D virtual simulations have their own strengths and limitations. Table 1
shows a brief comparison between the two kinds of simulations. 3D simulation

2D Experiment 3D Experiment

Implementation Easy Hard
Immersion Low High
Player Role “God” “Player”
Collaboration No Yes
Suitable Contents Intuitive Explorative
Table 1. Comparison of 2D and 3D Simulations

provides a better immersive experience to the players, and allows the interactions
and collaborations of students at the learning. It is more suitable for students
to explore and induct in the science learning. However, the implementation of
3D simulation is more expensive at the implementation. On the other hand, 2D
simulation is more suitable to present the intuitive concept, e.g. a specific science
term. In our real implementation, we use a hybrid of 2D and 3D simulations as
a balance of production cost and user experience.
Virtual laboratory provides a basis for the students to learn through the simula-
tion. Thus, the students are able to recall the simulation when they are exploring
the virtual learning environment.

2.4 Role-playing learning

In AVILE, role-playing learning is a main concept that the student can immerse
into the virtual environment to learn. Inhabitant agents are distributed in the
learning environments to provide the related learning objects. Thus, the stu-
dents need to compare, evaluate and induct the knowledge which are gathered
in different places at various times, which might help the students to achieve the
deeper learning. Moreover, students are encouraged to apply the knowledge they
have learnt in the virtual experiments or exploration to solve real problems in

6 Lecture Notes in Computer Science

the virtual learning environment. Stories are incorporated in the virtual learning
environment to motivate the students at acquiring the new knowledge step by
step.

3 Fuzzy Cognitive Goal Net

How to model a number of learning objects in an organized way is a big chal-
lenge. Fuzzy Cognitive Goal Net is a computational model to simulate the goals
that GOLA pursuits in the virtual environment. As shown in Figure 3, goals,

Root Goal

Atomic Goal

Transition

Composite Goal

Fig. 3. A Sample Fuzzy Cognitive Goal Net which is composed of goals and transitions

denoted as circles, are used to represent the goals that an agent pursues. Tran-
sitions, represented by arcs and vertical bars, connecting from the input goal to
the output goal, specify the relationship between the two goals. Each transition
is associated with a task list which defines the possible tasks that an agent needs
to perform in order to transit from the input goal to the output goal. This is the
key of our personalized virtual learning environment. Here, each learning object
is modeled as a goal of GOLA. A simple learning object (e.g. diffusion concept)
is modeled as an atomic goal; while a complex learning object is modeled as a
composite goal, which can be separated to “diffusion” goal and other goals.
As an extension to generic Goal Net model [4], Fuzzy Cognitive Goal Net
percepts the goal-related variables/events and reasons to choose the suitable
goals [2]. With the “choice” transition, different goals can be achieved based on
user preferences or real-time interactions. For example, in our virtual learning
environment, the agent can present different learning contents to different learn-
ers based on the learners’ levels, past activities etc.
The pseudo code of running fuzzy cognitive goal net is shown as below.
By modeling the learning objects as goal net in a hierarchical way, the students

Learning by Playing in Agent-oriented Virtual Learning Environment 7

Algorithm 1 RunningofFuzzyCognitiveGoalNet

Require: Root Goal G
1: Push G into Goal Queue Q
2: while Q is not empty do
3: Pop goal g from Q
4: Percept Environment e
5: if g requires e then
6: if g is Atomic then
7: Get action A from g
8: Execute action A
9: else

10: Get Sub-goals g1, g2, ...
11: Push Sub-goals g1, g2, ... into Goal Queue Q
12: end if
13: end if
14: end while

are able to take a learning curve systematically, from the easy learning object
to difficult learning object, and from learning object piece to learning object
cluster.
In the “learning by playing” paradigm, a personalized learning is achieved by
the goal selection mechanism of GOLAs. GOLA can use different goal selection
mechanisms to choose an appropriate goal in order to handle user interactions
correctly at playing. Evolutionary Fuzzy Cognition Map is a soft computing
model to simulate the dynamic context variables and to conduct real-time rea-
soning [7]. It is adopted as the reasoning and simulation tool in the Fuzzy Cogni-
tive Goal Net for goal selection. It models two main components: concepts Si and
causal relationships Ri. Concept can be input (context variables, user interaction
variables), intermediate (i.e. variables that connect input and output), or output
(agent goals, states etc). Causal relationship represents the interconnection from
one concept to another. In the virtual learning, the concepts includes students’
preference (i.e. gender, age, interests), students’ activities in the learning envi-
ronment and learning objects. By studying the causal relationships among the
students and the learning objects, GOLA is capable to select a most appropriate
learning curve to each student in real-time. The details of the model and its
inference process can be found in [7].

4 Case Study: Plant Transportation in Banana Tree

4.1 Learning Content

The agent-oriented virtual learning environment is adopted for secondary level
science learning about plant transportation in Catholic High Secondary School,
Singapore. The learning content of the virtual learning environment is the plant
transportation system. The related learning concepts (LO)include:

8 Lecture Notes in Computer Science

Xylem and Phloem of Root, Stem and Leaf: the cross section and func-
tionalities of xylem and phloem inside the plant.

Osmosis and Diffusion: different movement methodologies of the water and
mineral molecules.

Photosynthesis: how the energy and oxygen are generated inside the leaf with
water, light and carbon-dioxide.

4.2 Implementation

In order to motivate the students to learn the concepts in the plant transporta-
tion, we generate a story scenario, namely “saving the dying banana tree”.

“The banana trees in Singapura town are quite sick. The farmer
“Uncle Ben” asks the investigators to explore the whole plant trans-
portation system of the tree, in order to find how to save them.”

We have implemented our agent-oriented virtual learning environment with
Torque 3D Game Engine.

4.3 Sample GOLAs

There are a set of agents involved in the virtual learning environment to facilitate
the students at the learning of plant transportation system as investigators.
Three main GOLAs that provide the personalized learning are illustrated here.

Lab Supervisor Lab supervisor “Miss Lee” is a tutor in the virtual laboratory,
who determines the learning objects of the student based on the student’s current
level and preferences.

``Miss Lee
�
 Goal

Ask to explore the tree

Entry Level

Expert Level

Start End

Ask to do
Experiment

Greet
Student

Test

Fig. 4. Fuzzy Cognitive Goal Net of Lab Supervisor Agent to Choose the Learning
Content

The goal net used by the supervisor agent is shown as Figure 4. If the student
is in the entry level, she will lead the student to do the virtual experiment, e.g.

Learning by Playing in Agent-oriented Virtual Learning Environment 9

diffusion or osmosis; otherwise, she will recommend the student to enter into the
banana tree to watch the diffusion or osmosis process of water molecules at the
root.

Fig. 5. Lab Supervisor “Miss Lee” greets students with an introduction (‘Greet stu-
dent’ goal in Figure 4)

Figure 5 shows the snapshot that the lab supervisor “Miss Lee” greets the student
with some introductions by pursuing “greet student” goal (Figure 4).
Figure 6 illustrates a 2D diffusion simulation that the student can play. Through
this observation, the students are able to learn the diffusion concept by checking
how the ink molecules move in the water and the variables that might affect the
diffusion process.

Director Agent Besides the simulations in the virtual laboratory, the students
can watch the diffusion or osmosis at plant root immersively, which is impossible
in the real experiments. Director agent is a background agent that directs the
whole role-playing learning. It provides hints and analyzes the students’ behav-
iors at the students’ playing.
The goal net used by the director agent is shown as Figure 7. It can schedule
the students to talk to different non-player characters to find the sick banana
tree to start the plant transportation journey. The “visit plant transportation”
is a composite goal. When the director agent pursues this goal, it will load the
sub-goals of it, which is shown as Figure 8.
Here are some screenshots of the students at the playing when the goals of the
director agent are executed.

10 Lecture Notes in Computer Science

Fig. 6. Diffusion Experiment with 2D Simulation: add ink drops to observe the move-
ments of molecules of diffusion (‘Experiment’ goal in Figure 4)

Director Goal

N
ot

 F
ou

nd

Found

Start

Talk with
NPC

Find Sick
Banana Tree

Visit Plant
Transportation

Get
Reward

Fig. 7. Fuzzy Cognitive Goal Net of Director Agent to Control the Role-playing of
Students

Start End
Visit
Root

Visit
Stem

Visit
Leaf

Visit Plant
Transportation

Exit

Distribute
Food

Generate
Food

Fig. 8. Sub-goal of Director Agent to visit plant transportation

Learning by Playing in Agent-oriented Virtual Learning Environment 11

Fig. 9. Student is flying upwards inside of stem xylem (‘Visit stem’ Goal in Figure 7)

Figure 9 shows that the student is exploring the stem xylem through flying up-
ward. Through this, the students are able to observe the inner structure of the
stem xylem and the molecules that flow in it.
Figure 10 shows the cross section of the leaf, in which xylem is on top of the
phloem. This is different from the cross section at the root or at the stem. Figure
11 shows that the student pushes the water molecule to carbon-dioxide molecule
to generate food in the leaf. Through this process, the students are able to learn
the photosynthesis intuitively.

Water Molecule Water molecule is an inhabitant GOLA in the learning ad-
venture, who asks for help from the student to take them into the leaf where the
photosynthesis is carried out.
The goal net used by the water molecule agent is shown as Figure 12.
Depending on the learning scenario, the water molecule’s goal is composed of a
series of goals linearly.

4.4 Assessments

We conduct the agent-oriented virtual learning environment in the Catholic High
School to evaluate the students’ performance in the agent oriented virtual learn-
ing environment. One group of 36 students (Group 1) use the agent-mediated
virtual learning environment to learn and another group of 34 students (Group
2) use the formal classroom learning as a comparison. Group 1 uses a same
learning time as group 2, around 2 hours. After the learning, both groups are
given a MCQ test about the plant transportation.

12 Lecture Notes in Computer Science

Fig. 10. Cross Section of Leaf: Xylem on top and Phloem at bottom (‘Visit leaf’ Goal
in Figure 7)

Fig. 11. The player pushes the water molecule to carbon-dioxide molecule to generate
food (‘Generate food’ Goal in Figure 7)

Learning by Playing in Agent-oriented Virtual Learning Environment 13

Water Molecule Goal

Start EndEnter
Root

Arrive
Leaf

Make
Food

Fig. 12. Fuzzy Cognitive Goal Net of Water Molecule Agent to Go through root, stem,
leaf and generate the food

�

�

�

�

�

�

�

�

�

	

��

� � � � � � � � 	 �� �� �� ��

��

��

Fig. 13. Distribution of scores in agent-oriented virtual learning environment group
(AVILE) and classroom learning (CL) group (horizontal axis: score; vertical axis: stu-
dent number)

Exam Results
The group using AVILE has a mean score of 13.55 and the group using CL has
a mean score of 14.05. As shown in Figure 13, AVILE group’s learning result is
close to that of CL. Considering that the students need to use around 1 hour
to be familiar with the virtual learning environment, AVILE students still learn
quite well. Moreover, more students got highest score (13 scores) in AVILE than
those in CL. Because MCQ questions include some open questions that require
the reasoning of concepts, the students perform well in AVILE which stimulates
the exploration and thinking at the learning process, rather than memorizing
the knowledge.
Figure 14 shows the average score of each question in both AVILE group and
CL group. It is found that, students of the two groups perform well in different
questions.

14 Lecture Notes in Computer Science

�

�
�
�

�
�
�

�
�
�

�
�
�

�

�
�
�

������	�
���������������	���
������

��
�

�

Fig. 14. Average of each question in agent-oriented virtual learning environment
(AVILE) and classroom learning CL Horizontal axis: MCQ number; Vertical axis: av-
erage score

Some questions require the students to make the reasoning based on what they
know, e.g. question 21.

Suppose you killed the plant cell in the Figure of
question 14A with poison (that does not destroy
the cell membrane) and immediately placed the
dead cell in a 25% saltwater solution.
1. Osmosis and diffusion would not occur.
2. Osmosis and diffusion would continue.
3. Only diffusion would continue.
4. Only osmosis would continue.

In this case, students in AVILE perform better. On the other hand, students in
CL perform better in the questions about concepts memorizing. The students in
AVILE might focus on the exploration process with less concept memorization,
as agents help them at all the memorizing.

4.5 Discussions

Through the test results, we found that agent-oriented virtual learning environ-
ment helps the students at deep learning by encouraging them gain knowledge
through thinking and reasoning. The students can also transfer their knowledge
easily, e.g. they apply the “osmosis” knowledge learnt in the virtual laboratory
to help molecules enter into the root.
According to our observation and interview, the students are very engaged and
motivated in the learning in the virtual environment. With the similar computer
game experience, they adapt to the virtual learning environment very fast. The
students are excited to experience in the virtual world differently with their

Learning by Playing in Agent-oriented Virtual Learning Environment 15

classmates, and assisted well by the learning agents.
However, the test results are not as good as expected, which might be due to
the following reasons:

1. The students have little training time to be familiar with the virtual learn-
ing environment. They need more time to be comfortable with the learning
method.

2. AIVLE is a good compensation but not a replacement to the classroom
learning. Especially when we conduct the virtual learning with the teachers
supervised, the students are easy to be panic.

3. We choose the students who have very good academic performance as the test
groups, which might not be very sensitive of the different learning methods.

In the future, it will be used an informal learning method as a testbed to prove
the concepts which are learnt in the classroom, rather than replacing the whole
classroom teaching.

5 Conclusion

In the paper, we propose an agent-oriented virtual learning environment (AVILE)
with a mixture of 3D virtual laboratory and role-playing learning. The learning
objects are modeled as goals of goal-oriented learning agents (GOLAs), which
provide personalized learning experiences through real-time goal selection. The
results prove the learning efficiency and students’ interests improve over that of
the classic classroom learning.
Currently, mouse and keyboard are the main interaction methods for students
to conduct the virtual experiments. In the future, we expect to have a more in-
tuitive user-computer interfaces to increase the engaging experience. Moreover,
we will improve the learning ability of the agent to study the players’ behaviors,
in order to provide a better personalization of learning contents.

Acknowledgment

The authors would like to acknowledge the grant support of NRF/MOE, Singa-
pore.

References

1. Chris Dede. Immersive interfaces for engagement and learning. Science,
323(5910):66–69, Jan 2009.

2. Yundong Cai, Chunyan Miao, Ah-Hwee Tan, and Zhiqi Shen. Modeling believable
virtual characters with evolutionary fuzzy cognitive maps in interactive storytelling.
In AAAI Spring Symposium on Intelligent Narrative Technologies II, November
2009.

3. William Sims Bainbridge. The scientific research potential of virtual worlds. Science,
317(5837):472–476, Jul 2007.

16 Lecture Notes in Computer Science

4. Zhiqi Shen, Chunyan Miao, Yuan Miao, Xuehong Tao, and R. Gay. A goal-oriented
approach to goal selection and action selection. In 2006 IEEE International Con-
ference on Fuzzy Systems, pages 114–121. American Association of Artificial Intel-
ligence, 2006.

5. P. Dillenbourg, D.K. Schneider, and P Synteta. Virtual learning environments. In
Proceedings of the 3rd Hellenic Conference Information & Communication Tech-
nologies in Education, pages 3–18, 2002.

6. AL Baylor. Agent-based learning environments as a research tool for investigating
teaching and learning. In Journal of Education Computing Research, volume 26,
pages 249-270, 2002.

7. Yundong Cai, Chunyan Miao, Ah-Hwee Tan, Zhiqi Shen, and Boyang Li. Creating
an immersive game world with evolutionary fuzzy cognitive maps. IEEE Computer
Graphics and Applications, 30(2):58–70, 2008.

8. Marc Cavazza, Fred Charles, and Steven J. Mead. Interacting with virtual characters
in interactive storytelling. In Proceedings of the first international joint conference
on Autonomous agents and multiagent systems, pages 318 – 325, Bologna, Italy,
2002.

9. Elizabeth Figa and Paul Tarau. The vista architecture: experiencing stories through
virtual storytelling agents. SIGGROUP Bull., 23(2):27–28, 2002.

10. Jonathan Gratch and Stacy Marsella. Tears and fears: modeling emotions and
emotional behaviors in synthetic agents. In AGENTS ’01: Proceedings of the fifth
international conference on Autonomous agents, pages 278–285, New York, NY,
USA, 2001. ACM.

11. M. Theune, S. Faas, D. Heylen, and A. Nijholt. The virtual storyteller: Story
creation by intelligent agents. In S. Göbel, N. Braun, U. Spierling, J. Dechau,
and H. Diener, editors, E 03: Technologies for Interactive Digital Storytelling and
Entertainment. Fraunhofer IRB Verlag, 2003. ISBN=3-8167-6276-X.

