
Knowledge discovery through creating formal contexts

ANDREWS, Simon <http://orcid.org/0000-0003-2094-7456> and
ORPHANIDES, Constantinos

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/3710/

This document is the

Citation:

ANDREWS, Simon and ORPHANIDES, Constantinos (2010). Knowledge discovery
through creating formal contexts. In: XHAFA, F, ABRAHAM, A, DEMETRIADIS, S
and CABALLE, S, (eds.) First international workshop on computational intelligence in
networks and systems (CINS 2010). IEEE Computer Society, 455-460. [Book
Section]

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

Knowledge Discovery through Creating Formal Contexts

Simon Andrews∗ and Constantinos Orphanides†

Conceptual Structures Research Group, Communication and Computing Research Centre
Faculty of Arts, Computing, Engineering and Sciences, Sheffield Hallam University, Sheffield, UK

∗s.andrews@shu.ac.uk †corphani@my.shu.ac.uk

Abstract—Knowledge discovery is important for systems
that have computational intelligence in helping them learn
and adapt to changing environments. By representing, in
a formal way, the context in which an intelligent system
operates, it is possible to discover knowledge through an
emerging data technology called Formal Concept Analysis
(FCA). This paper describes a tool called FcaBedrock that
converts data into Formal Contexts for FCA. The paper
describes how, through a process of guided automation,
data preparation techniques such as attribute exclusion and
value restriction allow data to be interpreted to meet the re-
quirements of the analysis. Creating Formal Contexts using
FcaBedrock is shown to be straightforward and versatile.
Large data sets are easily converted into a standard FCA
format.

Keywords-Formal Context; Formal Concept Analysis;
guided automation; visualisation; Concept Lattice

I. INTRODUCTION

Formal Concept Analysis (FCA) was introduced in
the 1990s by Rudolf Wille and Bernhard Ganter [17]
building on applied lattice and order theory developed
by Birkhoff and others in the 1930s and was initially
developed as a subsection of Applied Mathematics,
based on the mathematisation of concepts and con-
cepts hierarchy. The following description of FCA is
that used in [4].

A Formal Concept is constituted by its extension, com-
prising of all objects which belong to the Concept, and
its intension, comprising of all attributes (properties,
meanings) which apply to all objects in the extension.
The set of all objects and attributes together with their
relation to each other form a Formal Context, which can
be represented by a cross-table.

Airlines

La
ti

n
A

m
er

ic
a

Eu
ro

pe

C
an

ad
a

A
si

a
Pa

ci
fic

M
id

dl
e

Ea
st

A
fr

ic
a

M
ex

ic
o

C
ar

ib
be

an

U
SA

Air Canada × × × × × × × ×
Air New Zealand × × ×
Nippon Airways × × ×
Ansett Australia ×
Austrian Airlines × × × × × ×

The cross-table above is a Formal Context represent-
ing the destinations of five airlines, where the elements
on the left are formal objects (airlines) and the elements

at the top are formal attributes (destinations). If an
object has a specific attribute, it is indicated by placing
a cross in the corresponding cell of the table. An
empty cell indicates that the corresponding object does
not have the corresponding attribute. In the Airlines
Context, Air Canada flies to Latin America but does
not fly to Africa.

A central notion of FCA is a duality called a ‘Galois
connection’. This connection is often observed between
two types of items that relate to each other. A Galois
connection implies that “if one makes the set of one
type larger, they will be related to a smaller set of
the other type, and vice versa” [14]. In the airlines
example, the combination of destinations, Asia Pacific,
Europe and USA, are flown to by four airlines. If
Middle East is added to the list of destinations, the
number of airlines reduces to two.

The definition of a Formal Concept is extended by
the idea of closure: the extension contains all objects
that have the attributes in the intension, and the inten-
sion contains all attributes shared by the objects in the
extension. In the example of the two airlines that fly
to Asia Pacific, Europe, USA and the Middle East, it
can be seen from the table that Canada is also flown to
by the same two airlines. Adding Canada to the list of
destinations completes (closes) that particular Formal
Concept.

A strength of FCA is that the Galois connections
between the Formal Concepts can be visualised in a
Concept Lattice (Figure 1), which is an intuitive way of
discovering hitherto undiscovered information in data
and portraying the natural hierarchy of Concepts that
exist in a Formal Context.

Each node in the lattice is a Formal Concept. The
objects (airlines) are labeled below the nodes, while the
attributes (destinations) are labeled above the nodes.
Extracting information from a lattice is straightfor-
ward. In order to see which attributes are featured by
an object, one begins from the node where the object is
located and moves upwards. Any attributes one meets
along the way are the attributes featured by that object.
For example, if one heads upwards in the lattice from
Air New Zealand (object), one will collect the attributes
USA, Europe and Asia Pacific. This can be interpreted

Figure 1. A Lattice corresponding to the Airlines Context

as ‘Air New Zealand flies to USA, Europe and Asia
Pacific’. Similarly, in order to see which objects have a
specific attribute, one heads downwards in the lattice.
Any objects one meets along the way are objects which
feature that particular attribute. For example, heading
downwards from Canada (attribute), one will collect
the objects Austrian Airlines and Air Canada. This can
be interpreted as ‘Canada is flown to by Austrian Air-
lines and Air Canada’. Although the Airline Context
is only a small example of FCA, it is evident that the
Concept Lattice provides information that is not evi-
dent from looking at the table alone. It has been shown
that Formal Concept Analysis (FCA) can be usefully
applied to large sets of data [9], [10], [16] and that
FCA has applications in data mining [6], [15]. Algo-
rithms exist that are capable of processing large Formal
Contexts in reasonable time [2], [11]. However, data is
rarely in a form immediately suitable for FCA tools
and applications. Data often exists in the form of flat-
file tables of comma separated values (csv). For FCA
to be carried out, these data must be converted into
Formal Contexts. The existing, typically many-valued,
attributes must be converted into Formal Attributes.
This can be an involved and time consuming task,
usually requiring a programming element. The task is,
essentially, a process of discretizing and Booleanizing
data; taking each many-valued attribute and convert-
ing it into as many Boolean attributes as it has values.
The incorporation of many-valued attributes into FCA
is well known [7], [18] and continuous data can be
used for FCA by being hierarchically scaled [14] or
discretized as disjoint ranges of values [10]. However,
there is less work describing how these techniques can
be applied in an automated, reproducible way.

Dealing with existing data sets raises a number

issues: Free-text data (such as peoples’ names and
addresses) is not usually suitable for Booleanizing;
missing values are common and must be dealt with
in some way; data classes are sometimes included in
the original data, but it may be more appropriate to
think of theses as sub-contexts rather than attribute
values; continuous data can be discretized but the
method to use and the boundary values need to be
decided; attributes with two values may sometimes
be interpreted as being Boolean and thus converted
using a single Formal Attribute; attribute values that
are unused may be interpreted as not being required
in the Formal Context.

The possibility of such diverse interpretation of data
can, without careful documentation, lead to inconsis-
tent and incomparable analysis. Several analyses may
each use a different interpretation of the same original
data set. This can also lead to problems in measuring
the performance of FCA algorithms [12].

A tool to address these issues was proposed at
CSTIW’09 [3] where an early prototype of what follows
was demonstrated.

II. FCABEDROCK OVERVIEW

FcaBedrock is an open-source tool for automating
the conversion of existing, flat-file csv data sets into
Formal Contexts1 (Figure 2)

FcaBedrock uses a process of guided automation.
The user supplies the tool with appropriate meta-data
for conversion, such as the names of the attributes and
their values and with decisions as to what to convert
and how to convert it. After reading in the original
data file, this meta-data is used by FcaBedrock to create
a Formal Context file in a standard format for FCA.
The meta-data is stored in a separate text document
called a Bedrock file. This can be used for subsequent
conversions and acts as a record of the interpretation
made of the data set. Bedrock files are loaded into
FcaBedrock allowing the reproduction of Context files
and allowing changes in the interpretation to be made.
Different interpretations can be made and constraints
applied to a data set allowing different analyses. Each
Formal Context produced can be documented with its
corresponding Bedrock file. Multiple data files with
the same attributes can be converted using the same
Bedrock file.

FcaBedrock currently supports two input data file
formats: many column csv and three column csv.
FcaBedrock outputs the Formal Context in the widely
Burmeister FCA format.

Many column csv is a traditional flat-file format for
many-valued data. Each row represents an instance
(object) and each column a many-valued attribute.

1https://sourceforge.net/projects/fcabedrock/

Source

Formal ContextFcaBedrock
e.g. Burmeister cxt file

Original Data
e.g. flat-file csv

Conversion
Document

Bedrock file

Figure 2. FcaBedrock Process

The three column format is becoming popular as
a standardized format and is the approach used, for
example, in the Resource Description Format (RDF) [1],
[13].

FcaBedrock assumes that, when reading a three col-
umn data file, the first value is a Formal Object, the
second is a many-valued attribute and the third is an
attribute value. The first values are used by FcaBedrock
as object names when outputting a Formal Context
in the Burmeister format (see below). If auto-detection
is used, the second values are detected as attribute
names. The order in which triples appear in a data
file is not significant.

The Burmeister Formal Context format (cxt) is a
popular format in FCA. A cxt file begins with the
number of objects and number of attributes and then
lists the objects followed by the attributes. It then stores
the body of the Formal Context as a grid using crosses
for True values and dots for False values.

The sections that follow describe how FcaBedrock
operates. Examples are given to illustrate how existing
data can be interpreted for FCA using public data sets
from the UCI Machine Learning Repository [5].

III. ATTRIBUTE VALUES

Figure 3 shows FcaBedrock. There are windows for
the names and types of the original data attributes,
whether they are to be converted or not, their cate-
gories and the corresponding category values found
in the data file. All these must initially be entered by
the user (unless FcaBedrock’s auto-detection feature is
being used - see Section VIII), although copy and paste
is available and useful if the names of the categories
and the category values are the same. This is often
but not always the case, so FcaBedrock uses both; the
category values are required for the computation but
the category names appear in the Context file. The
example shown is of the well-known Mushroom data
set from UCI [5], where arbitrary letters are used in

the data file to represent attribute categories. The cap-
surface attribute, for example, has four possible cate-
gories, fibrous, grooves, scaly and smooth, represented
by the values f, g, y and s, respectively, in the data
file. In another UCI example, the Adult data set [5] has
category values in the data file that each contain a lead-
ing space character. The spaces are better omitted from
the category names but are required for converting the
data.

IV. ATTRIBUTE TYPES

FcaBedrock uses three types of attribute: categorical,
continuous and Boolean. The type is set by the user
entering c for categorical, o for continuous or b for
Boolean in the Type window.

A. Categorical Attributes

The predominant attribute type is categorical. This is
the typical many-valued attribute and is converted by
creating one formal attribute for each of the attribute
categories. In the conversion process, each row of
comma separated values read in from the data file
is split into a list of individual values. Each value
is compared with the category values listed for the
corresponding attribute in the Values (File) window.
Attribute zero corresponds to the first column in the
data file and so on. A match is recorded as a True value
in the Formal Context.

In the Mushroom example shown in Figure 3, all but
one of the attributes are categorical. The gill-spacing at-
tribute, for example has three categories: close, crowded,
and distant. FcaBedrock will create three corresponding
Formal Attributes and name them by concatenating
the attribute and category names, thus gill-spacing-close,
gill-spacing-crowded, and gill-spacing-distant.

B. Boolean Attributes

A Boolean attribute can be interpreted as a single
Formal Attribute. Typically, a Boolean attribute in a
data set is one that has two categories that represent
True and False. In the Mushroom example, the Boolean
type is being used for the bruises? attribute. The at-
tribute has two categories, bruises and no, represented
in the data file by the values t and f. For a Boolean
attribute, FcaBedrock uses the first category value as
the True value, t in this example. During the conversion
process, it compares the corresponding value read in
from the data file with the True value. If they match,
this is recorded as a True value in the Formal Context.
FcaBedrock names the Formal Attribute using the orig-
inal attribute name, without concatenating the name
of the True category. So, in this example, the original
Bruises? attribute becomes a single Formal Attribute
also called Bruises?.

Figure 3. FcaBedrock

C. Continuous Attributes

Continuous attributes are dealt with in FcaBedrock
by discretizing the data using user defined ranges. Al-
though hierarchical scaling (e.g. >0, >10, >20...) is of-
ten used in FCA to describe continuous attributes [14],
this can lead to dense contexts and, consequently, a
large number of large concepts. Hence, in FcaBedrock,
a continuous attribute is divided into a number of
ranges with disjoint boundaries.

Figure 4 shows the meta-data of the Adult data set
in FcaBedrock. The age attribute is to be converted as
a continuous attribute. The boundaries of the ranges
are entered as comma separated values. In this case,
the boundaries are <, 20, 40, 60 and >. FcaBedrock
will apply these boundaries as the ranges less than 20,
20 to less than 40, 40 to less than 60 and greater than or
equal to 60, giving a total of four ranges (categories)
for the five boundaries. The < and > boundaries are
optional; literal end-boundary values will mean that
any values outside the overall range will be ignored
in the conversion process. The Formal Attribute names
are created by concatenating values appropriately; in
this case age<20, age20to<40, age40to<60 and age>=60.
During the conversion process, FcaBedrock compares
a continuous value read in from the data file with the
appropriate boundary values, assigning a True value
to the corresponding Formal Attribute in the Context.
Fractional values are allowed; height1.567to<2.890, for

example, would be possible as a Formal Attribute.

V. GUIDED AUTOMATION

A. Exclusion of Attributes and Attribute Values

It may be necessary or desirable to exclude attributes
from a Formal Context for a number of reasons: the
attribute may be unsuitable for conversion (if it is a
free-text attribute for example) or it may be that a
particular attribute is not of interest in the analysis
being undertaken. The user of FcaBedrock can decide
which attributes in the data set to include in the Formal
Context using the Convert window. Entering a y (for
yes) will mean that the corresponding attribute will
be included in the conversion. Entering an n (for no)
will mean that the corresponding attribute will be
excluded from the conversion; no Formal Attributes
will be created for this attribute. Individual attribute
categories can be excluded from the Formal Context
by simply not including them in the list.

Note that these attribute and category exclusions do
not exclude objects from the Formal Context; all the
rows (objects) of the data file will be included in the
conversion.

B. Attribute Value Restriction

Sub-contexts can be created by restricting the con-
version to user-specified attribute values. By speci-
fying one or more category values of one or more

Figure 4. Adult meta-data in FcaBedrock

attributes, the Formal Context will only contain objects
which those values. For example, taking the Mush-
room data set, a sub-context containing only poisonous
mushrooms can be created simply by specifying the
category value p for the class attribute. This can be
repeated for any number of attributes. So, for example,
a mushroom sub-context could be created containing
only poisonous mushrooms that have brown, buff or
cinnamon caps.

C. Missing Values
Data sets often contain missing values. Typically

these are interpreted as False values in FCA, although
missing more correctly means unknown. A symbol such
as ? is often used in a data set to indicate a missing
value and this symbol can be used in FcaBedrock if
missing values are of interest in the analysis. If the
missing value symbol is included as a category value
of an attribute then a corresponding missing value
Formal Attribute will be created.

D. Auto-Detection of Meta-Data
If a data file is read without first loading or creating

a Bedrock file, FcaBedrock can detect attribute values
and create meta-data automatically. It will assume that
all attributes are categorical. It will add each new value
it finds in a column in the data file to a correspond-
ing list of category values. It will assume that each
attribute is to be converted. It will set the category
names to the category values. If it finds more than 100
values for an attribute, FcaBedrock will list the first
100 values and indicate that the detection of values for
the attribute has been truncated. This is most likely to
occur when the attribute being detected is a continuous

one, free-text or some form of ID value. The meta-data
obtained through auto-detection can then be edited to
provide the required interpretation. If a three-column
format input file is being used, attribute names will
also be detected.

VI. A MINI-ADULT EXAMPLE

The following is an example adapted from the UCI
Adult data set. The example uses a data file (see File
1) called mini-adult.data with just eight instances
and five attributes: age, education, employment, sex and
US-citizen. There are two classes indicating a salary
above or below $50k.

39, Bachelors, Clerical, Male, Yes, <=50K
50, Bachelors, Managerial, Female, Yes, <=50K
38, HS-grad, Unskilled, Male, Yes, <=50K
53, 11th, Unskilled, Male, Yes, <=50K
28, Bachelors, Professional, Female, Yes, >50K
37, Masters, Managerial, Female, No, <=50K
49, ?, Clerical, Female, No, <=50K\\
52, HS-grad, Managerial, Male, Yes, >50K

File 1. mini-adult.data

The mini-adult meta-data in FcaBedrock are shown
in Figure 5. The output Burmeister context file,
mini-adult.cxt, is shown in File 2. The Concept
Lattice is shown in figure 6, visualised by inputting
the cxt file to a tool called Concept Explorer (ConExp)
[19]. Note that the object labels refer to the number of
the adult instance (row) in the data file.

VII. CONCLUSION

FcaBedrock has been used successfully to convert
large data sets into Formal Contexts: The Mushroom

Figure 5. mini-adult meta-data in FcaBedrock

B education-Bachelors
education-Masters

8 education-11th
15 education-HS-grad

employment-Clerical
0 employment-Managerial
1 employment-Professional
2 employment-Unskilled
3 sex-Male
4 sex-Female
5 US-citizen
6 .X..X...X...X.X
7 ...XX....X...XX
age<30 .X.....X...XX.X
age30to<40 ...X..X....XX.X
age40to<50 X...X.....X..XX
age>=50 .X...X...X...X.

..X.....X....X.

...X...X.X..X.X

File 2. mini-adult.cxt, Burmeister context file.

data set has 8124 objects and around 125 Formal At-
tributes (depending on the interpretation). The Adult
data set has 32561 objects and around 106 Formal
Attributes and the Internet Advertisements data set has
3279 objects and around 1570 Formal Attributes.

FcaBedrock is straightforward to use: the meta-data
required is usually easy to obtain (data sets usually
come with descriptive documentation) and enter, par-
ticularly with the use of the repeat and auto-detection
functions. There are only three types of attribute to
consider and each type is straightforward to convert.

FcaBedrock is a versatile tool. It currently supports
two standard input formats and two popular output
formats (the use of FcaStone makes other FCA formats
possible, too). FcaBedrock gives the user control of the
conversion process and freedom to interpret data as
seen fit, including the creation of sub-contexts, to suit
the needs of analysis. Multiple data sets of the same
type (data samples, for example) can easily be con-
verted into Formal Contexts for comparative analysis.

The Formal Contexts created by FcaBedrock are
clearly documented by corresponding Bedrock files.
These files allow the reproduction of Formal Contexts.

Different interpretations of the same data are possible
though the editing of meta-data in FcaBedrock, with
a corresponding Bedrock file being created for each
interpretation, if desired.

FcaBedrock is an open source project. It may be
developed further to support other input and output
formats. Additional functionality may be added, such
as auto-creation of ranges for continuous attributes as
part of auto-detection, grouping of categories and hi-
erarchical scaling of continuous attributes. A more am-
bitious goal is to incorporate categorisation of free-text
values into formal attributes; capturing similarities in
free-text values such as addresses from the same town
or names in alphabetical order. Such enhancements
to the process of Context creation will open further
possibilities for FCA to be carried out on existing data
sets.

REFERENCES

[1] Abadi, D.J., Marcus, A., Madden, S.R., Hollenbach, K.:
SW-Store: a vertically partitioned DBMS for Semantic
Web data management. In: VLDB, vol. 18, pp. 385-406.
Springer-Verlag (2009)

[2] Andrews, S.: In-Close, A Fast Algorithm for
Computing Formal Concepts. In: Rudolph,
S., Dau, F., Kuznetsov, S.O. (eds.) ICCS
2009, http://sunsite.informatik.rwth-aachen.de/
Publications/CEUR-WS/Vol-483/paper1.pdf (2009)

[3] Andrews, S.: Data Conversion and Interoper-
ability for FCA. In: CS-TIW 2009, pp. 42-49,
http://www.kde.cs.uni-kassel.de/ws/cs-tiw2009/
proceedings\ final\ 15July.pdf (2009)

[4] Andrews, S., Orphanides, C., Polovina, S.: Visualising
Computational Intelligence through converting Data
into Formal Concepts. In the First International Work-
shop on Emerging Data Technologies for Collective
Intelligence (EDTCI-2010), to be held in Fukuoka, Japan,
Nov. 4-6, 2010. IEEE Conference Publishing Services, in
press

[5] Asuncion, A., Newman, D.J.: UCI Machine Learn-
ing Repository http://www.ics.uci.edu/\simmlearn/
MLRepository.html. Irvine, CA: University of Califor-
nia, School of Information and Computer Science (2007)

[6] Boulicaut, J-F., Besson, J.: Actionability and Formal Con-
cepts: A Data Mining Perspective. In: Medina, R., Obied-
kov, S. (eds.) ICFCA 2008. LNCS (LNAI), vol. 4933, pp.
14-31. Springer-Verlag, Berlin/Heidelberg (2008)

[7] Ganter, B., Wille, R.: Formal Concept Analysis - Mathe-
matical Foundations. Springer-Verlag (1999)

[8] Goethals, B., Zaki, M.: Advances in Frequent Item-
set Mining Implementations: Report on FIMI’03. In:
SIGKDD Explorations Newsletter, vol. 6(1), pp. 109-117.
ACM New York (2004)

Figure 6. mini-adult Concept Lattice

[9] Ignatov, D.I., Kuznetsov, S.O.: Frequent Itemset Min-
ing for Clustering Near Duplicate Web Documents. In:
Rudolph, S., Dau, F., Kuznetsov, S.O. (eds.) ICCS 2009.
LNCS (LNAI), vol. 5662, pp. 185-200. Springer-Verlag,
Berlin/Heidelberg (2009)

[10] Kaytoue-Uberall, M., Duplesssis, S., Napoli, A.: Using
Formal Concept Analysis for the Extraction of Groups of
Co-expressed Genes. In: Le Thi, H.A., Bouvry, P., Pham
Dinh, T. (eds.) MCO 2008. CCIS vol. 14, pp. 439-449.
Springer-Verlag, Berlin/Heidelberg (2008)

[11] Krajca, P., Outrata, J., Vychodil, V.: Parallel Recursive
Algorithm for FCA. In: Belohlavek, R., Kuznetsov, S.O.
(eds.) CLA 2008, pp. 71-82. Palacky University, Olomouc
(2008)

[12] Kuznetsov, S.O., Obiedkov, S.A.: Comparing Perfor-
mance of Algorithms for Generating Concept Lattices.
In: Journal of Experimental and Theoretical Artificial
Intelligence, vol. 14, pp. 189-216 (2002)

[13] Passin, T. B.: Explorer’s Guide to the Semantic Web.
Manning, Greenwich, CT (2004)

[14] Priss, U.: Formal Concept Analysis in Information Sci-
ence. In: Cronin, B. (ed.), Annual Review of Information
Science and Technology, vol. 40, p. 521-543 (2006)

[15] Rioult, F., Robardet, C., Blachon, S., Crémilleux, B.,
Gandrillon, O., Boulicant, J-F.: Mining concepts from
large SAGE gene expression matrices. In: Boulicant, J-
F., Dzeroski, S. (eds.) Workshop on Knowledge Discov-
ery in Inductive Databases 2003, pp. 107-118. Catat-
Dubrovnik, Croatia (2003)

[16] Sawase, K., Nobuhara, H., Bede, B.: Visualizing Huge
Image Databases by Formal Concept Analysis. In: Bar-
jiela, A., Pedrycz, W. (eds.) Human-Centric Informa-
tion Processing Through Granular Modelling. Stud-
ies in Computational Intelligence, vol. 182. Springer,
Berlin/Heidelberg (2009)

[17] Ganter, B., Wille, R. (1998) Formal Concept Analysis: Math-
ematical Foundations, Springer-Verlag, Berlin. Translated
by C. Franzke.

[18] Wolff, K.E.: A First Course in Formal Concept Analysis:
How to Understand Line Diagrams. In: Faulbaum, F.
(ed.) SoftStat 1993. Advances in Statistical Software vol.
4, pp. 429-438 (1993)

[19] Yevtushenko, S. (2006). ConExp. Available at: http://
sourceforge.net/projects/conexp

