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SLPcalculator: a web-based tool to estimate
nanoparticle heating with peak analysis and F-test

Iago López-Vázquez, a,b Yilian Fernández-Afonso, c,d

Antonio Santana-Otero, a Sergiu Ruta, e Alfredo Amigo,a M. Puerto Morales, d

Roy W. Chantrell, f Lucía Gutiérrez *c and David Serantes *a,b

Accurately determining the Specific Loss Power (SLP) remains a major challenge in magnetic hyperther-

mia and photothermal heating. In this work, we examine the practical implementation of the Peak

Analysis Method (PAM), an alternative to Newton’s-law-based approaches. Our focus is on how the

number of data points affects the identification of the linear regime around the peak of the ΔT (t ) curve,
as this method relies on calculating and comparing the slopes of the heating and cooling branches

around the maximum. Using an F-test-based statistical criterion, we objectively determine the valid linear

range and compare the resulting SLP values with those obtained from the Initial Slope Method (ISM), one

of the most common Newton-law-based approaches, which also relies on linear range fit. Our results

reveal that the correct determination of the linear range leads to significantly different SLP values com-

pared to those obtained using arbitrary time windows, underlining the necessity of employing statistical

criteria for a robust and reproducible analysis. Finally, we introduce an open-access website

(SLPcalculator.com) that integrates PAM with the F-test, providing a systematic and user-friendly tool for

reliable SLP estimation without the need for manual fitting procedures.

1. Introduction

The SLP (Specific Loss Power) is a fundamental parameter
used to characterize the capacity of nanoparticles (NPs) to
produce heat when subjected to external stimuli, either an
alternating magnetic field -in the case of magnetic hyperther-
mia-, or a laser -in the case of photothermal therapy. Despite
its central role for comparison of different materials, or to
support proper determination of the heating conditions for a
specific application, it is widely accepted that there is a huge
variation in SLP values determined using different experi-
mental setups.1 Some of the problems that lead to such varia-
bility arise from the inhomogenous temperature profiles2,3 but
also from the coexistence of different heat diffusion mecha-
nisms.4 These are strongly related to the heat-loss mechanisms
characteristic of a given experimental apparatus. Essentially
these lead to non-adiabatic behaviour, and time-dependent

temperature profiles, resulting in deviations from Newton’s
law of cooling.5,6 These factors contribute to errors which vary
between instruments. Moreover, in addition to these uncer-
tainties, the heat production may be time-dependent due to
colloidal evolution during the hyperthermia experiments,7–9

which adds further complexity to the problem.
To address this important issue, in a previous work we

developed a new protocol to characterize the SLP value from
the peak of the temporal evolution of the temperature curve,
ΔT (t ), around the switch on/off field point.6 The key postulate
of our alternative approach to the problem is that, irrespective
of the spatial temperature profile and its dynamics, it is essen-
tially the same during heating and cooling phases close to the
peak. As will be shown later this peak analysis method (PAM)
allows to compensate for the heating losses leading to a more
correct value of the SLP. Briefly, the PAM procedure consists of
obtaining the SLP value from linear fits of the ΔT (t ) curve
before and after the peak; since both would correspond to the
same temperature profile, its actual shape would not play a
role (see ref. 6 for further details). Note that, thus far, the
methodology summary did not refer specifically to magnetic
hyperthermia nor to photothermia, which reflects its general-
ity to study either phenomenon.

This new approach has several advantages. Firstly, it allows
the rapid production of a series of peaks (Zigzag protocol6)
that allows calculation of the error associated with the SLP
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determination faster than repeating measurements to analyze,
for example, the initial slope several times. Furthermore, it
allows us to calculate the SLP at different global temperatures
or after exposure of the particles to the field for different
amounts of time. In the case of a system with a time-depen-
dent SLP (for example because of chaining of magnetic NPs
(MNPs) under AC fields9,10), this allows determination of the
time dependence of the SLP. However, as noted in ref. 6, this
requires accurate determination of the experimental error to
give confidence in the presence of a time dependent SLP. The
reliable determination of the SLP and associated error is the
main aim of this work.

In this respect, while the theoretical basis of the PAM is
complete and robust, there are some aspects that need further
study. In particular, the optimum number of data points repre-
senting the trade-off between resolution and accuracy needs to
be analyzed. Since the peak analysis is theoretically ascribed to
the peak (i.e. the smaller Δ(T ) range around it, the better), it is
equivalent to say that it has the same restriction (in terms of
data points) as the initial slope method (ISM). Since in essence
the numerical determination is analogous to the ISM, but with
two slopes instead of one, one could think that the additional
uncertainty due to subtracting two slopes could give a poorer
SLP value. A key objective to determine here is whether the
theoretically more solid background of the PAM approach can
compensate such higher uncertainty due to using two slopes.
Furthermore, we aim to elucidate rigorously the data range
within which the temperature behaves linearly with time.

In this work, we have studied the SLP value as a function of
the number of data points for standard magnetic hyperther-
mia experiments, but it is noted the results should be also
applicable to photothermia, as previously described. For com-
pleteness and based on its relevance for the literature, as it is
commonly used, we have compared the values with those
obtained from the initial slope approach. Our aim is to estab-
lish an optimal protocol for data analysis using the peak
analysis method, so the community working on magnetic
hyperthermia characterization has available a robust technique
that minimizes the variability found in the literature until now.
Central to our investigation is the use of statistical methods to
determine the optimal trade-off between the size of the time
measurement interval and the significance of non-linearity on
the fit. Finally, as a part of this work, we have developed a
python-based analyser which has been released as a web-based
application for community use (SLPcalculator.com). Beyond
extending the original PAM protocol, the present work intro-
duces a quantitative statistical framework to assess the accu-
racy and robustness of SLP determination. By incorporating an
objective criterion to select the optimal time interval for linear
fitting, this approach not only improves the precision of the
PAM but also enhances the reliability of commonly used
methods such as the initial slope method. Importantly, the
proposed statistical analysis is general and can be readily
applied to other calorimetric approaches for SLP evaluation.

The article is organised as follows: first, in section 2 details
of the experiments are described, together with a brief

summary of the PAM and a description of the F-test statistical
analysis. Then, the results are reported in section 3, including
an in-depth analysis of the linear range identification and the
role of measurement repetition on accuracy. Subsequently, in
section 4 we introduce SLPcalculator.com, the free software we
have developed and made publicly available to provide statisti-
cally significant SLP determination. Finally, the main con-
clusions are summarised in section 5.

2. Materials and methods
2.1. Magnetic nanoparticles synthesis and characterization

Iron oxide octahedral nanoparticles were selected as a refer-
ence material that has been used in our previous work.6

Briefly, particles were prepared through an oxidative precipi-
tation aqueous route based on a synthesis previously
reported11 but with minor modifications. A solution of FeSO4

(1 M) was prepared in 50 mL of H2SO4 0.01 M. This liquid was
then added to a solution composed of NaNO3 (4.25 g), NaOH
(4.22 g), water (137 mL) and ethanol (63 mL, 96% vol). The
mixture resulted in a green rust suspension that was stirred for
15 min and then placed on a thermostatic bath at 90 °C for
6 hours. The prepared particles, were then subjected to an acid
treatment and subsequently coated with dextran.12 The main
characteristics of these particles were already reported.6

Briefly, transmission electron microscopy (TEM) confirmed
the particle shape and an average size of 32.0 ± 6.7 nm. Field
dependent magnetization at 300 K recorded in a SQUID mag-
netometer yielded saturation magnetization of ≈77 Am2

kgFe3O4

−1; remanent magnetization of ≈12 Am2 kgFe3O4

−1 and
coercive field values of ≈4 kA m−1, in agreement with literature
values for magnetite/maghemite nanoparticles.

2.2. Magnetic hyperthermia measurements

The magnetic hyperthermia measurements, comprising the
time dependent temperature variation, were performed using
a Fives Celes 12, 118 M01 generator. For the measurements,
1 ml of a suspension with an iron concentration of 1 mg mL−1

in water was placed in a plastic microtube. The microtube was
located at the centre of the magnetic induction coil inside an
insulating holder and the temperature was monitored until a
stable temperature was reached before turning the AC mag-
netic field on. The AC field conditions used were 166 kHz and
25 mT.

The AC field was applied for either 1, 2 or 4 minutes, and
the temperature variation was recorded during heating and the
subsequent cooling. Temperature was recorded with an
OSENSA fiber optic probe (PRB-G40-02 M-STM-MRI). These
measurements were repeated 10 times for each of the different
heating times.

2.3. Peak analysis method (PAM)

The foundation of the PAM was described in detail in ref. 6. A
brief summary is provided below.
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The basis of our approach is that the system temporal and
spatial evolution is accurately described by the heat diffusion
equation:

ρrcr
@ΔTr

@t
¼ kr

@2ΔTr

@r2
þ S0; ð1Þ

where ΔTr = Tr − Tenv, ρ stands for density, c for heat capacity,
k for thermal conductivity, and S0 is the heat source term. The
subscript “r” refers to the spatial dependence, and “env”
denotes the environment.

Without loss of generality, we may write eqn (1) to describe
both the heating and cooling parts of a typical magnetic
hyperthermia Δ(T )(t ) curve, as

@ΔTr

@t

� �
heating

¼ αr
@2ΔTr

@r2

� �
heating

þ S; ð2Þ

for the heating part, and

@ΔTr

@t

� �
cooling

¼ αr
@2ΔTr

@r2

� �
cooling

: ð3Þ

for the cooling one. Both in eqn (2) and (3), αr = kr/ρrcr and S =
S0/ρrcr. In our previous work6 we showed that the spatial
derivatives of both equations are the same in the limit of the
transition between heating and cooling stages, i.e. at the peak
of the ΔT (t ) curve. Thus, at the peak one can obtain the S
value (and therefore the SLP) by subtracting both equations,
giving:

S ¼ @ΔTr

@t

� �
heating

� @ΔTr

@t

� �
cooling

: ð4Þ

Eqn (4) clearly shows that the SLP, included within the “S”
parameter as

SLP ¼ S �
ρNP
C � 1

� �
ρwcw þ ρNPcNP
ρNP

; ð5Þ

is in this way determined independently of the actual tempera-
ture distribution of the experiment, thereby removing an impor-
tant device-dependent factor. In eqn (5), ρ and c correspond to
density and specific heat of the nanoparticles (NP) and embed-
ding medium (w refers to water); C stands for the nanoparticle
concentration.

2.4. Statistical analysis

As derived in our previous work6 and summarized in the pre-
ceding section, the PAM was implemented by performing
linear fits to the heating and cooling branches of the ΔT (t )
curve, immediately before and after the ON/OFF switching of
the applied field. The slopes extracted from both sides of the
peak were then combined to evaluate the S parameter as given
by eqn (4). A similar linear fitting procedure was also applied
within the framework of the Initial Slope Method (ISM).

2.4.1. Linear range determination. When performing these
linear fits, it is important to determine whether the data can
indeed be described by a straight line, or whether additional

curvature should be taken into account. To address this issue,
we employed the F-test, a statistical procedure commonly used
to compare two nested models, i.e., a simpler one and a more
complex one that includes an additional parameter.13,14 The
F-test evaluates whether the reduction in the chi-squared value
achieved by the additional parameter is statistically signifi-
cant.15 In our case, the simple model corresponds to the linear
fit, while the more complex one includes an additional quadra-
tic term. The F-statistic is defined as:15

Fx ¼ χ2ðmÞ � χ2ðmþ 1Þ
χ2ðmþ 1Þ=ðN �m� 1Þ ¼

Δχ2

χ2ðmþ 1Þ=ðN �m� 1Þ ; ð6Þ

where χ2(m) is the chi-squared value of the simpler model with
m free parameters, χ2(m + 1) is that of the more complex model
including an additional parameter, and N is the total number
of data points. In our case, m = 2 (slope and intercept for the
linear fit). To determine whether the additional term signifi-
cantly improves the model, we compared the calculated value
Fx with the critical value Fcrit of the F-distribution table at a
chosen significance level, accepting the simpler linear model
when Fx < Fcrit.

In our analysis, we considered a significance level of α =
0.05, which indicates a 5% probability of rejecting the null
hypothesis when it is actually true. In other words, there is a
5% risk of concluding that the additional term improves the
model fit when it does not.

2.4.2. Repeated measurements and averaging. As stated
previously, several independent measurements were per-
formed for different heating times to obtain a more precise
estimation of the SLP, reducing the impact of random fluctu-
ations. The resulting values under the same conditions were
then combined into a single representative value through a
weighted average, defined as:

S̄ ¼
PN
i¼1

wiSi

PN
i¼1

wi

; wherewi ¼ 1

σi Sið Þ2 ð7Þ

The corresponding Type A uncertainty (from the weighted
average) was given by

σS̄;A ¼
ffiffiffiffiffiffiffiffiffiffiffi
1

PN
i¼1

wi

vuuut ð8Þ

To account for the variability among individual data sets,
arising from possible sources such as temperature fluctu-
ations, an additional contribution to the uncertainty was
included. In particular, we introduced a Type B uncertainty
associated with the ambiguity in selecting the exact peak. In
practice, the maximum temperature is not reached at a single
point but rather over a short plateau of several points with
nearly identical values, determined by the resolution of the
temperature probe (see SI, section 1, for an illustrative
example). This feature makes the precise identification of the
peak ambiguous. To quantify this effect, for each temperature
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curve i, two values of S were computed: Sfirsti , obtained by
taking the first data point that reaches the maximum tempera-
ture, and Slasti , obtained by taking the last data point at that
same temperature. The Type B contribution for curve i was
then defined as

σSi;B ¼ SFirstMax
i � SLastMax

i

�� ��
2

ð9Þ

and the overall Type B uncertainty was obtained by averaging
over all curves:

σS̄;B ¼ 1
N

XN
i¼1

σSi;B ð10Þ

Finally, the combined uncertainty at each point was
obtained by combining both contributions:

σS̄;C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σS̄;A2 þ σS̄;B2

q
ð11Þ

where σS̄,A is the Type A (statistical) uncertainty. Note that σS̄,B
is included only for the PAM-derived results, whereas a much
larger such type of uncertainty is likely to be present for the
ISM regarding the starting “time zero” point. Consider, for
example, the change in concavity often observed (see e.g. ref.
16–29): where would the 0-time would be set for such measure-
ments? SI Fig. 1(b) illustrates this point. We did not consider
such Type B uncertainty for the ISM, however, because it is not
the objective of the current work, and it is only shown for
completeness.

3. Results and discussion
3.1. Effect of the number of fitted points on the SLP value

In our study, we repeated the measurement of a single batch
of particles 30 times, always starting at a very similar tempera-
ture. These measurements were grouped into 3 sets of
10 measurements within which the alternating magnetic field
was applied for varying amounts of time (1, 2 and 4 min). The
idea of applying the alternating magnetic field for different
times was to investigate if there was any effect of the different
curvature at the peak on the SLP values calculated with the
PAM.

Each of the measurements was analyzed using the PAM, fol-
lowing the procedure described above. Since the ISM is still
one of the most widely employed calorimetric approaches to
determine the SLP in experimental practice, we also included
its analysis for the sake of completeness, providing us a direct
comparison between both methods. For clarity, Fig. 1 provides
a schematic representation of the systematic procedure fol-
lowed in both approaches. Panel (a) shows the heat and cool
curve, where the time intervals selected for the analysis are
highlighted, while panels (b) and (c) depict the SLP values
obtained using the PAM and ISM methods, respectively, as a
function of the considered time windows. In general, Fig. 1
shows a large uncertainty on the determined SLP value over
the first seconds of measurement, which decreases rapidly

after 10 seconds. It is also noted an overall higher SLP value
obtained through the PAM approach over that obtained from
the ISM, an aspect that will be further discussed later. The ver-
tical dashed lines denote a 30-second interval, commonly
adopted in experimental practice.

The results displayed in Fig. 1 show, both for the PAM and
ISM approaches, a marked dependence of the determined SLP
value on the number of data points analysed. This is in agree-
ment with previous reports indicating that the arbitrary deter-
mination of the linear range used for the SLP calculations may
lead to inaccurate values.30 Although some authors perform
SLP calculations with a specific analysis of the time interval
used for the SLP calculation,31 in many other cases the time
interval for the analysis is generally either not reported or arbi-
trarily selected. For this reason, we implemented our proposed
statistical analysis to establish the range in which the linear fit
should be applied for each measurement, both in the ISM and
in the PAM analysis. In the following we will analyse the
dependence of the SLP value on the selected time range for
linear fit, and consequently on the number of data points
considered.

3.2. Linear-range identification for SLP determination

Before showing the results of the complete data set, which
consisted of several repetitions for each case, we first present a
detailed description of the analysis procedure using a single,
arbitrary ΔT (t ) curve as an example.

3.2.1. Single measurement. To determine with precision
the linear range of the ΔT (t ) curves we employed the well-
established F-test, described in detail in section 2.4, which
allows to assess whether the inclusion of an additional para-
meter (transforming the model from linear to quadratic) pro-
vides a statistically significant improvement in the fit. For
those readers interested in a more intuitive meaning of the
F-test to distinguish linear behaviour, in the SI, section 2, it is
shown in correspondence with the root mean square errors
(RMSE) of the linear and quadratic fits.

Fig. 1 Experimental SLP determination using both ISM (blue) and PAM
(orange) methods. Panel (a) shows the temperature rise curve with the
selected time intervals for each analysis, while panels (b) and (c) display
the corresponding SLP values as a function of the analyzed time
window.
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Fig. 2(a) and (b) show the SLP values as a function of the
number of points considered in the fits, using the PAM and
the ISM. In both cases, the shaded regions mark the time
intervals where extending the fit from the origin results in the
optimal linear fit according to the F-test, minimizing the
errors associated with the use of a smaller time range. This
representation makes it evident that the region in which the
linear approximation is statistically justified lies far from the
range that is most commonly adopted in the literature, typi-
cally around 30 seconds (see, e.g., ref. 2, 32 and 33 or even
larger time ranges34). Indeed, for this particular measurement,
the SLP value determined from the ISM using the first 30 s for
the fit was 83.4 W g−1 while using the optimum range was 97.5
W g−1, resulting in a 17% difference. When using the PAM for
the SLP determination, the obtained values were 87.0 W g−1

using 30 s for the fit and 112.2 W g−1 for the optimum value
determined using the time range determined from the statisti-
cal analysis. This comparison clearly illustrates the risk of
underestimating or overestimating the SLP when the data are
analysed without an objective determination of the linear
range. We also note that the PAM method gives a higher value
as found in ref. 6 because it compensates for the heat loss

thereby approximating adiabatic conditions. It is worth to
recall that in this particular measurement, the linear range of
the PAM approach occurs at a shorter time range that the ISM
one. It will be interesting to check whether the same trend is
maintained for other measurements.

3.2.2. Repeated measurements. We move now from the
analysis of a single measurement to the consideration of
repeated measurements for each of the experimental con-
ditions studied, as already introduced in the previous section.

Fig. 3 shows the results of the 30 measurements in which
the temperature versus time data have been normalized to
highlight the relative temperature variation throughout the
experiment. This normalization was performed to facilitate the
comparison of the results, as there were slight differences in
the initial temperature conditions at the start of each experi-
mental run. As can be observed in the figure, variations appear
between different repetitions. Since there was no systematic
variation with the order in which they were taken, these differ-
ences can be attributed to random fluctuations, highlighting
the importance of averaging repeated measurements. Several
factors can contribute to these differences, such as small vari-
ations in the starting temperature (see SI, section 3) or the
presence of initial thermal drift (if the system temperature had
not fully stabilized before starting the field application, even
small drifts could propagate into noticeable differences at
short heating times). These differences highlight the difficulty
to obtain reproducible experimental results in the SLP deter-
mination through calorimetric methods. It is worth mention-
ing that all the measurements were performed starting at a
very similar temperature and therefore, the possible differ-
ences associated to measurement at different temperatures, as
reported elsewhere35,36 would be minimal (see Fig. 3 within
the SI).

Focusing on a single time interval for the AC field appli-
cation, Fig. 4(a) and (b) show the SLP values obtained from ten
independent measurements performed under a 2-minute

Fig. 2 SLP values obtained with the Peak Analysis Method (PAM, (a))
and the Initial Slope Method (ISM, (b)) as a function of number of points/
time. Shaded regions represent propagated uncertainties, and horizontal
arrows indicate the smallest (light gray) and largest (black) temporal
range used for the linear fits, that the F-test classifies as linear. Obtained
from the beginning of the heating stage (ISM) or from the peak toward
both sides (PAM), the optimal time window is displayed as a vertical
band in both cases, where the F-test condition (F < Fcrit) is satisfied. The
green circle indicates the SLP value at 30 s for reference.

Fig. 3 Temperature variation over time in calorimetry experiments for
SLP determination. Bottom, middle and top datasets correspond to
applying field times of 1, 2 and 4 min, respectively. Results correspond
to 10 independent measurements of the same particles.
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applied field. As can be seen, variations arise between the SLP
values calculated from the individual measurements, which
could be related to small drifts in the initial temperature, as
already discussed above. The observed variability between
measurements requires the individual determination of the
optimal temperature range for accurate SLP assessment. Once
the individual SLP values are obtained, to reduce uncertainty,
results from up the ten individual measurements need to be
combined.

The lower panels of Fig. 4 illustrate how the SLP values
evolve as the number of repeated measurements included in
the analysis increases, for both the ISM and PAM approaches.
The histograms displayed at the bottom of each panel rep-
resent the distribution of the linear ranges determined by the
F-test for the different measurements considered. The average
SLP values were calculated using the weighting procedure and
the uncertainty definitions presented in section 2.4. It is
clearly observed that increasing the number of measurements
reduces the uncertainty of the results, since a larger statistical
sample provides a more precise estimate of the SLP. For
example, the SLP value determined from the ISM using the
first measurement was 98.6 ± 2.3 W g−1 while the SLP obtained
from ten measurements was 99.5 ± 0.7 W g−1. in the case of
the PAM, the obtained values were 107.3 ± 7.1 W g−1 for the

first measurement and 106.7 ± 2.1 W g−1 for combined results
of ten measurements. These results clearly validate the use of
repeated measurements to reduce the uncertainty in the SLP
determination.

3.2.3. Differences between the ISM and PAM approaches.
From the results depicted in Fig. 4, it is also important to note
that the ISM systematically underestimates the SLP values
compared to those obtained with the PAM. Indeed, the blue
line corresponding to the SLP values obtained from the ISM is
always below the one corresponding for those obtained
through the PAM analysis (see Fig. 4(c)). This behaviour is con-
sistent with previous reports in the literature,37 and highlights
the relevance of using an approach such as PAM, which mini-
mizes the bias introduced by the assumptions inherent to
Newton-law-based analyses. We note here that Newton’s law of
cooling is applicable only to losses from a sample with a
uniform temperature,5,6 which is rarely the case in practice.2,3

The limitations associated with the initial slope method have
been extensively discussed in the literature, highlighting
several critical challenges that affect its reliability and
applicability.6,30,38 To solve this, other data analysis
approaches have been proposed (e.g., the Box Lucas method,34

the corrected slope method39 or the stepped heating
procedure40).

Fig. 4 Analysis of repeated measurements. (Top panels) SLP values obtained from each of the ten independent measurements using the ISM (a) and
PAM (b) for a heating time of 2 minutes. (Bottom panels) (c) Evolution of the averaged SLP values as the number of measurements considered
increases (from 1 to 10), for both the ISM and PAM approaches. The histograms displayed at the bottom of each panel represent the distribution of
the linear ranges determined by the F-test (F < Fcrit), with vertical dotted lines indicating the average optimal time window obtained from this
criterion.

Paper Nanoscale

Nanoscale This journal is © The Royal Society of Chemistry 2026

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
Fe

br
ua

ry
 2

02
6.

 D
ow

nl
oa

de
d 

on
 2

/1
1/

20
26

 1
0:

49
:1

8 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5nr04995d


However, it is important to highlight here the problems
associated with the assumption of linear heat losses. The
general scenario for SLP determination may be summarised as
follows: once the AC field is switched on, the particles start
releasing heat. At this initial stage, the SLP value could be
obtained from the linear slope of the ΔT (t ) curve, the ISM.
However this assumes ideal adiabatic behaviour, whereas as
soon as the system temperature differs from that of the
environment, there is a flux of energy to the environment.
Such heat loss is often assumed to be linear and described by
the so-called Box–Lucas equation, of the form:

TðtÞ ¼ Tenv þ S
a
1� e�at½ �; ð12Þ

with Tenv the temperature of the environment, and S related to
the SLP as indicated in eqn (5).

Note that S ¼ lim
t!0

dT
dt

, corresponding to the ISM limit. It

is also worth noting that eqn (12) corresponds to the scenario
sometimes referred to as Newton’s law of cooling, as the rate
of heat losses is proportional to the difference in temperatures
between sample and environment.4 However, as stated earlier,
this only applies in the case of a uniformly heated medium.

In practice, this linear loss assumption is very limited,
restricted to the very first stages of the heating process, corres-
ponding to small temperature differences. Over time, non-
uniform sample temperature profiles,2,3 compounded by the
coexistence of several heat loss mechanisms, lead to strong
nonlinear losses and eqn (12) becomes inapplicable. The
increasing non-uniformity of the temperature profile is illus-
trated in Fig. 5(a), where a typical laboratory measurement has
been reproduced using finite-element simulations in COMSOL
Multiphysics® (see SI, section 4 for details). Generally, the
assumption of a homogeneous temperature within the sample
is not the case in practice. These problems have been
thoroughly discussed by Wildeboer et al.39

It is in this context that the PAM approach demonstrates
unmatched strength compared to methods based on Newton’s
Law of Cooling. As outlined in section 2.3, its advantage lies in
the fact that it is independent of the actual temperature pro-
files, as far as they are sufficiently similar. And, as discussed in
detail in Ruta et al.,6 that happens close to the peak of the
ΔT (t ) curve, at the switch on/off transition. This is illustrated
in Fig. 5(b), where it is shown the typical ΔT (t ) curve corres-
ponding to the simulated sample in panel (a): the insets in
Fig. 5(b) clearly show that the temperature profiles are much
more similar close to the peak. These results are consistent
with those reported in our previous work,6 but extending the
1D model used there to a more complete 3D case. To complete
the analysis, it is worth recalling here that the linear -or non-
linear- character of the experiment can be determined6,41 by
plotting the time derivative of the ΔT (t ) curve, d(Δ(T ))/dt,
against Δ(T ), as illustrated schematically in Fig. 5(c).

The conclusion of the above arguments is that approaches
based on the so-called Newton’s law of cooling are, in general,
inadequate to describe and analyse experimental data. While

in general these difficulties are known in the related literature,
all models to determine the heating power of the nanoparticles
are based on such type of approaches (including others, such
as the corrected-slope method39). Our objective in ref. 6 was to
go beyond this type of approaches, into a more physically rea-
listic scenario. Although not important for the above discus-
sion, it is worth noting that the simulations also yield larger
SLP values for the PAM approach compared with the ISM, con-
sistent with the experimental observations (see SI, section 5).

3.3. Comparison among different measurements and time
intervals

Following the analysis based on a single time interval for the
AC field application, we now examine the potential influence
of the field application time on the SLP measurement, particu-
larly in terms of the slope variations observed during peak
analysis. Therefore, as stated earlier, we conducted a series of
measurements at different time intervals to assess the poten-
tial impact of field exposure duration on the SLP determi-
nation. Specifically, we compare the average SLP values
obtained for different heating times (1, 2, and 4 minutes)
using the same batch of particles. The analysis includes the

Fig. 5 Schematic representation of the main limitations in SLP determi-
nation. (a) Temperature colormap from COMSOL simulations at selected
times. (b) Temporal evolution of the temperature; the subplots show
differences in the temperature gradient. (c) Nonlinear character of the
system evidenced by plotting the derivative d(ΔT )/dt against ΔT, which
deviates from the simple linear loss assumption.

Nanoscale Paper

This journal is © The Royal Society of Chemistry 2026 Nanoscale

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
Fe

br
ua

ry
 2

02
6.

 D
ow

nl
oa

de
d 

on
 2

/1
1/

20
26

 1
0:

49
:1

8 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5nr04995d


SLP values determined with the ISM by fitting the temperature
rise during the first 30 seconds of heating, which is a com-
monly adopted practice in the literature, and those obtained
with both ISM and PAM by fitting the slopes within the objec-
tively determined linear range of the heating and cooling
branches (Note that the ISM used here has not considered any
further correction including the thermal losses such as the
corrected-slope method or Box-Lucas method). In the latter
cases, the reported SLP values correspond to the averages of
the histograms within those linear intervals. The results are
summarized in Fig. 6.

As discussed in the previous section, it can be clearly
observed that the SLP values obtained with the ISM are system-
atically lower than those derived using the PAM. This is con-
sistent with the intrinsic underestimation of SLP by the ISM
due to its neglect of some loss mechanisms in the system and
its assumption of Newton’s law of cooling. A particularly inter-
esting feature is the significant difference between the SLP
values obtained in the determined linear range (both for ISM
and PAM) and those derived from the ISM when restricted to
the first 30 seconds of heating, as is commonly done in experi-
mental practice. As also mentioned in the previous section,
this observation highlights the limitations of such a conven-
tional approach and underlines the importance of employing
objective criteria, such as the F-test, to identify the linear
range and avoid systematic errors in the determination of the
SLP.

4. Development of a web-based
software for SLP calculation

We are aware that the methodology proposed for SLP calcu-
lation based on the F-test analysis entails a degree of complex-

ity that may hinder its implementation. Therefore, to address
this challenge and promote greater accessibility, we have devel-
oped a dedicated software tool that facilitates the execution of
this type of analysis in a more streamlined and user-friendly
manner.

The software, built in Python, provides an interactive inter-
face that guides the user through the complete workflow, from
data loading to the calculation of Specific Loss Power (SLP).
The application can be found at SLPCalculator.com. Upon
starting the analysis, the program prompts the user to provide
the input data, which can be provided in different formats,
always specifying the columns corresponding to time and
temperature. The sampling interval is then automatically cal-
culated, and the imported data are displayed for verification,
with the option to save the graphical representation of the
datasets.

Before performing the SLP calculations, the program
requires input of the key physical parameters of the system
under study, including the density and specific heat of the
magnetic nanoparticles and of the carrier fluid, as well as the
particle concentration. The program then integrates the two
complementary approaches described in this work: the PAM
and the ISM. For each dataset, it applies the statistical cri-
terion based on the F-test presented in this article and calcu-
lates the corresponding values together with their associated
uncertainties. The results are displayed graphically, including
confidence bands and visual indicators that highlight the
optimal window sizes.

The software has been designed to be modular, ensuring
readability. Its simple interface makes the analysis accessible
even to users without programming experience. We think that
this custom software will ensure consistency, while providing a
user-friendly workflow to obtain SLP values from experimental
data and to standardize their determination, thus facilitating
comparisons and reproducibility among different research
groups.

5. Conclusions

In this work, based on our previous study in which we intro-
duced the Peak Analysis Method (PAM) as an alternative to
conventional approaches based on Newton’s law of cooling,6

we have developed a statistical framework to define with pre-
cision the linear applicability range of PAM, as well as other
methods based on linear fitting procedures. For this purpose,
we have implemented the F-test of the additional parameter,
which provides an objective criterion to discriminate between
linear and non-linear regimes.

Our results show that the linear range obtained through
this analysis is significantly different from the time windows
commonly assumed in experimental practice. This explains, at
least in part, the large variability in reported SLP values across
different laboratories when Newton’s-cooling-law-based
methods are employed without a statistical analysis.

Fig. 6 Average SLP values for different heating times (60, 120, and 240
s), obtained using the ISM and PAM methods by fitting the slopes within
the objectively determined linear range of the heating and cooling
branches, as well as the ISM applied to the first 30 seconds of heating.
Results corresponding to each independent measurement are also
shown.
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Finally, as a major outcome of this study, we have devel-
oped a web-based application that implements PAM in combi-
nation with the F-test. The code also makes a comparison with
the ISM, which is generally found to give artificially low values
of SLP due to the associated neglect of heat losses. This tool
enables researchers to determine the SLP (or SAR) in a sys-
tematic and reproducible manner, without the need for subjec-
tive or manual fitting procedures. By minimizing the varia-
bility and bias associated with conventional analyses, this
general approach paves the way toward more reliable and com-
parable SLP determinations in the magnetic hyperthermia and
photothermal heating communities.
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