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Abstract

Unplanned downtime in industrial machinery remains a major challenge, causing substan-
tial economic losses and safety risks across sectors such as manufacturing, food processing,
oil and gas, and transportation. This systematic review investigates the application of
machine learning (ML) techniques for anomaly and fault detection within the broader
context of predictive maintenance. Following a hybrid review methodology, relevant
studies published between 2010 and 2025 were collected from major databases including
IEEE Xplore, ScienceDirect, SpringerLink, Scopus, Web of Science, and arXiv. The review
categorizes approaches into supervised, unsupervised, and hybrid paradigms, analyzing
their pipelines from data collection and preprocessing to model deployment. Findings
highlight the effectiveness of deep learning architectures such as convolutional neural net-
works (CNNs), recurrent neural networks (RNNs), autoencoders, and hybrid frameworks
in detecting faults from time series and multimodal sensor data. At the same time, key
limitations persist, including data scarcity, class imbalance, limited generalizability across
equipment types, and a lack of interpretability in deep models. This review concludes that
while ML-based predictive maintenance systems are enabling a transition from reactive to
proactive strategies, future progress requires improved hybrid architectures, Explainable
Al and scalable real-time deployment.

Keywords: anomaly detection; fault detection; machine learning; industrial machinery;
predictive maintenance

1. Introduction

Unplanned downtime, or unscheduled production halts from equipment failure, poses
a persistent and costly challenge in modern manufacturing. Studies consistently show
that downtime consumes between 5% and 20% of total production time across various
sectors [1,2], with one global survey finding that 82% of companies experienced at least
one significant downtime incident in the past three years [3]. The economic implications
are significant; Deloitte estimates that unplanned downtime costs industrial manufacturers
approximately USD 50 billion annually on a global scale [4]. For large scale automotive
manufacturing plants, unplanned downtime can result in extremely high losses, hourly
downtime costs can exceed USD 2 million, accounting for lost output, overtime, and
logistical penalties [5]. Beyond direct financial losses, downtime can lead to wasted raw
materials, missed deadlines, and supply chain disruptions, particularly in just-in-time
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(JIT) systems [6]. Furthermore, equipment failures often precede industrial accidents,
as tragically illustrated by the Deepwater Horizon disaster where maintenance failures
contributed to an explosion that resulted in 11 deaths [7].

Traditional maintenance strategies have proven inadequate in addressing these mul-
tifaceted challenges. Reactive maintenance, which involves repairing equipment only
after it fails, is simple but leads to unpredictable downtime and high long-term costs [8].
Preventive maintenance, performed on a fixed schedule, mitigates some risks but can result
in unnecessary part replacements or missed failures that occur between inspections [9];
meanwhile, an improved approach, condition-based maintenance (CBM), still depends
heavily on sophisticated sensors and monitoring infrastructure, meaning that maintenance
actions are often still triggered only after monitored indicators cross predefined thresh-
olds, making the approach partly reactive in practice [1]. These limitations have created a
compelling need for a more intelligent, proactive approach.

The solution lies in the paradigm shift toward predictive maintenance (PdM), a strategy
enabled by the fourth industrial revolution (Industry 4.0). By leveraging technologies
like the Internet of Things (IoT), artificial intelligence (Al), and big data analytics, PdAM
transforms maintenance from a reactive or scheduled task into a data-driven process of
anticipating failure [10]. Sensors collect real-time data on key parameters such as vibration,
temperature, and pressure. Sophisticated machine learning (ML) algorithms then analyze
this data to detect subtle signs of degradation, predict a machine’s remaining useful
life (RUL), and enable maintenance to be performed precisely when needed, minimizing
disruption. This approach offers significant benefits, with a study from the U.S. Department
of Energy suggesting a transition to PAM can reduce downtime by up to 35% and lower
maintenance costs by 8 to 12% compared to preventive methods [11,12].

A core technological component of PdM is fault detection and diagnosis (FDD), which
focuses on identifying and classifying known fault conditions. Model-based FDD relies on
detailed process knowledge, while data-driven FDD increasingly uses machine learning to
interpret sensor data [13]. However, industrial systems also encounter previously unseen
or weakly labeled faults, which traditional FDD cannot capture. This is where anomaly
detection methods are essential, as they identify deviations from normal behavior without
requiring prior fault definitions. Online and unsupervised learning supports this by
adapting to continuously evolving industrial data streams. A major challenge in both areas
is interpretability. Many deep learning models operate as “black boxes,” making it difficult
for engineers to understand why a fault or anomaly is flagged. As a result, PAM research
increasingly incorporates Explainable AI (XAI) to produce human-interpretable insights for
root-cause analysis [14]. PAM also influences business models by enabling “maintenance-
as-a-service,” helping manufacturers reduce downtime, strengthen customer relationships,
and improve competitiveness across sectors such as energy and transport [15,16].

This systematic review aims to provide a comprehensive analysis of fault and anomaly
detection in the context of predictive maintenance. The primary objective is to address key
knowledge gaps by answering the following research questions:

¢  To what extent have machine learning and deep learning methodologies supplanted
traditional signal processing for fault and anomaly detection?

*  What are the prevailing applications, challenges, and successful implementations of
these techniques within the manufacturing sector?

¢  What are the key research gaps and future directions that will define the next genera-
tion of intelligent maintenance systems?

Section 2 outlines the methodology, including search strategy, study selection, data
extraction, and synthesis employed in this study. Section 3 introduces conventional fault
and anomaly detection approaches, covering industrial machinery types, common faults,
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and signal processing techniques. Section 4 reviews machine-learning-based approaches,
focusing on supervised, unsupervised, and hybrid methods. Section 5 examines the
applications of these techniques across different industries, including manufacturing, food
and beverage, oil and gas, and transportation. Finally, Section 6 concludes the review by
summarizing the main findings, discussing methodological limitations, and identifying
directions for future research.

2. Methodology

This review adopts a hybrid methodological framework, combining elements of sys-
tematic mapping studies and scoping reviews. This approach is specifically tailored to the
interdisciplinary domain of machine learning (ML) applications in fault and anomaly detec-
tion for industrial machinery. The chosen hybrid approach uniquely supports both structured
exploration and thematic synthesis, which is especially appropriate for fast-evolving technical
fields like applied machine learning, where diverse publication formats, experimental settings,
and evaluation standards make rigid review frameworks (such as PRISMA) overly restrictive.
The highly heterogeneous nature of study designs and reporting standards in this research
area precludes strict adherence to frameworks primarily designed for quantitative synthesis,
necessitating a more flexible yet rigorous approach. Drawing on the foundational scoping
review framework proposed by Arksey and O’Malley [17], further refined by Levac et al. [18]
and incorporating methodological insights from researchers, this review adopts a hybrid
approach that emphasizes transparency, adaptability, and comprehensiveness.

2.1. Search Strategy

The literature search was designed to be comprehensive, iterative, and multi-source.
To capture both peer-reviewed and emerging work, the following databases and repos-
itories were systematically searched: IEEE Xplore, ScienceDirect, SpringerLink, Scopus,
Web of Science, Google Scholar, and arXiv. These databases were selected for their exten-
sive coverage of engineering, computer science, and industrial applications, ensuring a
broad capture of both theoretical and applied research. Additionally, relevant technical
reports and industry white papers were included when issued by reputable institutions
or professional bodies, identified through targeted searches on key industrial organiza-
tion websites and professional society publications. Search terms were formulated using
Boolean logic and refined through a systematic, iterative process. Initial pilot searches were
conducted to identify key terms and adjust Boolean operators, with search strings itera-
tively refined based on the relevance of preliminary results from each major database until
saturation was observed. Key phrases included combinations of “machine learning”, “fault
detection”, “anomaly detection”, “predictive maintenance”, “industrial machinery”, and
“manufacturing systems”. A representative example of a search query used was: “machine
learning” AND (“fault detection” OR “anomaly detection”) AND (“industrial machinery”
OR “manufacturing equipment”). Filters were applied where possible to narrow results to
relevant fields such as engineering, computer science, and industrial technology. The search
included publications from 1 January 2010, to 31 May 2025, capturing both foundational
research and the latest developments.

2.2. Study Selection Criteria

A set of explicit inclusion and exclusion criteria was defined to guide the filtering
process and ensure that only relevant and sufficiently robust studies were considered. To be
included, studies were required to apply machine learning methods—whether supervised,
unsupervised, deep learning, or hybrid models—for the purpose of detecting faults or
anomalies in industrial settings. This scope specifically encompassed machinery used in

https:/ /doi.org/10.3390/a19020108


https://doi.org/10.3390/a19020108

Algorithms 2026, 19, 108

4 0f22

food and beverage manufacturing as a subset of the broader industrial category, while
studies targeting non-industrial domains such as finance, healthcare, or purely theoretical
signal processing without industrial application were excluded. Methodologically, eligible
studies had to employ machine learning as the primary approach for fault or anomaly
detection; those relying solely on traditional rule-based methods, statistical process control
(SPC), or classical signal processing without a significant ML component were excluded.
Nonetheless, these conventional approaches are briefly reviewed to contextualize the field
and illustrate the progression toward ML-based fault and anomaly detection. Furthermore,
studies needed to provide empirical evidence through real-world deployment, simulated
experiments based on industrially relevant scenarios, or validation against publicly avail-
able or private datasets with clear methodological descriptions. Purely conceptual papers,
architectural proposals without implementation, or review articles lacking novel empirical
contributions were not considered. With respect to publication type, only peer-reviewed
journal articles, conference papers, pre-prints from reputable repositories such as arXiv, and
technical reports or white papers issued by recognized institutions or professional bodies
were accepted. Finally, only publications written in English were included in the review.

The selection process was conducted in three phases to systematically filter the identi-
fied literature:

¢  Initial screening (titles and abstracts): Screened all identified titles and abstracts against
the preliminary inclusion/exclusion criteria. Studies that were clearly irrelevant
were discarded.

e  Full-text review: Articles that passed the initial screening, or whose relevance could
not be determined from the abstract alone, underwent a full-text review. During this
phase, a more detailed assessment against all inclusion criteria was performed.

¢ Conflict resolution and final selection: Any discrepancies during both the initial
screening and full-text review stages were resolved.

Throughout the selection process, the primary reason for exclusion was systematically
logged for articles rejected during the full text review stage to ensure transparency and
reproducibility, while a formal PRISMA flowchart was not utilized due to the hybrid
nature of this review and the diversity of study types, the entire selection process was
meticulously documented to provide an audit trail and support future replication. This
rigorous approach, incorporating independent review, was employed to minimize selection
bias and enhance the reliability of the chosen studies. The database search yielded a total
of 1142 records after duplicate removal. Following title and abstract screening, 812 records
were excluded due to clear irrelevance to industrial fault or anomaly detection using
machine learning. The remaining 330 articles underwent full text assessment, of which 252
were excluded for reasons including lack of an industrial context, absence of a substantive
machine learning component, or insufficient empirical validation. Ultimately, 78 studies
met all inclusion criteria and were retained for data extraction and synthesis. Table 1
summarizes the screening and selection process.

Table 1. Summary of the literature screening and study selection process.

Screening Stage

Records identified
Title and abstract screening

Records excluded

Description Number of Records
Records retrieved from databases and gray literature sources 1142

after duplicate removal

Records screened against preliminary inclusion and 1142
exclusion criteria

Clearly irrelevant studies removed during title and 812

abstract screening
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Table 1. Cont.

Screening Stage Description Number of Records
Full-text articles assessed  Articles reviewed in full for eligibility against all inclusion criteria 330
Articles excluded with documented reasons (e.g., non-industrial
Full-text articles excluded focus, lack of a substantive machine learning component, 252
insufficient empirical validation)
Final studies included Studies retained for data extraction and synthesis 78

2.3. Data Extraction and Categorization

The data extraction process focused not only on technical aspects of the ML models
but also on contextual factors such as dataset type, application environment, and reported
limitations. The following Table 2 summarizes the core data categories extracted from each
included study.

Table 2. Data extraction categories and their descriptions used in the systematic review.

Category

Description

Publication details

ML techniques used
Industrial context
Fault/anomaly types
Dataset characteristics
Feature engineering

Evaluation metrics
Results and findings

Challenges identified

Future directions

Author(s), publication year, and venue (journal, conference, etc.).
Type of model(s) used: supervised, unsupervised, deep
learning, and hybrid methods.

Domain of application (e.g., packaging systems, robotics,
food processing).

Specific failure types detected (e.g., wear, misalignment,
sensor faults).

Dataset origin (real-world or simulated), public/private status,
size, and diversity.

Sensor inputs, process variables, control parameters, and
preprocessing techniques.

Performance measures (e.g., accuracy, F1-score,

precision, AUC).

Summary of model outcomes and reported effectiveness.
Limitations discussed (e.g., data imbalance,

lack of interpretability).

Suggestions for improvement (e.g., Explainable Al,

edge deployment).

2.4. Synthesis and Analysis

Data synthesis was carried out in two stages. First, a quantitative mapping of the
extracted data was conducted to identify macro-level patterns in algorithm usage, dataset
types, industrial domains, and evaluation practices. This allowed the identification of
dominant research themes—for example, the frequent use of deep learning models in fault
prediction for complex machinery, or the reliance on synthetic datasets in simulation heavy
studies. Second, a thematic analysis was performed to extract deeper insights. Themes
were identified inductively from the extracted data, categorizing recurring patterns in
challenges, trends, and application contexts. Recurring challenges were grouped under
themes such as data scarcity, real-time implementation complexity, generalizability across
machinery types, and the opacity of model decisions. The review also highlighted method-
ological trends such as increased adoption of hybrid models combining data-driven and
physics-based components, as well as rising interest in model explainability, particularly in
safety-critical applications. Where applicable, comparative analysis was used to contrast
approaches across sectors. For instance, ML techniques applied in discrete manufacturing
(e.g., electronics assembly) tended to rely on structured sensor networks, while process
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industries (such as chemical or food production) often required time series models and
multimodal data fusion.

2.5. Methodological Limitations

While this review was designed to be rigorous and inclusive, several limitations
are acknowledged. First, by restricting the review to English-language sources, some
relevant non-English studies may have been excluded; however, initial scoping did not
reveal a significant body of non-English literature that would fundamentally alter the core
findings. Second, while broad in scope, the review may have missed relevant publications
indexed in databases not included in the search protocol. Third, the inclusion of pre-
prints and gray literature, while valuable for capturing cutting-edge research, means that
some findings may not have undergone formal peer review. Another acknowledged
limitation is the absence of a formal quality assessment tool. Unlike traditional systematic
reviews in healthcare, where bias and evidence levels are formally rated, the diverse
nature of ML applications and evaluation settings often lack standardized benchmarks
or control groups common in clinical trials. This precluded the direct application of
traditional risk of bias tools like Cochrane’s. Instead, this review evaluated methodological
robustness contextually based on the clarity of reporting, presence of empirical evaluation,
and transparency in results, which introduces some subjectivity. Despite these constraints,
the methodology employed in this review offers a comprehensive and adaptable framework
suitable for synthesizing current research in this dynamic field. It balances methodological
structure with exploratory depth, providing both a high-level overview of the state of
research and insights into technical and practical challenges.

The methodological framework presented in this section provides the foundation for
analyzing the wide spectrum of approaches used in fault and anomaly detection. Before
examining modern machine learning techniques, it is important to first understand the
conventional signal processing and diagnostic methods upon which many data-driven
models are built. Section 3 therefore introduces the traditional fault and anomaly detection
approaches that have shaped the evolution of predictive maintenance and continue to serve
as essential baselines in industrial practice.

3. Conventional Fault and Anomaly Detection

This section defines the foundational concepts, technological enablers, and analytical
frameworks that underpin the field of intelligent maintenance, focusing on the conventional
approaches to fault and anomaly detection. A key driver for this field is the need for
proactive failure anticipation, which is powered by these analytical capabilities.

3.1. Industrial Machinery Overview and Types of Faults

This sub-section provides a focused overview of common industrial machines and the
categorization of their faults and anomalies. A deep understanding of the equipment and
its potential failure modes is crucial for the effective implementation of any data-driven
system [19]. Predictive maintenance is applicable to a wide range of industrial machinery,
and the principles of fault and anomaly detection are versatile enough to be adapted across
different machine types. Among the most common examples are pumps, motors, and
turbines, which serve as foundational components in many industrial processes.

Pumps, essential for transporting fluids, are susceptible to several failure mechanisms
such as cavitation, bearing wear, impeller damage, and seal leakage [20]. These issues can be
detected through sensor-based monitoring that measures pressure, flow rate, temperature,
and vibration. Motors, often described as the workhorses of industry, also present a variety
of potential faults. Mechanical issues include bearing or rotor failures, while electrical
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problems may arise from insulation breakdown, winding shorts, or phase imbalances [21].
Effective condition monitoring of motors typically involves vibration analysis, thermal
measurements, and motor current signature analysis (MCSA) [22]. Turbines, which play
critical roles in power generation and propulsion, are complex systems where faults can
lead to catastrophic outcomes. Common turbine faults include blade erosion, imbalance,
and bearing degradation. These are usually monitored through extensive sensor networks
that track vibration, temperature, pressure, and acoustic emissions [23].

At the core of any predictive maintenance system are the analytical methods that
distinguish between faults and anomalies. Fault detection is defined as the process of
identifying a specific, known type of malfunction [24], whereas anomaly detection refers
to identifying data points or patterns that deviate from expected normal behavior, often
highlighting novel or unforeseen problems [25]. Industrial faults are generally divided
into two broad categories: mechanical and electrical. Mechanical faults are physical in
nature, typically associated with moving parts. For instance, bearing wear generates
high-frequency impacts that appear as spikes in vibration signals [26], while imbalance
and misalignment in rotating machinery produce strong vibrations at the fundamental
rotational frequency (1x RPM) and its harmonics. Gear tooth damage, including wear
or cracking, can be identified by the appearance of sidebands around the gear mesh
frequency in vibration spectra. Electrical faults, on the other hand, occur within the
electrical subsystems of machinery, particularly in motors. Examples include rotor bar
cracks, stator winding failures, and anomalies in voltage or current, which are often detected
using MCSA or thermal sensors [22,27].

Anomalies themselves can also be further classified based on their nature [28]. Point
anomalies refer to individual data points that significantly differ from the remainder of
the dataset. Contextual anomalies are only anomalous in relation to a specific context,
such as temperature readings that may be normal in one operating condition but abnormal
in another. Collective anomalies describe groups of related data instances that, when
considered together, deviate from expected patterns. Finally, temporal anomalies represent
events that occur at incorrect or unexpected times, a particularly relevant category for time
series data obtained from industrial sensors [28].

3.2. Signal Processing Techniques

In predictive maintenance, fault and anomaly detection typically rely on a structured
pipeline consisting of data collection, preprocessing and feature extraction, model applica-
tion, and fault identification [29]. Signal processing plays a crucial role in the preprocessing
and feature extraction stage, as raw sensor measurements such as vibration, acoustic, or
ultrasonic signals are often noisy and not directly interpretable by machine learning al-
gorithms [30,31]. By applying signal processing methods—such as Fourier transforms,
wavelets, or graph-based spectral techniques—raw data can be transformed into discrimi-
native features that capture key characteristics of machine condition, thereby improving
the performance of fault detection and diagnosis models [32].

Time series signals can be analyzed primarily in two domains: the time domain and
the frequency domain. Time-domain analysis evaluates the raw signal as it evolves over
time, extracting statistical features such as root mean square (RMS), standard deviation,
and kurtosis to capture the signal’s energy and impulsive characteristics [33,34]. Although
this approach is straightforward and computationally efficient, it is often insufficient on its
own to discriminate between different types of faults. Frequency-domain analysis, on the
other hand, transforms the signal to reveal its constituent frequency components, making it
particularly effective for detecting cyclic phenomena commonly associated with rotating
machinery, such as imbalance, misalignment, and gear wear [35]. Fast Fourier Transform
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(FFT) is the primary tool used in this context, as it decomposes a time-domain signal into its
frequency spectrum, thereby highlighting dominant frequencies and their amplitudes [34].

A variety of sophisticated techniques are used for signal processing to extract features
for fault detection. These include the following:

*  Envelope analysis: This is a specialized demodulation technique used to detect low-
frequency impulses embedded in high-frequency carrier signals. It is primarily used
for identifying faults in rolling-element bearings and gearboxes [26]. The process
involves band-pass filtering the raw vibration signal, rectifying it, and then applying
a low-pass filter to extract the envelope. A Fast Fourier Transform (FFT) is then
performed on this envelope signal to reveal fault-related frequencies that would
otherwise be hidden [36].

®  Spectral analysis: This is a foundational technique in machinery diagnostics. Spectral
analysis uses Fast Fourier Transform (FFT) to convert a time-domain signal into the
frequency domain. The resulting plot, a spectrum, shows the amplitude of each
frequency component. This is essential for identifying faults that occur at specific,
predictable frequencies, such as imbalances (1x RPM), misalignment (2 x RPM), and
gear mesh frequencies [37].

*  Wavelets analysis: This offers an advanced method that addresses a major limitation of
FFT—its inability to provide time-localized frequency information. Wavelets provide
high resolution in both the time and frequency domains, making them ideal for
analyzing non-stationary signals and detecting transient faults, such as those from
crack propagation or intermittent impacts [38]. Discrete Wavelet Transform (DWT) is
commonly used to decompose a signal into different frequency sub-bands, with each
band retaining its temporal information. This allows for the precise localization of a
fault in both time and frequency, providing more detailed diagnostic information than
traditional spectral analysis [37,39].

Figure 1 presents a set of signal processing analysis applied to the same vibration
signal. Subplot (a) shows the vibration waveform in the time domain, illustrating the raw
amplitude fluctuations. Subplots (b) and (c) display the frequency domain representation
using Fast Fourier Transform (FFT): (b) shows the full spectrum, while (c) provides a
zoomed view of the lower frequency region to highlight dominant components such
as rotational and fault related frequencies. Subplot (d) shows the envelope of the signal
obtained using the Hilbert transform, revealing the amplitude modulation pattern over time.
Subplot (e) presents the envelope spectrum, which is the frequency domain representation
of the envelope and is used to identify modulation and characteristic fault frequencies.
Finally, subplot (f) shows the Continuous Wavelet Transform (CWT) scalogram, providing
a time frequency representation suitable for detecting transient and non-stationary features
in the vibration signal.

Although conventional signal processing methods remain fundamental for feature
extraction, interpretability, and linking machine behavior to physical principles, they rely
heavily on expert knowledge and predefined assumptions. They can also struggle to
scale to complex, nonlinear systems or to adapt under changing operating conditions.
Machine learning addresses these limitations by enabling automated feature learning and
data-driven pattern recognition across diverse machinery and environments. Importantly,
ML does not replace signal processing entirely; instead, many predictive maintenance
pipelines integrate signal processing as preprocessing or feature engineering to improve
robustness and interpretability. Building on this foundation, Section 4 examines supervised,
unsupervised, and hybrid machine learning methods for fault and anomaly detection.
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Figure 1. Vibration-signal analysis: (a) time-domain waveform; (b) full FFT spectrum; (c) zoomed
FFT (0-500 Hz); (d) envelope signal; (e) envelope spectrum; (f) CWT scalogram.

4. Machine Learning Approaches

The increasing complexity and interconnectedness of modern industrial machinery
have accelerated the transition from rule-based and signal-driven diagnostics toward data-
driven predictive maintenance systems, while conventional signal processing provides
physically meaningful representations of machine behavior, machine learning techniques
extend these capabilities by learning discriminative patterns directly from data, either
using engineered features or end-to-end architectures. Accordingly, this section reviews
supervised, unsupervised, and hybrid machine learning paradigms for fault and anomaly
detection, highlighting how they complement and extend traditional diagnostic pipelines.
Figure 2 presents a schematic overview of these machine learning approaches.

‘ Input Data ’

‘ Feature Extraction ’

AN

Supervised ML Unsupervised ML

Fault Classification Anomaly Score

Figure 2. Schematic of machine learning approaches for industrial machines. Supervised models
classify faults, while unsupervised models detect anomalies without labeled data.
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Before discussing the individual learning paradigmes, it is important to consider the
practical data characteristics and constraints that influence model selection and performance
in industrial environments.

4.1. Data Requirements and Practical Considerations

The performance of fault and anomaly detection methods in industrial environments
is strongly influenced by the characteristics and quality of the available data. In practice,
higher data volume and diversity generally lead to more reliable models, particularly for
data-hungry machine learning approaches such as deep neural networks and ensemble
methods. For complex machinery operating under variable load and environmental condi-
tions, large and representative datasets are often required to capture normal variability and
avoid false alarms [40,41].

Sensor type and sampling frequency play a critical role in determining diagnostic
capability. High-frequency vibration and acoustic sensors are typically required to detect
early-stage mechanical faults, such as bearing wear or gear damage; in contrast, lower-
frequency measurements such as temperature, pressure, or electrical current are often
sufficient for monitoring gradual degradation or process level anomalies. Inadequate
sampling rates or low sensor resolution can obscure fault signatures and limit model
effectiveness, regardless of the algorithm used [33-35].

Table 3 summarizes typical sensor configurations, sampling frequencies, frequency
ranges, and data processing considerations commonly encountered in industrial fault and
anomaly detection.

Table 3. Typical sensor configurations, data characteristics, and processing requirements for industrial
fault and anomaly detection.

. . Sampling Key Frequency Typical Faults Common Preprocessing Data Volume and
Signal Type Typical Sensors Frequency Range of Interest Detected and Feature Extraction Storage Notes
Bearing defects, gear Band-pass filtering, FFT, High data} rate (GB/day
. . Accelerometers A K per machine); often
Vibration . 5-50 kHz 10 Hz-20 kHz wear, imbalance, envelope analysis, wavelet
(1-3 axis) S : processed at the edge
misalignment transform, RMS, kurtosis
and stored as features
Microphones, Early bearing faults, Filtering, time—frequenc Very high data rate; raw
Acoustic/ AE acoustic emission 20-100 kHz 5 kHz-50 kHz lubrication issues, 18/ q Y data stored selectively or
T analysis, spectral features .
sensors crack initiation event-triggered
Current Rotor bar cracks, stator Motor current signature Moderate data size;
Motor current transformers, 1-10 kHz 0-2 kHz e analysis (MCSA), FFT, often synchronized with
faults, load anomalies . K . X
Hall-effect sensors harmonic analysis vibration data
Thermgcouples, Overheating, friction, Smoothing, trend Low data volume;
Temperature RTDs, infrared 0.1-1Hz Very low frequency . - . . . long-term storage
insulation degradation  analysis, thresholding >
sensors feasible
Pressure .
Pressure/Flow transducers, flow 1-10 Hz Low frequency Lea}(age, blockage, Stat'lstl.cal featur.es, trend Low-moderate data
meters cavitation (pumps) deviation detection volume
Encoders Slip. misalienment Resampling, Often fused with
Speed /Position § 10-1000 Hz Machine-dependent b, 5 . synchronization, vibration and
tachometers control faults R
derivative features current data

The values reported summarize typical ranges commonly used in industrial practice and the literature; actual
sensor configurations and data requirements depend on machine type, fault mechanisms, sensor specifications,
and operational constraints (e.g., [19,22,26,33]).

Table 3 provides representative sensor configurations and data characteristics com-
monly encountered in industrial fault and anomaly detection systems. High-frequency
signals such as vibration and acoustic emissions are essential for detecting early-stage
mechanical faults but generate large data volumes, motivating edge-based preprocessing
and feature extraction. In contrast, low-frequency process variables such as temperature,
pressure, and flow support long-term condition monitoring and trend-based anomaly
detection with minimal storage requirements.
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Data quality is another key consideration. Industrial datasets frequently contain
noise, missing values, sensor drift, and synchronization issues across multi-sensor sys-
tems, while traditional signal processing techniques can mitigate some of these effects,
machine learning models particularly supervised approaches remain sensitive to biased or
poorly labeled data. Larger datasets generally improve robustness, especially for ensemble
models and deep learning architectures, but they also increase computational and storage
requirements [9,42].

Label availability further constrains method selection. Supervised fault detection
typically requires substantial labeled data for each fault type, which is often impracti-
cal in real industrial settings where failures are rare or costly to reproduce. As a re-
sult, unsupervised and hybrid approaches are commonly preferred during early deploy-
ment stages, with supervised models introduced incrementally as labeled fault data ac-
cumulate over time [19,25]. These practical data considerations largely determine which
fault and anomaly detection strategies are feasible and effective in operational predictive
maintenance systems.

Recent research has also advanced data-driven condition monitoring through ap-
proaches that reduce reliance on extensive labeled fault datasets. Blind diagnostic indicators
aim to extract health relevant features directly from raw sensor signals without predefined
fault templates, enabling robust monitoring under limited prior knowledge and variable
operating conditions. In parallel, contrastive and self-supervised representation learning
methods have gained traction for defect diagnosis by leveraging large volumes of unlabeled
data to learn discriminative representations via augmentations, temporal consistency, or
similarity based objectives, thereby improving robustness to label scarcity and domain
shifts. For prognostics, remaining useful life (RUL) prediction is increasingly supported by
spatial temporal multi sensor information fusion combined with prior knowledge embed-
ding (e.g., physical constraints or degradation priors), which enhances prediction stability
and generalization across operating regimes [43]. Collectively, these directions highlight a
shift toward data efficient and knowledge aware learning strategies that complement the
supervised, unsupervised, and hybrid paradigms reviewed in the following subsections.

4.2. Supervised Learning for Fault Detection

Supervised fault detection relies on labeled datasets in which operating conditions
are explicitly annotated as normal or faulty. Data preprocessing remains a critical step,
particularly for addressing missing sensor readings, noise, and synchronization issues in
industrial time series data. Techniques such as imputation, normalization, and dimension-
ality reduction introduced earlier in this review are commonly applied to ensure robust
model training [42].

Another key challenge in supervised learning is class imbalance, as normal operating data
typically dominate fault samples. Without appropriate mitigation, models may fail to detect
rare but critical failure events. The Synthetic Minority Over Sampling Technique (SMOTE)
is widely used to generate synthetic fault samples, while class-weighted loss functions and
ensemble resampling strategies further improve sensitivity to minority classes [44].

A wide range of supervised models have been applied to industrial fault detection.
Logistic regression provides a simple, interpretable baseline, while Decision Trees and
Random Forests offer greater robustness and accuracy. This is particularly beneficial in
SCADA and hardware-in-the-loop (HIL) environments, where data are often nonlinear,
noisy, and heterogeneous, and faults tend to manifest through threshold based patterns
that tree based methods capture effectively [45]. KNN remains useful for small datasets
but is computationally expensive at scale. Neural networks (ANNs) capture nonlinear
relationships, and recurrent architectures such as LSTMs and GRUs are widely used for
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sequential data in degradation modeling and remaining useful life (RUL) estimation [46].
Convolutional neural networks (CNNSs) are effective for raw signals and image-encoded
time series, with architectures like WDCNN showing robustness to noise and strong
results on benchmark datasets such as the Case Western Reserve University (CWRU)-
bearing database [47]. Hybrid CNN-LSTM networks further combine spatial feature
extraction with temporal modeling [48]. More recently, transformer-based models such as
the Temporal Fusion Transformer have gained traction, capturing long-range dependencies
while offering interpretability for industrial applications [46].

Figure 3 shows the workflow of supervised learning for industrial fault detection,
from data acquisition to model deployment and monitoring. The pipeline covers data
preparation, train/validation/test splitting, model training and evaluation, and long-term
maintenance in operation.

[ Data Collection }

Sensors, Fault Logs, Labels

Cleaning, Denoising, Synchronization, Normalization

[ Data Preprocessing }

Train/Validation/ Test Split
Stratified Sampling

rchitecture Design, Hyperparameter Tuning, Class Imbalance Handlin

[ Model Training and Validation }
A 8

inal Evaluation on Unseen Dat:

Model Testing
F a

[ Deployment and Monitoring }
R 8

eal-Time Fault Detection, Performance Tracking, Periodic Retrainin;

Figure 3. Workflow of supervised learning for industrial fault detection, from data preparation
through model training, testing, deployment, and monitoring.

4.3. Unsupervised Learning for Anomaly Detection

In industrial systems where labeled fault data are scarce or entirely absent, unsu-
pervised learning methods play a critical role in anomaly detection by modeling normal
system behavior and identifying deviations as potential anomalies. Among the most widely
adopted approaches is the Isolation Forest, which isolates anomalies through random parti-
tioning of the feature space. Because anomalous observations tend to be separated in fewer
splits, Isolation Forest provides an efficient and scalable solution that performs well on
high-dimensional sensor datasets commonly encountered in industrial environments [49].

Clustering based methods such as K-Means and DBSCAN are also widely used
for anomaly detection. In these approaches, normal operating conditions are expected
to form dense clusters, while observations that lie far from cluster centroids or fail to
belong to any cluster are flagged as anomalous. These techniques are conceptually simple,
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computationally efficient, and offer a degree of interpretability, making them effective for
detecting unusual operational states without requiring labeled fault data [50].

Neural network based autoencoders further extend unsupervised anomaly detection
capabilities by learning compact representations of normal system behavior. Trained to
reconstruct healthy operating data, autoencoders produce higher reconstruction errors
when presented with anomalous or degraded signals. Variants such as standard autoen-
coders and variational autoencoders have been widely applied to large-scale industrial
sensor arrays, demonstrating strong performance in detecting subtle and previously unseen
anomalies [51].

Another established unsupervised technique is principal component analysis (PCA),
which assumes that normal operating data reside within a low-dimensional subspace.
Anomalous observations project poorly into this space and therefore yield large residuals
that can be used as anomaly indicators. PCA remains attractive for industrial applications
due to its simplicity, computational efficiency, and high interpretability, particularly for
correlated multivariate sensor measurements [52].

4.4. Hybrid and Integrated Approaches

Hybrid and integrated approaches combine different paradigms—such as machine
learning, fuzzy inference, signal processing, and physics-based models—to build more
robust and interpretable fault detection systems. They are especially effective when labeled
data are scarce, operating conditions vary, or real-time deployment is required.

Recent studies highlight the effectiveness of hybrid approaches for industrial fault
detection. A neuro-fuzzy framework for bearing fault prediction achieved 99.4% accuracy,
outperforming a standalone neural network at 94% [53]. Another study proposed a hybrid
edge—cloud architecture for bearing monitoring, combining unsupervised detection at the
edge with supervised learning in the cloud and achieving an AUC of 0.96 [54]. For Cross-
Linked Polyethylene (XLPE) cables, a semi-supervised ensemble method leveraging both
labeled and unlabeled data reached 98% accuracy [55]. Additionally, hybrid techniques
that integrate feature engineering with fuzzy systems have shown strong performance in
bearing fault diagnosis [56]. Similar gains have been reported for remaining useful life
(RUL) prediction using ANFIS models enhanced with wavelet-based features [57].

These studies confirm that hybrid approaches generally outperform single-method
models by exploiting complementary strengths, although challenges remain in fusion
strategies, computational complexity, and maintaining interpretability.

4.5. Implementation and Deployment Considerations

Beyond algorithmic performance, the practical value of fault and anomaly detection
methods depends on their feasibility in real industrial deployment. Implementation con-
straints such as computational resources, latency requirements, and system integration
strongly influence model selection. In many industrial settings, fault detection must operate
in near real-time to enable timely intervention, which limits the applicability of computa-
tionally intensive models unless sufficient edge or cloud infrastructure is available [58,59].
Edge—cloud hybrid architectures are increasingly adopted to balance these constraints.
Lightweight models or anomaly detection components are often deployed at the edge
to enable low-latency monitoring and immediate alerts, while more complex machine
learning models are executed in the cloud for model retraining, performance analysis,
and long-term optimization. This distribution allows scalable deployment across fleets of
machines while maintaining responsiveness at the equipment level [60,61].

Integration with existing industrial systems is another critical consideration. Effective
predictive maintenance solutions must interface with supervisory control and data acquisi-
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tion (SCADA) systems, industrial Internet of Things (IloT) platforms, and computerized
maintenance management systems (CMMS) to support automated alerts, maintenance
scheduling, and decision making. Models that are difficult to interpret or maintain can
hinder adoption, even when detection accuracy is high [9,62]. From an operational perspec-
tive, machine learning models require continuous monitoring and periodic retraining to
remain effective under changing operating conditions, sensor drift, and equipment aging.
Studies consistently report that predictive maintenance systems deliver tangible benefits
such as reduced unplanned downtime, improved fault detection reliability, and optimized
maintenance intervals when these deployment and lifecycle management challenges are
addressed alongside model development. Consequently, successful industrial adoption
depends not only on algorithm selection, but on the holistic design of data pipelines,
deployment strategies, and maintenance workflows.

While Section 4 has outlined the key machine learning paradigms used for fault
and anomaly detection, understanding their practical relevance requires examining how
these models perform in real industrial environments. Machine learning techniques are
increasingly embedded into manufacturing systems, food and beverage operations, en-
ergy infrastructures, and transportation networks, each presenting unique challenges and
opportunities for deployment. Section 5 therefore explores the application of these ap-
proaches across different industrial sectors, highlighting practical benefits, domain-specific
considerations, and emerging trends in real-world predictive maintenance systems.

5. Applications of Machine Learning in Predictive Maintenance
5.1. Manufacturing and Production

In manufacturing environments, machine learning plays a vital role in preventing
unplanned downtime by enabling early detection of degradation in machines, production
robots, and rotating equipment [41]. Multi-sensor data fusion combining vibration, temper-
ature, acoustic, current, and speed signals significantly enhances diagnostic accuracy, with
studies demonstrating that expanding beyond vibration only measurements raises fault
classification performance from 84% to over 99% when using models such as kNN, SVM,
Random Forest, and Decision Trees [63]. Manufacturing systems also benefit from ML-
driven real-time thresholding, where Decision Tree models automatically derive dynamic
operational limits for parameters like motor current and vibration, enabling IIoT platforms
to trigger immediate alerts when machines deviate from healthy conditions. Deep learning
models, particularly LSTM and GRU networks, are widely used for remaining useful life
(RUL) prediction of bearings, spindles, compressors, and cutting tools, outperforming
classical ML by capturing long-term degradation patterns in industrial time series data.
Ensemble algorithms such as Random Forest and XGBoost further support predictive main-
tenance by effectively handling noisy, high dimensional sensor datasets and delivering
robust fault prediction for turbines, gearboxes, pumps, and conveyor systems. Modern
factories are increasingly integrating ML models into digital twin platforms, enabling vir-
tual simulation of equipment health, early prediction of degradation, and optimization of
maintenance schedules in steel mills and semiconductor manufacturing environments [64].

Roller chain systems, widely used in manufacturing conveyors, packaging lines, and
material handling equipment, have also benefited from machine-learning-based condition
monitoring. Typical failure modes such as chain elongation, sprocket wear, misalignment,
and lubrication degradation generate characteristic vibration and acoustic signatures that
can be captured using low-cost sensors. Recent studies demonstrate that data-driven
approaches, including feature-based machine learning and deep learning models applied
to vibration and motor current signals, enable early detection of chain degradation and
support remaining useful life estimation [65,66]. These developments highlight the applica-
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bility of machine learning techniques to discrete mechanical transmission systems beyond
traditional bearings and gearboxes.

To address the challenge of scarce failure samples, techniques such as SMOTE and
cost-sensitive tree models are employed to improve detection of rare but critical faults
in motors, hydraulic presses, and robotic systems [64]. Together, these machine learn-
ing advancements support highly reliable, data-driven predictive maintenance strategies
that enhance equipment availability and operational efficiency across manufacturing and
production settings.

5.2. Food and Beverage

Machine learning is becoming a central technology in food and beverage manufac-
turing, enabling real-time monitoring, quality control, and process optimization across
production environments. A key driver of this adoption is the increasing availability of in-
telligent sensors that generate large volumes of data suitable for machine learning analysis.
Research shows that food and drink manufacturers benefit significantly from combining
online sensors with machine learning models to improve the efficiency and reliability of
core processes. By integrating sensing technologies such as near infrared spectroscopy,
ultrasonic and microwave sensors, hyperspectral imaging, and optical systems, machine
learning algorithms can predict key quality parameters, detect deviations, and identify
early signs of process faults [67]. In several industrial case studies including mixing, clean-
ing, and fermentation machine learning models achieved accuracies between 95 and 100%,
demonstrating their effectiveness for classification, regression, and anomaly detection tasks
in high throughput food operations [67].

These predictive capabilities allow manufacturers to reduce waste, prevent resource
losses, and ensure consistent product quality. Machine learning also enhances operational
decision making in food and beverage manufacturing. Machine-learning-driven demand
forecasting significantly improves operational optimization by aligning production sched-
ules with real market needs, reducing unnecessary machine use and avoiding overproduc-
tion. Similarly, ML-based inventory optimization models were shown to reduce waste by
ensuring that raw materials and finished products are managed more efficiently [68]. These
applications indirectly contribute to equipment longevity by minimizing erratic production
cycles that can increase mechanical stress.

Beyond process and operational optimization, Al-based automation also supports
quality control and inspection tasks. Machine learning methods including image processing,
pattern recognition, and deep learning improve sorting, grading, and detection of product
defects. These systems replace error prone manual inspection and ensure more consistent
handling of products and equipment, which helps reduce operational disruptions and
maintain smoother production flow [69]. Together, these studies demonstrate that machine
learning provides a versatile set of tools that enhance monitoring, prediction, and decision
making across food and beverage manufacturing. Whether applied through intelligent sen-
sor networks, data-driven forecasting models, or automated inspection systems, machine
learning contributes to higher efficiency, reduced waste, and more sustainable production
in the sector.

5.3. Oil and Gas Industry

Machine learning (ML) has moved from experimental to operational in many parts of
the oil and gas value chain, especially in subsurface characterization, drilling, and produc-
tion optimization. In exploration and reservoir description, supervised and deep learning
models now routinely classify lithology and facies from seismic and well logs, reducing
turnaround time for interpretation and enabling more consistent mapping of complex
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reservoirs. Recent work, for example, integrates attribute selection workflows with classical
classifiers to identify the most informative seismic attributes for facies classification in
Malaysian offshore basins, improving both accuracy and computational efficiency [70].
Other studies use deep neural networks to predict lithology from well logs in unconven-
tional and geologically complex reservoirs, explicitly encoding geological context or multi
scale information to improve generalization beyond the training wells [71]. Together, these
approaches show that ML can systematically exploit large integrated datasets (seismic, logs,
cores) to refine facies models and reduce interpretation bias.

On the operations side, ML is increasingly embedded in real-time decision support
for drilling and field management. Reinforcement-learning-based agents have been pro-
posed to continuously update drilling parameters such as weight on bit and rotary speed,
formulating drilling optimization as a multi objective control problem that balances rate of
penetration, vibration control, and tool integrity; field-scale frameworks now couple sym-
bolic regression, time series models, and Markov decision processes to achieve real-time
optimization from streaming data. In reservoir and production engineering, physics-
informed ML workflows combine reduced order flow models with neural networks to
perform rapid history matching and long-term production forecasting in fractured uncon-
ventional reservoirs, offering orders of magnitude speed ups over high-fidelity simulation
while preserving essential physics [72]. More recently, similar ideas have been extended
to field development planning and process control, where deep reinforcement learning
agents optimize well placement, drilling sequence, and plant operating conditions subject
to economic and operational constraints [73]. Overall, these primary studies demonstrate
that ML in oil and gas has progressed from proof-of-concept models toward workflows
that are tightly integrated with physics, domain knowledge, and real-time data streams.

5.4. Transportation and Logistics

Machine learning has become an essential tool for advancing efficiency, sustainability,
and decision making within transport and logistics systems. Recent studies demonstrate
that ML techniques provide powerful capabilities for monitoring and optimizing trans-
portation operations. For example, models such as Independent Component Analysis
(ICA) and Gradient Descent K-Nearest Neighbors (GD-KNN) have been used to analyze
real-time transport data, predict short term demand, assess accessibility, and evaluate
system efficiency across parameters such as speed, cost, and fuel economy [74]. Beyond
operational monitoring, machine learning also contributes to sustainability assessment in
road freight transport. Supervised learning algorithms, including Support Vector Machines
(SVMs), discriminant analysis, KNN, and Decision Trees, enable the classification of com-
panies into sustainability performance levels using environmental, economic, and social
indicators; this means they can be used to help organizations identify improvement areas
and develop greener logistics strategies with high predictive accuracy, particularly through
optimized SVM models [75]. In addition, ML plays a critical role in freight transport
demand forecasting, where Artificial Neural Networks (ANNs), NARX, and NAR models
have been shown to outperform traditional statistical approaches like ARIMA by capturing
nonlinear patterns in historical Transportation Management System (TMS) data. These
models support more accurate vehicle allocation, routing decisions, and resource planning,
ultimately enhancing logistics performance and reducing uncertainty in dynamic supply
chain environments [76]. Collectively, these studies highlight the broad and impactful
applications of machine learning in creating more intelligent, efficient, and sustainable
transport and logistics systems.
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6. Evaluation and Emerging Trends

Traditional signal processing and modern machine learning approaches should not
be viewed as competing paradigms, but as complementary components within predictive
maintenance systems. Signal processing methods offer strong interpretability and phys-
ical grounding, while machine learning enables scalability, adaptability, and improved
performance under complex and nonlinear operating conditions. Hybrid approaches in-
creasingly bridge this gap by embedding domain knowledge into data-driven models,
thereby combining transparency with predictive accuracy.

While the preceding sections have examined conventional approaches, machine learn-
ing methods, and sector specific applications, a broader evaluation helps clarify how these
techniques complement one another and where the field is heading. Traditional signal
processing methods remain valuable due to their interpretability and strong link to physical
principles, yet they rely heavily on expert driven feature engineering and are difficult to
generalize across diverse machines and environments. Machine learning methods mitigate
these limitations by automatically extracting features and modeling complex nonlinear
relationships, although their effectiveness is highly dependent on data availability, quality,
and representativeness.

Supervised learning approaches typically achieve the highest accuracy when labeled
fault data are abundant, yet they remain sensitive to class imbalance and can struggle to
generalize to unseen equipment or operating regimes. Unsupervised learning approaches,
including clustering, PCA-based methods, and autoencoders, are more suitable for detect-
ing rare or novel faults but may be affected by noise, sensor drift, and changes in baseline
machine behavior. Hybrid approaches integrating supervised and unsupervised learning,
physics-based models, or signal processing features consistently outperform individual
paradigms by combining interpretability, robustness, and adaptability. Table 4 provides a
qualitative comparison of traditional signal processing, supervised learning, unsupervised
learning, and hybrid approaches with respect to key industrial criteria. The comparison
highlights trade-offs between interpretability, data and label requirements, and practical
maturity, while signal-processing methods remain highly interpretable and well established
in industrial practice, machine learning approaches offer greater adaptability at the cost
of increased data dependence and deployment complexity. Hybrid approaches balance
these characteristics by combining domain knowledge with data-driven learning, enabling
improved robustness and generalization under varying operating conditions.

Table 4. Qualitative comparison of fault and anomaly detection paradigms across industrial criteria.

Approach Interp. Label Need Data Demand Maturity
Signal processing High Low Low-Med. High
Supervised ML Med. High Med.-High Med.
Unsupervised ML Med. Low Med. Med.
Hybrid approaches High Med. Med.-High Med.

Several emerging trends are reshaping the future of predictive maintenance. Transformer-
based architectures provide superior modeling of long-range temporal dependencies and
offer improved interpretability through attention mechanisms. Explainable Al (XAI) has be-
come essential for enhancing transparency and operator trust, particularly in safety-critical
environments. Physics-informed and hybrid models that blend engineering knowledge
with data-driven learning help address data scarcity and improve generalization. Addition-
ally, edge—cloud hybrid deployment frameworks support real-time detection at the edge
while enabling scalable model retraining in the cloud.

https:/ /doi.org/10.3390/a19020108


https://doi.org/10.3390/a19020108

Algorithms 2026, 19, 108

18 of 22

While these approaches demonstrate significant potential, many remain at a research or
pilot-deployment stage. Challenges related to data availability, validation across operating
regimes, certification, and integration with safety-critical industrial systems continue to
limit widespread adoption.

Despite the comprehensive scope of this review, several limitations should be acknowl-
edged. First, although a wide range of industrial sectors and machine learning paradigms
are covered, the analysis is primarily qualitative and does not include a standardized quan-
titative benchmarking of methods, which is challenging due to heterogeneous datasets,
evaluation metrics, and experimental settings reported in the literature. Second, while
efforts were made to include recent advances through 2025, the rapid pace of development
in machine learning means that emerging architectures and techniques may not yet be fully
represented. Third, the review relies on reported results from existing studies, many of
which are based on laboratory datasets or pilot-scale deployments, potentially limiting
direct generalization to large-scale industrial environments. These limitations highlight
the need for future work focusing on standardized evaluation frameworks, large-scale
industrial validation, and longitudinal performance assessment.

A key contribution of this review, compared with existing surveys on predictive
maintenance and anomaly detection, is its integrated cross sector perspective and its
synthesis of machine learning paradigms within a unified evaluation framework. Whereas
most prior reviews focus on a single industry, a single algorithm family, or a limited set of
benchmark datasets, this work provides a comprehensive analysis covering supervised,
unsupervised, and hybrid approaches across manufacturing, food and beverage, oil and
gas, and transportation. Furthermore, by extending the review period through 2025 and
incorporating emerging concepts such as transformers, hybrid physics-informed models,
and Explainable Al, this review offers an updated and consolidated resource that captures
recent advances not yet reflected in earlier surveys.

7. Conclusions

This systematic review has examined the evolution of fault and anomaly detection
from conventional signal-based techniques to modern machine learning approaches, high-
lighting the growing maturity and practical relevance of data-driven predictive mainte-
nance. By analyzing supervised, unsupervised, and hybrid models alongside diverse
industrial applications, this review provides an integrated understanding of how machine
learning is transforming maintenance practices across sectors such as manufacturing, food
processing, energy, and transportation.

A key insight from this work is that the effectiveness of predictive maintenance de-
pends not on a single model type but on the orchestration of the entire pipeline from data
acquisition and preprocessing to model training, deployment, and continuous monitor-
ing, while deep learning models, particularly CNNs, RNNs, autoencoders, and hybrid
frameworks, have demonstrated strong performance in handling complex sensor data,
persistent challenges remain. These include limited labeled fault datasets, class imbalance,
generalization across different machines, and limited interpretability of deep models.

Unlike earlier surveys that typically concentrate on isolated algorithmic techniques or
specific industrial domains, this review contributes a broader and more up-to-date synthe-
sis that spans multiple sectors and integrates conventional, machine learning, and hybrid
approaches within a unified evaluation framework. This broader scope enables practition-
ers and researchers to understand how different techniques compare, where they succeed or
fail, and how emerging paradigms can be translated into practical industrial deployments.

The evaluation presented in this review highlights several emerging directions that
are likely to shape the next generation of predictive maintenance systems. Transformer-
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based and attention driven architectures offer improved modeling of long-range temporal
dependencies, while physics-informed and hybrid learning approaches help overcome
issues related to data scarcity and domain shift. Explainable Al techniques are becoming
essential for improving transparency, enabling engineers to interpret model outputs, and
increasing trust in high-stakes industrial environments.

Overall, this review contributes a comprehensive and up-to-date synthesis of machine
learning techniques for industrial fault and anomaly detection through 2025. Future
progress will depend on integrating advanced machine learning architectures with domain
knowledge, scalable edge-cloud deployment, and interpretability frameworks, ensuring
that predictive maintenance solutions are not only accurate and robust but also trustworthy
and practical for industrial adoption.
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