

CD200R1 promotes the development of murine $\gamma\delta$ 17 T cells

LINLEY, Holly <<http://orcid.org/0000-0003-4524-6891>>, JAIGIRDAR, Shafqat <<http://orcid.org/0009-0000-9432-3035>>, BUCKINGHAM, Lucy <<http://orcid.org/0000-0002-4976-4066>>, COX, Joshua <<http://orcid.org/0000-0002-6308-7831>>, PRIESTLEY, Megan <<http://orcid.org/0000-0001-7805-2503>>, HAINS, Anna <<http://orcid.org/0009-0009-3475-6555>> and SAUNDERS, Amy <<http://orcid.org/0000-0002-2693-6435>>

Available from Sheffield Hallam University Research Archive (SHURA) at:

<https://shura.shu.ac.uk/36821/>

This document is the Accepted Version [AM]

Citation:

LINLEY, Holly, JAIGIRDAR, Shafqat, BUCKINGHAM, Lucy, COX, Joshua, PRIESTLEY, Megan, HAINS, Anna and SAUNDERS, Amy (2026). CD200R1 promotes the development of murine $\gamma\delta$ 17 T cells. *Journal of Leukocyte Biology*. [Article]

Copyright and re-use policy

See <http://shura.shu.ac.uk/information.html>

1 **CD200R1 promotes the development of murine $\gamma\delta$ 17 T cells**

2
3
4 Holly Linley^a, Shafqat Jaigirdar^{a,1}, Lucy Buckingham^a, Joshua Cox^a, Megan Priestley^{a,2},
5 Anna Hains^a, Amy Saunders^{a,b,*}

6
7
8 a. Lydia Becker Institute of Immunology and Inflammation, Division of Infection,
9 Immunity and Respiratory Medicine, School of Biological Science, Faculty of
10 Biology, Medicine and Health, University of Manchester, Manchester Academic
11 Health Science Centre, Manchester M13 9PL, UK

12 b. Biomedical and Life Sciences, Lancaster University, Bailrigg, Lancaster, LA1
13 4YW, UK

14 * corresponding author

15 Dr Amy Saunders E-mail: a.saunders@lancaster.ac.uk

16

17

18 Present address:

19 1. School of Biosciences and Chemistry, Sheffield Hallam University, Sheffield S1
20 1WB, UK
21 2. Koch Institute of Integrative Cancer Research, Massachusetts Institute of

1 Technology, Cambridge, MA, 0139, USA

2

3 The authors declare no conflict of interests.

4 **Abstract**

5

6 $\gamma\delta$ T cells are enriched at barrier sites such as skin, gut and lung, where they protect
7 against cancer and infections, and promote healing. They detect diverse ligands in T cell
8 receptor-dependent or independent manners, producing large quantities of pro-
9 inflammatory cytokines. $\gamma\delta$ T cells develop in foetal thymi in temporally controlled waves
10 where, unlike $\alpha\beta$ T cells, many $\gamma\delta$ T cells adopt their effector fate, becoming either IFN γ
11 or IL-17A-producers ($\gamma\delta$ 17 T cells).

12

13 CD200R1 suppresses myeloid cell activity but has also been shown to promote innate
14 lymphoid cell IL-17A production, enhancing psoriasis-like skin inflammation. $\gamma\delta$ 17 T cells
15 are potent IL-17A producers in skin therefore, the effect of CD200R1 on IL-17A production
16 by $\gamma\delta$ 17 T cells was investigated using CD200R1KO mice. CD200R1 was revealed to
17 promote IL-17A production by $\gamma\delta$ T cells in skin and lymphoid organs. Although CD200R1
18 is not expressed by adult $\gamma\delta$ T cells, it is expressed by immature developing $\gamma\delta$ T cells in
19 foetal thymus where it supports the development of $\gamma\delta$ 17 T cells, enhancing IL-17-
20 producing and ROR γ t $^+$ $\gamma\delta$ T cell numbers in foetal thymic organ cultures. This identifies
21 CD200R1 as an important novel regulator of $\gamma\delta$ 17 T cell development in early life, a key
22 process for ensuring immunity, particularly at barrier sites.

23

24

25

26 **Key words:** $\gamma\delta$ T cells, CD200R1, IL-17A, development, skin

27

1 **Introduction**

2 $\gamma\delta$ T cells are rare in many tissues but are enriched at barrier sites such as the skin, lung
3 and gut where they are crucial for wound healing and protecting against infections and
4 cancer (1-5). However, they have also been shown to drive inflammatory disease (6). $\gamma\delta$
5 T cells are potent and rapid producers of inflammatory cytokines, being activated in either
6 a T cell receptor (TCR)-dependent, or independent manner. Like conventional $\alpha\beta$ T cells,
7 $\gamma\delta$ T cells rearrange their *Tcr* genes in the thymus however, $\gamma\delta$ TCRs are less variable than
8 $\alpha\beta$ TCRs (5) and lack MHC restriction. Instead, $\gamma\delta$ TCRs recognise a range of ligands
9 including stress-induced MHC-like molecules, phosphorylated metabolites and lipid
10 antigens presented by CD1 molecules (7). The ability of $\gamma\delta$ T cells to be activated via
11 innate-like receptors allows the rapid induction of immune defence against pathogens,
12 even to those not previously encountered. $\gamma\delta$ T cells also maintain tissue homeostasis,
13 are important in tissue surveillance at barrier sites and play crucial anti-tumour roles (4,
14 8). These functions of $\gamma\delta$ T cells are principally fulfilled via cytokine secretion and cytotoxic
15 activity, but these cells can also act as antigen presenting cells, driving adaptive immune
16 responses (9).

17
18 $\gamma\delta$ T cells can be classified based on their effector capabilities, being either IFN γ or IL-
19 17A-producers, with effector phenotypes conferred by the lineage-defining transcription
20 factors, T-bet or ROR γ t respectively. In mice the markers CD27 and CD44 correlate
21 relatively well with IFN γ and IL-17A-producing capability respectively. Concomitantly with
22 expressing rearranged $\gamma\delta$ TCR chains, $\gamma\delta$ T cells also acquire their effector fate, with
23 murine V γ 1 and V γ 5 cells (Tonegawa nomenclature (10)) mainly gaining IFN γ -producing
24 potential, and V γ 4 and V γ 6 T cells largely gaining IL-17A-producing potential (11).
25 Although the V γ TCR chain expressed is not the determining factor in effector fate
26 acquisition (12, 13), but V γ gene order on the *Tcr γ* locus is important (14).

27 In mice the development of $\gamma\delta$ T cells occurs in ordered waves comprising different
28 subsets, beginning at embryonic day 15 of gestation with the appearance of V γ 5
29 (Dendritic epidermal T cells (DETC)) which home to the epidermis (15). This is followed
30 by the development of V γ 6 cells which home to dermis, uterus and the peritoneal cavity.

1 V γ 4 cells develop shortly after, and home to lung, dermis and lymph node (LN) (16), then
2 perinatally, V γ 7 (intra-epithelial lymphocytes (IEL)) develop and home to the intestine.
3 Perinatal progenitors are required for generating IL-17-producing $\gamma\delta$ ($\gamma\delta$ 17) T cells in the
4 absence of inflammation (13), however, $\gamma\delta$ 17 T cells can be generated *de novo* from adult
5 bone marrow-derived precursors in response to inflammation (17) and V γ 4 and V γ 1 T
6 cells continue to develop later in life but are ‘adaptive $\gamma\delta$ T cells’ retaining the ability to
7 adopt multiple effector fates in the periphery (18). Factors governing the sequential
8 development of $\gamma\delta$ T cell subsets are not completely understood, but both TCR and
9 environmental signals are important.

10 TCR signal strength plays a crucial role in murine $\gamma\delta$ T cell development. CD4 $^+$ CD8 $^-$
11 double negative (DN) cells receiving strong TCR signals commit to the $\gamma\delta$ lineage and
12 strong TCR signalling is key for IFN γ -producing $\gamma\delta$ T cell development (19, 20). However,
13 weaker TCR signals are required for $\gamma\delta$ 17 T cell development (16, 19-22), where distinct
14 TCR-signalling pathways are engaged, specifying $\gamma\delta$ 17 T cell fate (23). Negative
15 regulators of TCR signalling such as the SRC family kinase BLK, aid the development of
16 $\gamma\delta$ 17 T cells (24), as does the transcription factor cMAF which drives expression of the
17 lineage defining transcription factor, ROR γ t. TCR signal strength regulates cMAF levels,
18 with strong TCR signals reducing cMAF, and weaker TCR signals increasing cMAF levels
19 and thus driving ROR γ t and reinforcing $\gamma\delta$ 17 T cell effector fate (25).

20 Cytokines also regulate $\gamma\delta$ T cell development with IL-7R α required for V-J $\gamma\delta$ tcr
21 recombination (26-30). IL-7 signalling particularly impacts $\gamma\delta$ 17 T cells, as high levels of
22 IL-7/IL-7R α signalling favour IL-17 production (31, 32) and IL-7R α is required for the
23 homeostasis of $\gamma\delta$ 17 T cells (33). Lymphotoxin (LT) signalling is key for the development
24 of both IFN γ -producing and $\gamma\delta$ 17 T cells, where LT β R drives the NF- κ B family member,
25 RELB, which in turn maintains ROR γ t expression (34). TGF β also drives $\gamma\delta$ T cell IL-17
26 production in early life (35), although the mechanism is not yet understood.

27 Medullary thymic epithelial cells (mTECs) and cortical TECs (cTECs) are crucial for
28 conventional $\alpha\beta$ T cell development, supporting positive and negative selection and
29 providing NOTCH signals and IL-7 (36). However, less is known about their role in
30 supporting $\gamma\delta$ T cell development. In mice cTECs promote V γ 4 T cell activity but are not

1 required for V γ 6 T cells (37). Conversely, mTECs are important for V γ 5 DETC
2 development, as they provide signals via the butyrophilin-related protein, SKINT-1 (38).
3 Thymic dendritic cells (DCs) also contribute to conventional $\alpha\beta$ T cell development, but a
4 role in $\gamma\delta$ T cell development has not been defined. Despite advances in our
5 understanding of how $\gamma\delta$ T cell development is regulated, factors involved in this process
6 remain incompletely understood.

7 CD200R1 is a cell surface receptor expressed on many immune cell types including (both
8 $\alpha\beta$ and $\gamma\delta$) T cells, NK cells, antigen presenting cells, subsets of granulocytes, and innate
9 lymphoid cells (ILC) in human skin (39), and on mast cells, ILCs macrophages,
10 monocytes and DCs, Langerhans cells and a subset of (both $\alpha\beta$ and $\gamma\delta$) T cells in murine
11 skin, as well as being expressed on neutrophils in murine bone marrow (39, 40).
12 CD200R1 expression is particularly high on type 2 immune cells including basophils, ILC2
13 and Th2 T cells (41). Interestingly, it was recently shown that *Cd200r1* is downregulated
14 in Th17 cells by *Staphylococcus aureus* α hemolysin (42), suggesting that *Cd200r1*
15 expression levels are regulated by microbial factors. CD200R1 inhibits pro-inflammatory
16 cytokine production and mast cell degranulation in myeloid cells (43, 44). However,
17 conversely, CD200R1 is required for efficient IL-17 production by ILCs, and CD200R1
18 promotes inflammation in a psoriasis model and controls cutaneous fungal infections (39,
19 40), demonstrating that CD200R1 has diverse functions in different cell types, including
20 promoting IL-17 production.

21 Given that $\gamma\delta$ T cells are crucial for producing IL-17 in skin and drive psoriasis-like and
22 anti-fungal immune responses (45-47), the role of CD200R1 in regulating murine $\gamma\delta$ T cell
23 IL-17 production was investigated. We show that CD200R1-deficient mice have impaired
24 IL-17 production by $\gamma\delta$ T cells, due to reduced $\gamma\delta$ 17 T cells, with IFN γ -producing cells not
25 affected. Although CD200R1 is not expressed by $\gamma\delta$ T cells in adults, it is expressed on
26 subsets of developing $\gamma\delta$ T cells in neonates during the developmental window for $\gamma\delta$ 17 T
27 cells. The reduction in $\gamma\delta$ 17 T cells is also observed during this time-period demonstrating
28 a role for CD200R1 in supporting the development of $\gamma\delta$ 17 T cells. Therefore, here we
29 identify for the first time CD200R1 as a key factor required for the development of murine
30 $\gamma\delta$ 17 T cells, shaping immunity at barrier sites.

1 **Materials and Methods**

2 **Mice**

3 All animal experiments were locally ethically approved and performed in accordance with
4 the UK Home Office Animals (Scientific Procedures) Act 1986. C57BL/6 (WT) mice were
5 obtained from Charles River Laboratories. CD200R1KO mice (48) on a C57BL/6
6 background, were bred and maintained in specific pathogen free conditions in house.
7 Mice were male and 7 to 12 weeks old at the start of procedures, unless otherwise stated.
8 Where neonatal tissues and foetal thymi were used, sex was not determined.

9 **Skin cell isolation**

10 Ears were split in half and floated on 0.8% w/v Trypsin (Sigma Aldrich) at 37 °C for 30
11 min, then were chopped and digested in 0.1 mg/ml (0.5 Wunch units/ml) Liberase TM
12 (Roche) at 37 °C for 1 hr. The fat was removed from dorsal skin before floating on Trypsin
13 as above. Tissue was chopped and digested with 1 mg/ml Dispase II (Roche) at 37 °C for
14 1 hr. Digested skin tissue suspensions were passed through 70 µm cell strainers, washed
15 and counted.

16

17 **Lymph node, thymus and spleen cell isolation**

18 Lymph nodes (LN, inguinal, axillary and brachial), thymi or spleens were passed through
19 70 µm cell strainers and washed. Red blood cells present in the splenocyte samples were
20 lysed on ice for 3 min with ACK lysing buffer (Lonza), before cells were washed and
21 counted.

22

23 **Flow cytometric analysis of cells**

24 Cells were incubated with 0.5 µg/ml anti-CD16/32 (2.4G2, BD Bioscience) and either Blue
25 or Near IR Dead cell stain (Invitrogen) (except when Annexin V/7AAD staining was
26 performed) prior to staining with fluorescently labelled antibodies. Cells were fixed with
27 FOXP3/Transcription Factor Buffer Staining Set (eBioscience) for between 30 min and 16
28 hr at 4°C.

29 For cytokine analysis, 10 µM Brefeldin A was added to cell cultures for 4 hr prior to staining
30 for cell surface markers as described above. After overnight fixation, cells were

1 permeabilized with FOXP3/Transcription Factor Buffer Staining Set (eBioscience) and
2 were stained with antibodies against intracellular markers or cytokines. Cells were
3 analysed on a Fortessa, LSRII (both BD Biosciences) or Cytoflex (Beckman Coulter) flow
4 cytometer. Data were analysed using FlowJo (TreeStar). Antibodies are detailed in
5 Supplementary Table 1.

6 For Annexin V/7AAD staining, cells were stained on ice for cell surface markers, then
7 were stained with Annexin V (Biolegend) following the manufacturer's instructions. 7AAD
8 (Biolegend) was added and cells were analysed within 2 hours.

9 For pSTAT3 staining, inguinal, axillary, and brachial LN cells were stained for surface
10 markers, then stimulated with 100 ng/ml of IL-23 (Biolegend) for 15 minutes. Cells were
11 fixed with Phosflow Fix Buffer I (BD Biosciences) at 37°C for 10 minutes.

12 For pERK staining, skin cells were isolated and cultured for 30 mins to acclimatise. Cells
13 were then stimulated for 10 min with either 50 ng/ml PMA (Sigma Aldrich) or 1 µg/ml
14 eF450-conjugated anti-TCR $\gamma\delta$ then were stained with extracellular antibodies on ice for
15 min. Cells were washed and fixed with phosflow lyse/fix buffer (BD Biosciences).

16 Post fixation, cells were permeabilized at 4°C in Phosflow Perm Buffer III (BD
17 Biosciences) for 30 minutes, before staining with either phycoerythrin-conjugated pSTAT3
18 (pY705) (BD Bioscience clone 4/P-STAT3) or pERK1/2 (pT202/pY204) (eBiosciences
19 clone MILAN8R) at room temperature for 30 minutes, before washing and analysing by
20 flow cytometry as detailed above.

21

22 ***In vitro* $\gamma\delta$ T cell activation**

23 Mouse dorsal skin cells were cultured in complete RPMI (RPMI 1640 supplemented with
24 10% heat inactivated FBS, 1% penicillin streptomycin solution, 2 mM L-glutamine, 1 mM
25 sodium pyruvate, 20 mM HEPES, 1X non- essential amino acid solution, 25 nM 2-
26 mercaptoethanol (Sigma Aldrich)) and stimulated with 40 ng/mL IL-23 (Biolegend) for 16
27 hr. Cells were cultured with 10 µM Brefeldin A (Sigma Aldrich) for 4 hr before staining for
28 flow cytometric analysis. Alternatively, dorsal skin cells, thymocytes, splenocytes or LN
29 cells were stimulated with 50 ng/mL PMA and 500 ng/mL ionomycin (Sigma Aldrich) and
30 10 µM Brefeldin A for 4 hr before staining for flow cytometric analysis.

1 For co-culture of WT and CD200R1KO cells, the cells were isolated from dorsal skin then
2 either the WT or CD200R1KO cells were labelled with 10 μ M eF450-conjugated cell
3 proliferation dye (eBioscience) for 10 minutes in the dark at 37°C before washing and co-
4 culturing with unlabelled cells.

5

6 **QPCR to detect *Cd200r1* in neonatal and adult $\gamma\delta$ T cells**

7 Two-day old neonatal body skin and adult dorsal skin was removed from euthanised
8 C57BL/6 mice and cells were isolated as detailed above. Cells were stained with a dead
9 cell dye and antibodies as described above, before isolation of the dermal $\gamma\delta$ T cells (Live
10 CD45⁺ CD3^{mid} TCR $\gamma\delta$ ^{mid}) by flow cytometric sorting on a MA900 cell sorter (Sony). RNA
11 (from 1000-6000 cells per sample) was isolated using the RNeasy plus micro kit
12 (QIAGEN) before cDNA was synthesized using the High Capacity RNA-to-cDNA kit
13 (Applied Biosystems) following the manufacturer's instructions. QPCR was carried out in
14 duplicate using the cDNA equivalent of 3.6-14 ng RNA per reaction and PowerUp SYBR
15 green master mix (Applied Biosystems) with 100 nM Primers and cycles of 50 °C for 2
16 min, 95 °C for 3 min, then 40 cycles of 95 °C for 30 sec, 55 °C for 45 sec, 60 °C for 1 min
17 30 sec on a CFX Opus machine (Bio-Rad). Primers used for *Cd200r1* 5'-
18 TGTGAGACAGTAACACACCTGAAGG -3' and 5'- TGCCATTGCCTCACACACTGCA -3'
19 and for *Hprt*, 5'- GCTGACCTGCTGGATTACATTAA -3' and 5'-
20 TGATCATTACAGTAGTCTTCAGTCRGA -3'. Melt curves were checked for single
21 peaks at the correct melting temperature, and relative gene expression was calculated
22 using the $2^{-\Delta\Delta C(t)}$ method.

23

24 **Foetal thymic organ cultures (FTOCs)**

25 FTOCs were set up and analysed as described previously (16). Briefly, E15-15.5 embryos
26 were obtained from WT or CD200R1KO timed matings. Foetal thymic lobes were
27 dissected and cultured on nucleopore membrane filters (Whatman) (4-5 per filter) in
28 complete RPMI (as above) for 8 days. Where necessary, cells were stimulated with 50
29 ng/ml PMA (Sigma Aldrich) and 500 ng/ml Ionomycin (Sigma Aldrich) with 10 μ M Brefeldin
30 A (Sigma Aldrich) and 2 μ M Monensin (eBioscience) for 4 hrs. Thymic lobes were

1 homogenised using a syringe plunger and were stained and analysed by flow cytometry
2 as described above. To count cells, Precision count beads (Biolegend) were added to
3 each FTOC sample prior to analysis.

4

5

6 **Statistical analysis**

7 Data were analysed for normal distribution by Shapiro-Wilks tests and were then analysed
8 by appropriate statistical tests. Statistically significant differences were determined using
9 Students' t tests, or Mann Whitney U tests for non-parametric data. Where groups of data
10 have unequal variance, a Welch's t test was used. All statistical tests were performed
11 using Prism Software (GraphPad Software Inc., USA). Values of $p < 0.05$ were considered
12 significant. All experiments were performed at least twice, with at least 3 independent
13 samples per group.

14

1 Results

2

3 CD200R1 is required for efficient IL-17A production by $\gamma\delta$ T cells

4 CD200R1-deficient mice have a reduced ability to produce IL-17A in both psoriasis and
5 cutaneous fungal infection models (Linley, 2023). Given the importance of $\gamma\delta$ T cells for
6 IL-17A production in these models, we measured IL-17A production by CD200R1-
7 deficient cutaneous $\gamma\delta$ T cells (Figure 1A), specifically examining the TCR $\gamma\delta^{\text{int}}$ dermal
8 population containing IL-17-producing cells, in contrast to TCR $\gamma\delta^{\text{hi}}$ dendritic epidermal T
9 cells (DETC) which are less capable of IL-17 production (49). This analysis demonstrated
10 that CD200R1 is required for efficient IL-17A production by murine dermal $\gamma\delta$ T cells in
11 response to either IL-23 or PMA and Ionomycin stimulation (Figure 1B).

12 CD200R1 suppresses cytokine production in myeloid cells, therefore we hypothesized
13 that CD200R1-deficient cultures may contain an overactive cell type which inhibits $\gamma\delta$ T
14 cell IL-17 production. To test this, CD200R1-deficient murine dorsal skin cells were
15 fluorescently labelled and co-cultured with unlabelled WT cells before stimulation.
16 CD200R1-deficient $\gamma\delta$ T cells, retained an impairment in IL-17A production when co-
17 cultured (Figure 1C), demonstrating that CD200R1-deficient cultures do not contain
18 factors that inhibit IL-17 production by $\gamma\delta$ T cells. Therefore, $\gamma\delta$ T cells are impaired in IL-
19 17A production when isolated from CD200R1-deficient skin.

20 To determine if CD200R1 affects $\gamma\delta$ T cell cytokine production in a tissue specific, or $\gamma\delta$ T
21 cell subset-specific manner, cells from spleen, lymph node (LN) and thymus were
22 stimulated with PMA and Ionomycin and IL-17A and IFN γ production by $\gamma\delta$ T cells was
23 measured by flow cytometry. WT and CD200R1-deficient $\gamma\delta$ T cells had a similar ability to
24 produce IFN γ , but CD200R1-deficient $\gamma\delta$ T cells were impaired in IL-17A production in
25 each tissue examined (Figure 1D), showing that CD200R1 promotes IL-17A production
26 by $\gamma\delta$ T cells, but does not affect IFN γ production.

27

28 **CD200R1 deficiency reduces $\gamma\delta$ T17 cell populations and impairs their ability to**
29 **produce IL-17**

1 To determine if $\gamma\delta$ T cell population numbers are affected by CD200R1, $\gamma\delta$ T cell subsets
2 were examined in thymus, spleen, LN and dermis based on CD44^{hi} and CD27⁺
3 expression, corresponding largely to IL-17A and IFN γ -producers respectively (21). In all
4 these tissues, the proportion of CD44^{hi} $\gamma\delta$ T cells is reduced in CD200R1-deficient mice
5 (Figure 2A), demonstrating that CD200R1 is required to maintain the balance between
6 IL-17A and IFN γ -producing $\gamma\delta$ T cell populations. Examining $\gamma\delta$ T cell numbers shows
7 reduced $\gamma\delta$ T cells in lymph nodes (LN) and dermis in CD200R1KO mice, but similar
8 overall numbers in thymus and spleen (Figure 2B). $\gamma\delta$ T cells take on their effector fate
9 during development in the thymus, when they rearrange their *Tcr* loci and express specific
10 V γ and δ TCR chains with V γ 4⁺ cells being the major IL-17A-producing $\gamma\delta$ T cell subset in
11 skin. To determine if CD200R1 affects specific populations of $\gamma\delta$ T cells, inguinal LN cells
12 were gated into V γ 4⁺, V γ 1⁺ and non-V γ 4 or V γ 1 expressing populations, demonstrating
13 that the V γ 4⁺ subset specifically is reduced in the absence of CD200R1 (Figure 2C).
14 Similarly, the number of V γ 4⁺ cells is reduced in number in CD200R1-deficient skin
15 (Figure 2D). Therefore, CD200R1 promotes either the generation, or maintenance of V γ 4⁺
16 cells.
17 No increase in the proportion of apoptotic V γ 4⁺ T cells, or the proliferation of these cells
18 was observed in the absence of CD200R1 (Supplementary Figure 1), suggesting that
19 CD200R1 affects the generation of V γ 4⁺ cells rather than their maintenance.
20 To determine if CD200R1 promotes $\gamma\delta$ T cell IL-17 production independent of its effects
21 on the numbers of these cells present, skin and LN V γ 4 T cells specifically were examined
22 for IL-17A production capability. A profound reduction in the proportion of V γ 4 T cells
23 producing IL-17 was observed in the absence of CD200R1 (Figure 2E), revealing that
24 CD200R1 promotes IL-17 production by these cells, not merely via increasing the
25 numbers of these cells.
26 To gain mechanistic insight into how CD200R1 promotes IL-17 production by $\gamma\delta$ T cells,
27 signalling downstream of activation was examined. Lymph node cells were stimulated
28 with IL-23 and the resulting phosphorylation of STAT3 within $\gamma\delta$ T cells was examined by
29 phosflow, demonstrating that in the absence of CD200R1, $\gamma\delta$ T cells are less able to signal
30 downstream of IL-23 stimulation (Figure 2F). Similarly, in the absence of CD200R1,

1 stimulation of skin cells with either PMA or anti-TCR $\gamma\delta$ antibody led to a blunted pERK
2 response in either the total $\gamma\delta$ T cell population (Figure 2G), or indeed in the CD44hi $\gamma\delta$ T
3 cell subset (Figure 2H). Together this demonstrates that CD200R1 promotes signalling in
4 response to IL-23 or TCR activation in IL-17-producing subsets of $\gamma\delta$ T cells.

5

6 **CD200R1 is not expressed by adult $\gamma\delta$ T cells, but is expressed by these cells during**
7 **their development**

8 Previously, only low levels of CD200R1 expression were observed in murine dermal $\gamma\delta$ T
9 cells (39, 40), but specific subsets were not examined. To determine if CD200R1
10 expression is specific to $V\gamma 4^+$ cells, flow cytometric staining for CD200R1 was carried out,
11 revealing that both cutaneous $V\gamma 4^+$ and $V\gamma 1^+$ T cells express exceptionally low levels of
12 CD200R1 (Figure 3A). This suggests that CD200R1 does not directly affect mature $V\gamma 4^+$
13 T cells but may instead have either indirect effects via another cell type or may have
14 effects during the development of these cells if CD200R1 is expressed earlier in
15 development. In support of the effects of CD200R1 being via development, IL-17
16 production by $\gamma\delta$ T cells was affected in thymus (Figure 1D), and the maintenance of $V\gamma 4^+$
17 T cells, measured by apoptosis and proliferation frequency, is not affected by CD200R1
18 (Supplementary Figure 1). Therefore, the thymus, as the site of $\gamma\delta$ T cell development,
19 was examined to determine CD200R1 expression. CD200R1 was observed on a
20 proportion of both CD11b $^+$ and CD11c $^+$ thymic dendritic cells (Figure 3B) but, is absent
21 from both cortical and medullary thymic epithelial cells (Figure 3C), suggesting that effects
22 of CD200R1 on adult thymus may be via thymic dendritic cells.

23 Although $\gamma\delta$ T cells can develop in adult mice, the most significant generation of these
24 cells, certainly in the absence of inflammation, occurs early in life. $V\gamma 4^+$ and $V\gamma 6^+$ T cells,
25 subsets capable of IL-17 production, develop in specific waves during foetal development
26 and seed the skin to become resident populations. Indeed, CD200R1 expression on $\gamma\delta$ T
27 cells is inversely correlated with age, with high CD200R1 levels on $\gamma\delta$ T cells from
28 neonatal mice (Figure 3D), suggesting that CD200R1 may have important effects in early
29 life. Interestingly, this difference in CD200R1 expression at the protein level is not mirrored

1 by differences in *Cd200r1* mRNA levels between neonatal and adult skin $\gamma\delta$ T cells (Figure
2 3E), suggesting that regulation of CD200R1 levels may be post-transcriptional.
3 To determine which cells types express CD200R1 during $\gamma\delta$ T17 T cell development, foetal
4 thymic organ cultures (FTOC) were examined. Similar to adult thymus, CD200R1 is only
5 expressed at low levels by thymic epithelial cells (Figure 3F) but is expressed more highly
6 by populations of thymic dendritic cells, particularly those expressing high levels of MHC-
7 class II (Figure 3G). In contrast to the negligible expression of CD200R1 on adult $\gamma\delta$ T
8 cells, CD200R1 is expressed by developing foetal $\gamma\delta$ T cells, particularly the CD44^{hi}
9 subset of less mature (CD24⁺) $\gamma\delta$ T cells (Figure 3H). In addition to these very early $\gamma\delta$ T
10 cells, CD200R1 is expressed by more mature developing $\gamma\delta$ T cells (CD24^{neg}) including
11 IFN γ -producing subsets (B, CD44^{neg} CD45RB⁺ and C, CD44⁺ CD45RB⁺) and IL-17
12 producing subsets (D, CD44⁺ CD45RB^{neg}) after stimulation (Figure 3H). Together this
13 reveals that CD200R1 is expressed in foetal thymus by dendritic cells and developing $\gamma\delta$
14 T cells, and expression levels are influenced by T cell activation, suggesting a role for
15 CD200R1 during this developmental window.
16

17 **CD200R1 promotes foetal $\gamma\delta$ T17 cell development**

18 The impact of CD200R1 on foetal $\gamma\delta$ T cell development was examined using FTOC. Total
19 numbers of $\gamma\delta$ T cells were not affected by CD200R1 deficiency (Supplementary Figure
20 2A), but the overall number of IL-17-producing $\gamma\delta$ T cells and both proportions and
21 numbers of ROR γ t-expressing $\gamma\delta$ T cells are reduced in CD200R1-deficient FTOC (Figure
22 4A), showing that CD200R1 supports developing $\gamma\delta$ T17 cell expression of ROR γ t and IL-
23 17.

24 To determine the stage of $\gamma\delta$ T17 development affected by CD200R1, cells were gated
25 based on CD24 expression. The less mature CD24⁺ populations were examined, showing
26 distinct populations based on CD44 expression (Figure 4 and Supplementary Figure 2).
27 In CD200R1-deficient FTOC, the CD24⁺ CD44^{hi} population is reduced in both proportion
28 and number, and CD200R1-deficient FTOCs also have reduced proportions and numbers
29 of ROR γ t-expressing cells and reduced numbers of IL-17-producing CD24⁺ $\gamma\delta$ T cells
30 (Figure 4B), demonstrating that CD200R1 supports the early development of $\gamma\delta$ T17 cells.

1 The CD24⁻ $\gamma\delta$ T cell population contains more mature developing cells, and again,
2 although the absence of CD200R1 largely did not affect the numbers of developing
3 CD24^{neg} $\gamma\delta$ T cells in each subpopulation (Supplementary Figure 2C), CD200R1 promotes
4 IL-17 production by these cells (Figure 4C). Overall, these data demonstrate a
5 requirement for CD200R1 for efficient acquisition of effector function (ROR γ t-expression
6 and IL-17-production) in $\gamma\delta$ T17 cells, which is observed from the very early stages of
7 development.

8

9 Together this shows that CD200R1 is required to support the development of murine
10 $\gamma\delta$ T17 cells.

11

12

13 Discussion

14

15 $\gamma\delta$ T cells are critical immune cells, being able to rapidly respond in both innate and
16 adaptive manners, producing large amounts of IFN γ or IL-17. Here we show that mice
17 deficient for CD200R1 have fewer IL-17-producing $\gamma\delta$ T cells (Figure 1) due to a
18 requirement for CD200R1 for efficient development of $\gamma\delta$ T17 T cells, and for their
19 acquisition of effector function. This is observed most clearly in FTOC where CD200R1
20 promotes ROR γ t expression and IL-17-production (Figure 4).

21 CD200R1 may affect $\gamma\delta$ T17 T cell development via indirect effects involving other cell
22 types. This would most likely be via thymic dendritic cells which have high expression
23 levels of CD200R1 (Figure 3C, G) however, a clear role for these cells in $\gamma\delta$ T cell
24 development is yet to be defined. cTECs are crucial for V γ 4 T cell activity (37) and support
25 $\alpha\beta$ T cell development by providing NOTCH signals and IL-7 (36), which could also be
26 important for supporting $\gamma\delta$ T17 T cell development. However, CD200R1 expression is low
27 on these cells (Figure 3B, F) suggesting that any effects of CD200R1 on these cells would
28 not be direct.

29 The mechanism by which CD200R1 promotes $\gamma\delta$ T17 T cell development is therefore likely
30 to be via a cell intrinsic mechanism, perhaps via suppression of TCR signalling, or via

1 effects on other signalling pathways. CD200R1 is part of the immunoglobulin superfamily
2 and is an 'immune checkpoint' pathway being therapeutically blocked in cancer to
3 promote immune responses and allow the immune system to target the tumour (50).
4 However, the evidence for CD200R1 specifically affecting T cells or TCR signalling is
5 weak. Cytotoxic T cell function is inhibited by CD200R1 signalling (51), and blocking
6 CD200R1 signalling promotes TCR-driven CD4⁺ T cell proliferation in Lupus patients, but
7 there was no effect on healthy T cells (52). Therefore, a direct effect of CD200R1 on T
8 cell activation or TCR signalling may be likely but, remains to be proven. Signalling in
9 response to $\gamma\delta$ T cell activation, including phosphorylation of STAT3 in response to IL-23
10 stimulation, and phosphorylation of ERK in response to PMA or TCR $\gamma\delta$ activation, is
11 reduced in the absence of CD200R1 (Figure 2F-H), demonstrating that CD200R1 is
12 required for efficient signalling in response to activation in $\gamma\delta$ cells. However, as CD200R1
13 is expressed at very low levels on adult skin $\gamma\delta$ T cells (Figure 3A), it seems likely that
14 these effects are due to a role for CD200R1 in the earlier development or differentiation
15 of these cells, and further research will be necessary to fully elucidate the mechanism
16 involved.

17 An increase in CD200R1 expression was observed on activation of developing population
18 D (CD24⁻ CD44^{hi}, IL-17-producing subset) $\gamma\delta$ T cells in FTOC (Figure 3H). The relevance
19 of this upregulation is not known, but activation of mature adult $\gamma\delta$ T cells did not result in
20 up-regulation of CD200R1 (data not shown), suggesting that this may be developmental-
21 stage, and population-specific, and therefore may be important during development.
22 However, it remains unknown if there are endogenous activation signals *in vivo* during
23 development which would also be capable of inducing this peak in CD200R1 expression.
24 Alternatively, CD200R1 may have effects during the early stages of $\gamma\delta$ T cell development
25 when the cells are CD24⁺, as CD200R1 is particularly highly expressed on the CD44^{hi}
26 CD24⁺ $\gamma\delta$ T cell population (Figure 3H). However, details of the developmental processes
27 occurring during this stage are lacking.

28

29 Together this demonstrates an important role for CD200R1 in driving early life $\gamma\delta$ T cell
30 acquisition of effector function, without affecting the development of IFN γ -producing

1 subsets. The precise mechanism by which CD200R1 drives $\gamma\delta$ 17 T cell development, and
2 what regulates CD200R1 expression remains to be identified. It will also be important to
3 determine if CD200R1 plays a similar role in human $\gamma\delta$ 17 T cell development however,
4 this research is technically difficult to undertake. Understanding the development of $\gamma\delta$ 17
5 T cells and their acquisition of effector function is important as these cells have crucial
6 functions in immune responses, tumour surveillance and wound healing, but they also
7 contribute to inflammatory disease. Therefore, a better understanding the factors involved
8 in the development and function of these important cells has the potential to improve
9 multiple areas of health.

10

11 **Acknowledgements**

12 This work was funded by a pre-competitive, open innovation award to the Manchester
13 Collaborative Centre for Inflammation Research, at the University of Manchester,
14 AstraZeneca and GSK, and a Wellcome Trust and Royal Society, Sir Henry Dale
15 Fellowship to AS (109375/Z/15/Z). We acknowledge assistance from Gareth Howell, and
16 the use of the University of Manchester and Lancaster University Flow Cytometry,
17 Physiological Services Unit and Biological Services facilities. We thank Joanne Konkel
18 for advice and Dan Pennington and Nital Sumaria for invaluable guidance with FTOCs.
19 An earlier preprint version can be found on the BioRxiv server (53).

20

21 **Data availability**

22 Most data are evident in the results section. Any data that support the findings of this
23 study that are not evident, are available from the corresponding author, [AS], upon
24 reasonable request.

25

26

27

1 References

- 2 1. Hayday AC. Gammadelta T cells and the lymphoid stress-surveillance response.
3 *Immunity*. 2009;31(2):184-96.
- 4 2. Hayday A, Tigelaar R. Immunoregulation in the tissues by gammadelta T cells. *Nat Rev Immunol*. 2003;3(3):233-42.
- 5 3. Jameson J, Ugarte K, Chen N, Yachi P, Fuchs E, Boismenu R, et al. A role for skin
6 gammadelta T cells in wound repair. *Science*. 2002;296(5568):747-9.
- 7 4. Girardi M, Oppenheim DE, Steele CR, Lewis JM, Glusac E, Filler R, et al. Regulation
8 of cutaneous malignancy by gammadelta T cells. *Science*. 2001;294(5542):605-9.
- 9 5. Ribot JC, Lopes N, Silva-Santos B. gammadelta T cells in tissue physiology and
10 surveillance. *Nat Rev Immunol*. 2020.
- 11 6. Bernal-Alferes B, Gomez-Mosqueira R, Ortega-Tapia GT, Burgos-Vargas R, Garcia-
12 Latorre E, Dominguez-Lopez ML, et al. The role of gammadelta T cells in the
13 immunopathogenesis of inflammatory diseases: from basic biology to therapeutic
14 targeting. *J Leukoc Biol*. 2023;114(6):557-70.
- 15 7. Herrmann T, Karunakaran MM, Fichtner AS. A glance over the fence: Using
16 phylogeny and species comparison for a better understanding of antigen recognition
17 by human gammadelta T-cells. *Immunol Rev*. 2020;298(1):218-36.
- 18 8. Boismenu R, Havran WL. Modulation of epithelial cell growth by intraepithelial
19 gamma delta T cells. *Science*. 1994;266(5188):1253-5.
- 20 9. Brandes M, Willimann K, Moser B. Professional antigen-presentation function by
21 human gammadelta T Cells. *Science*. 2005;309(5732):264-8.
- 22 10. Heilig JS, Tonegawa S. Diversity of murine gamma genes and expression in fetal
23 and adult T lymphocytes. *Nature*. 1986;322(6082):836-40.
- 24 11. Prinz I, Silva-Santos B, Pennington DJ. Functional development of gammadelta T
25 cells. *Eur J Immunol*. 2013;43(8):1988-94.
- 26 12. Bonneville M, Itohara S, Krecko EG, Mombaerts P, Ishida I, Katsuki M, et al.
27 Transgenic mice demonstrate that epithelial homing of gamma/delta T cells is
28 determined by cell lineages independent of T cell receptor specificity. *J Exp Med*.
29 1990;171(4):1015-26.
- 30 13. Haas JD, Ravens S, Duber S, Sandrock I, Oberdorfer L, Kashani E, et al.
31 Development of interleukin-17-producing gammadelta T cells is restricted to a
32 functional embryonic wave. *Immunity*. 2012;37(1):48-59.
- 33 14. Xiong N, Baker JE, Kang C, Raulet DH. The genomic arrangement of T cell receptor
34 variable genes is a determinant of the developmental rearrangement pattern. *Proc
35 Natl Acad Sci U S A*. 2004;101(1):260-5.
- 36 15. Carding SR, Egan PJ. Gammadelta T cells: functional plasticity and heterogeneity.
37 *Nat Rev Immunol*. 2002;2(5):336-45.
- 38 16. Sumaria N, Grandjean CL, Silva-Santos B, Pennington DJ. Strong TCRgammadelta
39 Signaling Prohibits Thymic Development of IL-17A-Secreting gammadelta T Cells.
40 *Cell Rep*. 2017;19(12):2469-76.
- 41 17. Papotto PH, Goncalves-Sousa N, Schmolka N, Iseppon A, Mensurado S,
42 Stockinger B, et al. IL-23 drives differentiation of peripheral gammadelta17 T cells
43 from adult bone marrow-derived precursors. *EMBO Rep*. 2017;18(11):1957-67.

1 18. Lombes A, Durand A, Charvet C, Riviere M, Bonilla N, Auffray C, et al. Adaptive
2 Immune-like gamma/delta T Lymphocytes Share Many Common Features with Their
3 alpha/beta T Cell Counterparts. *J Immunol.* 2015;195(4):1449-58.

4 19. Jensen KD, Su X, Shin S, Li L, Youssef S, Yamasaki S, et al. Thymic selection
5 determines gammadelta T cell effector fate: antigen-naive cells make interleukin-17
6 and antigen-experienced cells make interferon gamma. *Immunity.* 2008;29(1):90-100.

7 20. Turchinovich G, Hayday AC. Skint-1 identifies a common molecular mechanism for
8 the development of interferon-gamma-secreting versus interleukin-17-secreting
9 gammadelta T cells. *Immunity.* 2011;35(1):59-68.

10 21. Ribot JC, deBarros A, Pang DJ, Neves JF, Peperzak V, Roberts SJ, et al. CD27 is a
11 thymic determinant of the balance between interferon-gamma- and interleukin 17-
12 producing gammadelta T cell subsets. *Nat Immunol.* 2009;10(4):427-36.

13 22. Fahl SP, Coffey F, Kain L, Zarin P, Dunbrack RL, Jr., Teyton L, et al. Role of a
14 selecting ligand in shaping the murine gammadelta-TCR repertoire. *Proc Natl Acad
15 Sci U S A.* 2018;115(8):1889-94.

16 23. Sumaria N, Martin S, Pennington DJ. Constrained TCRgammadelta-associated Syk
17 activity engages PI3K to facilitate thymic development of IL-17A-secreting
18 gammadelta T cells. *Sci Signal.* 2021;14(692).

19 24. Laird RM, Laky K, Hayes SM. Unexpected role for the B cell-specific Src family
20 kinase B lymphoid kinase in the development of IL-17-producing gammadelta T cells.
21 *J Immunol.* 2010;185(11):6518-27.

22 25. Zuberbuehler MK, Parker ME, Wheaton JD, Espinosa JR, Salzler HR, Park E, et al.
23 The transcription factor c-Maf is essential for the commitment of IL-17-producing
24 gammadelta T cells. *Nat Immunol.* 2019;20(1):73-85.

25 26. He YW, Malek TR. Interleukin-7 receptor alpha is essential for the development of
26 gamma delta + T cells, but not natural killer cells. *J Exp Med.* 1996;184(1):289-93.

27 27. Maki K, Sunaga S, Ikuta K. The V-J recombination of T cell receptor-gamma genes
28 is blocked in interleukin-7 receptor-deficient mice. *J Exp Med.* 1996;184(6):2423-7.

29 28. Ye SK, Agata Y, Lee HC, Kurooka H, Kitamura T, Shimizu A, et al. The IL-7
30 receptor controls the accessibility of the TCRgamma locus by Stat5 and histone
31 acetylation. *Immunity.* 2001;15(5):813-23.

32 29. Schlissel MS, Durum SD, Muegge K. The interleukin 7 receptor is required for T cell
33 receptor gamma locus accessibility to the V(D)J recombinase. *J Exp Med.*
34 2000;191(6):1045-50.

35 30. Agata Y, Katakai T, Ye SK, Sugai M, Gonda H, Honjo T, et al. Histone acetylation
36 determines the developmentally regulated accessibility for T cell receptor gamma
37 gene recombination. *J Exp Med.* 2001;193(7):873-80.

38 31. Michel ML, Pang DJ, Haque SF, Potocnik AJ, Pennington DJ, Hayday AC.
39 Interleukin 7 (IL-7) selectively promotes mouse and human IL-17-producing
40 gammadelta cells. *Proc Natl Acad Sci U S A.* 2012;109(43):17549-54.

41 32. Baccala R, Witherden D, Gonzalez-Quintial R, Dummer W, Surh CD, Havran WL, et
42 al. Gamma delta T cell homeostasis is controlled by IL-7 and IL-15 together with
43 subset-specific factors. *J Immunol.* 2005;174(8):4606-12.

44 33. Nakamura M, Shibata K, Hatano S, Sato T, Ohkawa Y, Yamada H, et al. A genome-
45 wide analysis identifies a notch-RBP-Jkappa-IL-7Ralpha axis that controls IL-17-
46 producing gammadelta T cell homeostasis in mice. *J Immunol.* 2015;194(1):243-51.

1 34. Powolny-Budnicka I, Riemann M, Tanzer S, Schmid RM, Hehlgans T, Weih F. RelA
2 and RelB transcription factors in distinct thymocyte populations control lymphotoxin-
3 dependent interleukin-17 production in gammadelta T cells. *Immunity*.
4 2011;34(3):364-74.

5 35. Do JS, Fink PJ, Li L, Spolski R, Robinson J, Leonard WJ, et al. Cutting edge:
6 spontaneous development of IL-17-producing gamma delta T cells in the thymus
7 occurs via a TGF-beta 1-dependent mechanism. *J Immunol*. 2010;184(4):1675-9.

8 36. Abramson J, Anderson G. Thymic Epithelial Cells. *Annu Rev Immunol*. 2017;35:85-
9 118.

10 37. Nitta T, Muro R, Shimizu Y, Nitta S, Oda H, Ohte Y, et al. The thymic cortical
11 epithelium determines the TCR repertoire of IL-17-producing gammadeltaT cells.
12 *EMBO Rep*. 2015;16(5):638-53.

13 38. Roberts NA, White AJ, Jenkinson WE, Turchinovich G, Nakamura K, Withers DR, et
14 al. Rank signaling links the development of invariant gammadelta T cell progenitors
15 and Aire(+) medullary epithelium. *Immunity*. 2012;36(3):427-37.

16 39. Linley H, Jaigirdar S, Mohamed K, Griffiths CEM, Saunders A. Reduced cutaneous
17 CD200:CD200R1 signaling in psoriasis enhances neutrophil recruitment to skin.
18 *Immun Inflamm Dis*. 2022;10(7):e648.

19 40. Linley H, Ogden A, Jaigirdar S, Buckingham L, Cox J, Priestley M, et al. CD200R1
20 promotes interleukin-17 production by group 3 innate lymphoid cells by enhancing
21 signal transducer and activator of transcription 3 activation. *Mucosal Immunol*.
22 2023;16(2):167-79.

23 41. Blom LH, Martel BC, Larsen LF, Hansen CV, Christensen MP, Juel-Berg N, et al.
24 The immunoglobulin superfamily member CD200R identifies cells involved in type 2
25 immune responses. *Allergy*. 2017;72(7):1081-90.

26 42. Pastwinska J, Karwaciak I, Karas K, Salkowska A, Chalaskiewicz K, Strapagiel D, et
27 al. alpha-Hemolysin from *Staphylococcus aureus* Changes the Epigenetic Landscape
28 of Th17 Cells. *Immunohorizons*. 2024;8(9):606-21.

29 43. Cherwinski HM, Murphy CA, Joyce BL, Bigler ME, Song YS, Zurawski SM, et al.
30 The CD200 receptor is a novel and potent regulator of murine and human mast cell
31 function. *J Immunol*. 2005;174(3):1348-56.

32 44. Jenmalm MC, Cherwinski H, Bowman EP, Phillips JH, Sedgwick JD. Regulation of
33 myeloid cell function through the CD200 receptor. *J Immunol*. 2006;176(1):191-9.

34 45. Cai Y, Shen X, Ding C, Qi C, Li K, Li X, et al. Pivotal role of dermal IL-17-producing
35 gammadelta T cells in skin inflammation. *Immunity*. 2011;35(4):596-610.

36 46. Pantelyushin S, Haak S, Ingold B, Kulig P, Heppner FL, Navarini AA, et al.
37 Rorgammat+ innate lymphocytes and gammadelta T cells initiate psoriasisiform plaque
38 formation in mice. *J Clin Invest*. 2012;122(6):2252-6.

39 47. Kashem SW, Riedl MS, Yao C, Honda CN, Vulchanova L, Kaplan DH. Nociceptive
40 Sensory Fibers Drive Interleukin-23 Production from CD301b+ Dermal Dendritic Cells
41 and Drive Protective Cutaneous Immunity. *Immunity*. 2015;43(3):515-26.

42 48. Boudakov I, Liu J, Fan N, Gulay P, Wong K, Gorczynski RM. Mice lacking CD200R1
43 show absence of suppression of lipopolysaccharide-induced tumor necrosis factor-
44 alpha and mixed leukocyte culture responses by CD200. *Transplantation*.
45 2007;84(2):251-7.

1 49. O'Brien RL, Born WK. Dermal gammadelta T cells--What have we learned? *Cell*
2 *Immunol.* 2015;296(1):62-9.

3 50. Nip C, Wang L, Liu C. CD200/CD200R: Bidirectional Role in Cancer Progression
4 and Immunotherapy. *Biomedicines.* 2023;11(12).

5 51. Gorczynski R, Chen Z, Kai Y, Lee L, Wong S, Marsden PA. CD200 is a ligand for all
6 members of the CD200R family of immunoregulatory molecules. *J Immunol.*
7 2004;172(12):7744-9.

8 52. Li Y, Zhao LD, Tong LS, Qian SN, Ren Y, Zhang L, et al. Aberrant CD200/CD200R1
9 expression and function in systemic lupus erythematosus contributes to abnormal T-
10 cell responsiveness and dendritic cell activity. *Arthritis Res Ther.* 2012;14(3):R123.

11 53. Linley H, Jaigirdar S, Buckingham L, Cox J, Priestley M, Hains A, et al. CD200R1 is
12 required for the development of $\gamma\delta$ 17 T cells. *bioRxiv.* 2025:2025.05.19.654867.

13

14

15

16

17

ACCEPTED MANUSCRIPT

1 **Figure Legends**

2

3 **Figure 1: $\gamma\delta$ T cells from CD200R1-deficient mice have an impaired ability to** 4 **produce IL-17A**

5 Cells were isolated from WT or CD200R1-deficient (KO) mouse dorsal skin then were
6 placed in culture and stimulated with 40 ng/ml IL-23 overnight, or 50 ng/ml PMA and 500
7 ng/ml ionomycin for 4 hrs. IL-17A production within the TCR $\gamma\delta$ ^{low} cells was analysed by
8 flow cytometry. **A.** Gating strategy for TCR $\gamma\delta$ ^{low} cells. **B.** IL-17A production by TCR $\gamma\delta$ ^{low}
9 cells. IL-23 stimulation n= 14 per group, PMA/Ionomycin stimulation n= 8 per group. **C.**
10 Prior to culture and stimulation, CD200R1-deficient (KO) cells were labelled with a
11 fluorescent dye, then mixed with unlabelled WT cells. n=7 per group. **D.** Cells were
12 isolated from thymus, spleen and lymph nodes and were stimulated with 50 ng/ml PMA
13 and 500 ng/ml Ionomycin for 4 hrs, before flow cytometric analysis for IL-17A and IFN γ
14 production by $\gamma\delta$ T cells. For thymus WT n=6, KO n=7. n=8 per group for spleen and LN.
15 Data points indicate individual mouse data. Numbers on flow plots show percentages of
16 cells in each gate. Data are pooled from at least two independent experiments. Students'
17 t-tests were used to determine statistically significant differences except where data are
18 not normally distributed, where Mann Whitney U tests were used (**D.** IL-17 and IFN γ
19 production in spleen and IL-17 production in LN). * signifies p<0.05, ** signifies p<0.01,
20 *** signifies p<0.001.

21

22

23 **Figure 2: CD200R1-deficient mice have a reduced population of $\gamma\delta$ 17 T cells**

24 Cells were isolated from thymus, spleen, LN (inguinal axillary and brachial) and skin of
25 WT and CD200R1-deficient (KO) mice and were analysed by flow cytometry. **A.** Proportion of $\gamma\delta$ T cells expressing high levels of CD44 ($\gamma\delta$ 17 T cells) or expressing CD27
26 (cells with potential for IFN γ production). Thymus n=7, spleen and LN n=3 for CD27⁺
27 population, n=7 for CD44^{hi}. n= 8 for dermis. **B.** Numbers of $\gamma\delta$ T cells in thymus, spleen
28 and LN, or TCR $\gamma\delta$ ^{low} T cells in skin. n=6 per group. **C.** No. of $\gamma\delta$ T cells within each V γ
29 subset in one inguinal LN. n=6 per group. **D.** The numbers of V γ 4⁺ T cells in skin. WT n=6,
30

1 KO n=10. **E.** Proportion of $V\gamma 4^+$ cells producing IL-17A after PMA and ionomycin
2 stimulation. n=4 per group. **F.** LN cells were stimulated with IL-23 for 10 min and analysed
3 by flow cytometry for pSTAT3 within the $\gamma\delta$ T cell gate. n=4-6 per group as indicated by
4 data points. **G-H.** Skin cells were stimulated with either PMA or anti-TCR $\gamma\delta$ antibodies for
5 10 min and analysed by flow cytometry for pERK1/2. **G.** Gated on $\gamma\delta$ T cells. **H.** Gated on
6 CD44^{hi} $\gamma\delta$ T cells. n=4 per group. Data points indicate individual mouse data. At least 2
7 independent experiments performed, except for G-H which is one experiment. Numbers
8 on flow plots show percentages of cells in each gate. Students' t-tests were used to
9 determine statistically significant differences except where data are not normally
10 distributed, where Mann Whitney U tests were used (**A.** CD44^{hi} data in spleen and LN. **C.**
11 $V\gamma 1/ V\gamma 4$ population). Where variances were significantly different, Welch correction was
12 used (**A.** Thymus CD44^{hi}. **E.** skin data). For F, where there are 3 data groups, a Browne
13 and Forsythe and Welch Anova was used. * signifies p<0.05, ** signifies p<0.01, ***
14 signifies p<0.001.

15

16

17 **Figure 3: CD200R1 is not expressed by murine adult $\gamma\delta$ cells, but is expressed by**
18 **developing $\gamma\delta$ cells and by thymic dendritic cells**

19 Flow cytometry was used to determine cell types expressing CD200R1 in skin or thymus
20 from mice of different ages. Grey histograms depict Fluorescence minus one (FMO)
21 controls for CD200R1 staining, black lines depict CD200R1 staining on unstimulated
22 cells, red lines depict CD200R1 staining after a 3 hour stimulation with PMA and
23 Ionomycin. **A.** Expression of CD200R1 on cutaneous $V\gamma 4^+$ and $V\gamma 1^+$ T cells. **B.**
24 Representative (adult mouse thymus) flow cytometric gating on cTEC (CD45⁻ EpCAM⁺
25 Ly-51⁺) and mTEC (CD45⁻ EpCAM⁺ UEA-1⁺) and CD200R1 expression on these
26 populations. **C.** Representative (adult mouse thymus) flow cytometric gating on dendritic
27 cell (DC) populations (CD45⁺ MHCII^{hi} CD11b⁺ or CD11c⁺) and CD200R1 expression on
28 these populations. **D.** CD200R1 expression in cutaneous $\gamma\delta$ T cells in one-day-old, three-
29 week-old, adult (8-12 weeks), or old (10 months) mice. **E.** Dermal CD3^{mid} $\gamma\delta$ T cells were

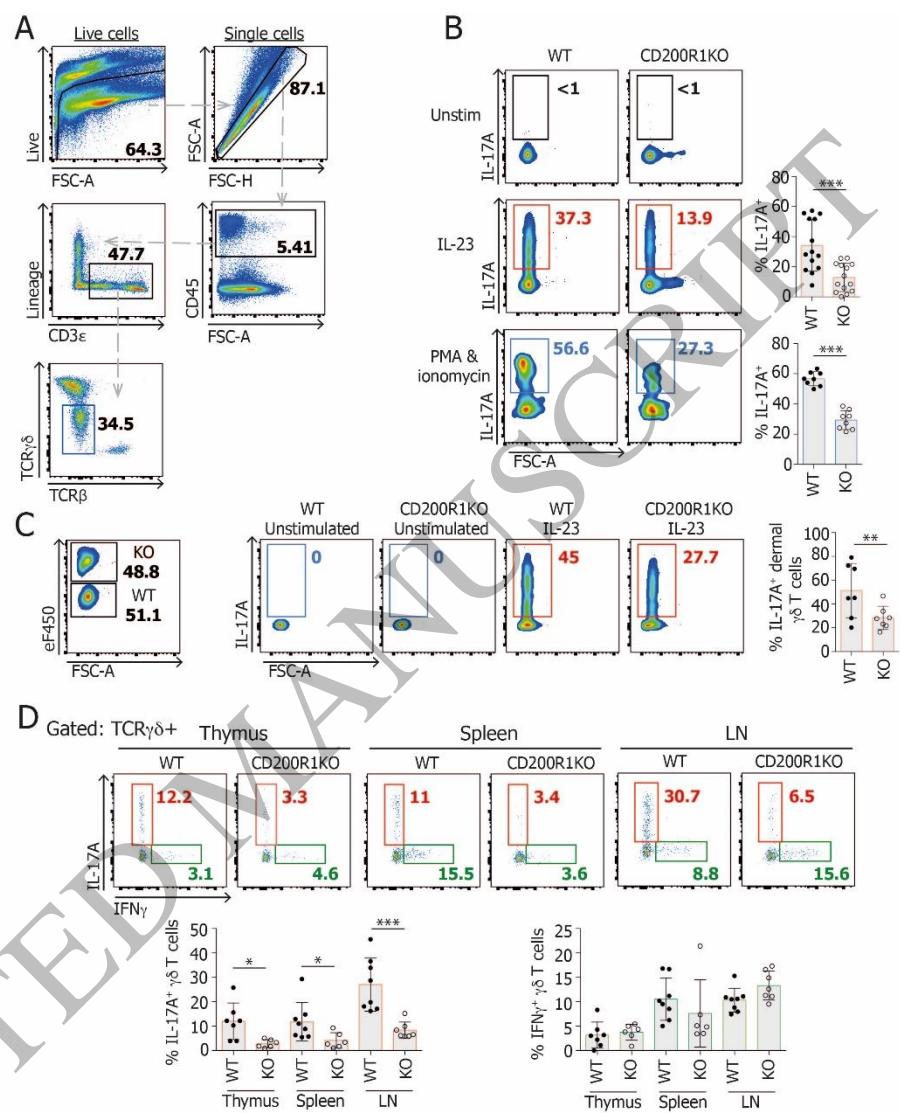
1 flow cytometrically sorted from adult dorsal skin and two-day-old neonatal trunk skin.
2 QPCR was performed to detect *Cd200r1* and *Hprt* (housekeeping control gene). Data
3 shown are fold change in expression relative to the mean of the neonatal data. **F**.
4 Representative CD200R1 expression on FTOC cTEC and mTEC populations. **G**. Thymic
5 dendritic cell (DC) gating in foetal thymic organ cultures and CD200R1 expression on
6 each subset. **H**. CD200R1 expression on populations of developing $\gamma\delta$ T cells in foetal
7 thymic organ cultures (FTOC). CD24 $^+$ cells are less mature, whereas CD24 $^{\text{neg}}$ are more
8 mature and can be split into subsets capable of producing IFN γ (population B and
9 population C), and IL-17 (population A and D). Plots shown are representative of at least
10 2 independent experiments, containing data from at least 3 mice.

11

12

13 **Figure 4: CD200R1 is required for optimal development of IL-17 $^+$ and ROR γ t $^+$ $\gamma\delta$ T
14 cells**

15 WT and CD200R1-deficient (KO) foetal thymic organ cultures (FTOC) were set up and
16 cultured for 8 days. Cells were stimulated with PMA and Ionomycin for 3 hrs, and cell
17 populations were examined by flow cytometry. Data are normalised to the average of the
18 WT data for each individual experiment. Proportions and cell numbers of populations
19 within the **A**. total $\gamma\delta$ T cell population. **B**. CD24 $^+$ $\gamma\delta$ T cell population. **C**. CD24 $^{\text{neg}}$ $\gamma\delta$ T cell
20 population. Data points indicate individual FTOC data. Data are pooled from two
21 independent experiments. n=9 for WT, n=13 for KO. Students' t-tests were used to
22 determine statistically significant differences with Welch's correction for unequal variance
23 where required (**B**. no. CD44 $^{\text{hi}}$, %CD44 $^{\text{low}}$, no. CD44 $^{\text{low}}$, %ROR γ t $^+$. **C**. %IL-17 $^+$, no.
24 ROR γ t $^+$). * signifies p<0.05, ** signifies p<0.01, *** signifies p<0.001.


25

26

27

28

1

2

3

4

5

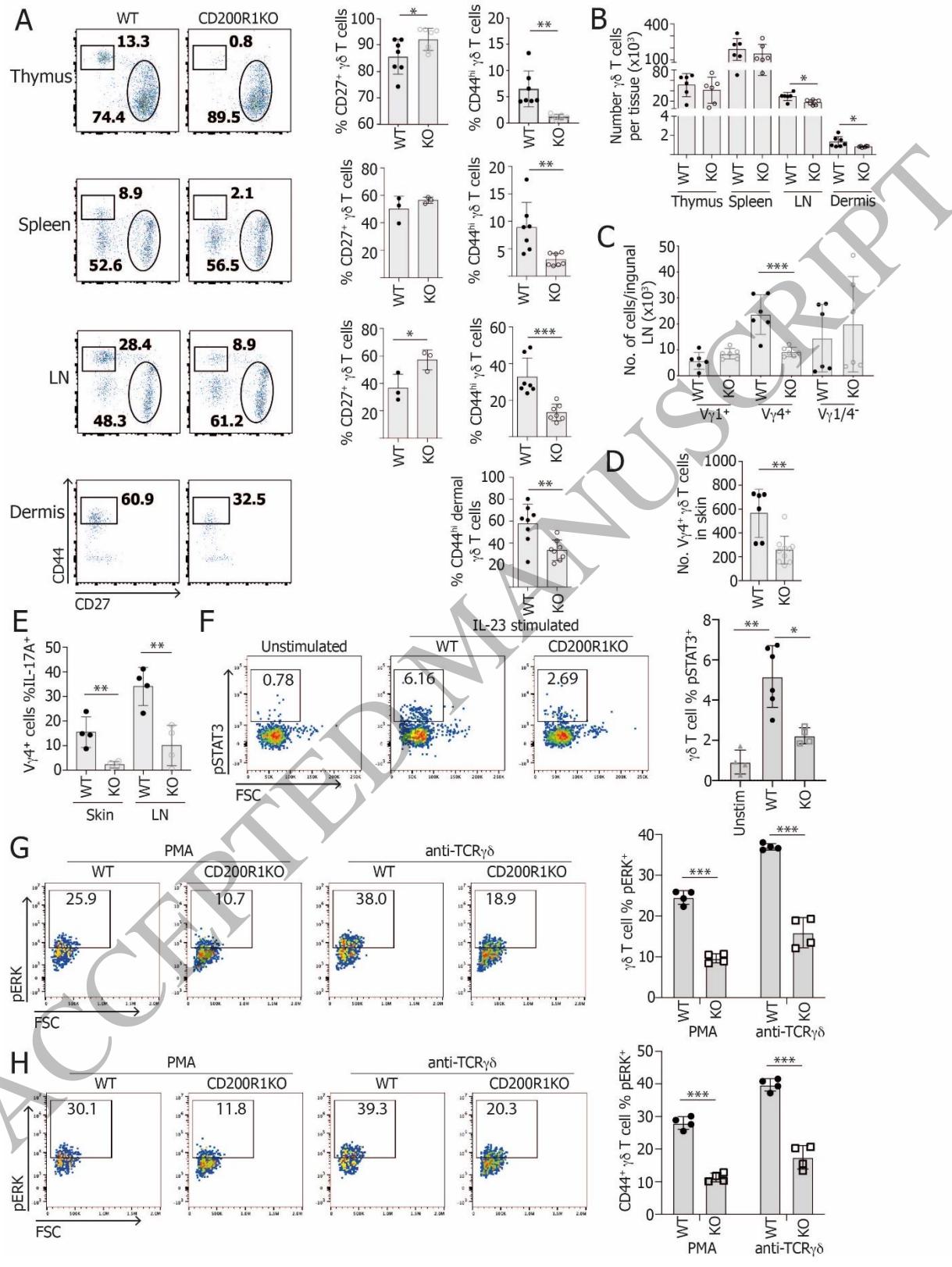


Figure 2
165x213 mm (x DPI)

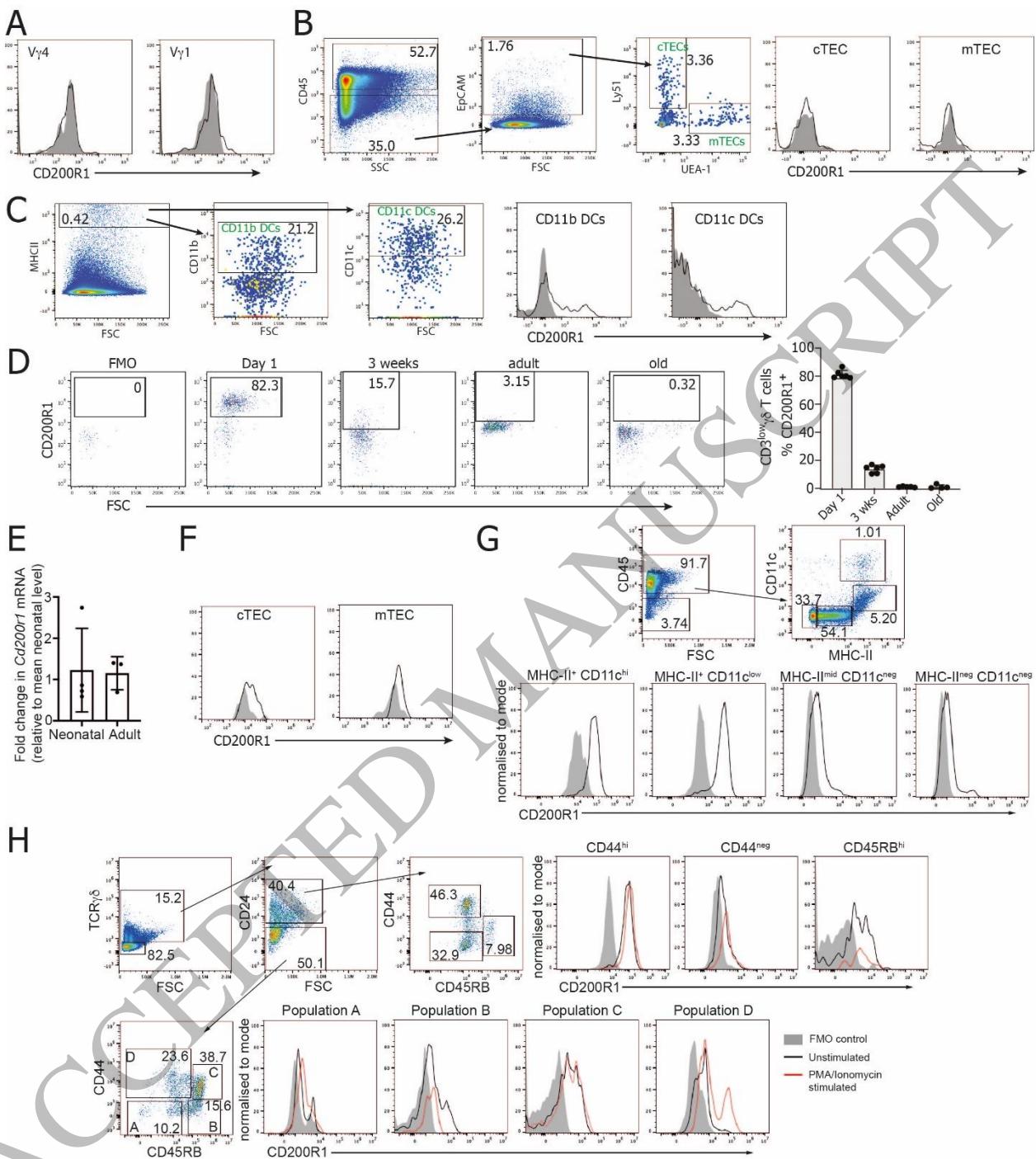


Figure 3
165x185 mm (x DPI)

Figure 4
165x151 mm (x DPI)