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Abstract—Deep Neural Networks (DNNs) stand out as one of
the most prominent approaches within the Machine Learning
(ML) domain. The efficacy of DNNs has surged alongside recent
increases in computational capacity, allowing these approaches
to scale to significant complexities for addressing predictive
challenges in big data. However, as the complexity of the DNN
models increases, interpretability diminishes. In response to
this challenge, explainable models such as Adversarial Gradient
Integration (AGI) leverage path-based gradients provided by
DNN s to elucidate their decisions. Yet, the performance of path-
based explainers can be compromised when gradients exhibit
irregularities during out-of-distribution path traversal. In this
context, we introduce Quantified Uncertainty Counterfactual
Explanations (QUCE), a method designed to mitigate out-of-
distribution traversal by minimizing path uncertainty. QUCE
not only quantifies uncertainty when presenting explanations
but also generates more certain counterfactual examples. We
showcase the performance of the QUCE method by comparing
it with competing methods for both path-based explanations
and generative counterfactual examples. The code repository for
the QUCE method is available at: https://github.com/jamie-duell/
QUCE_ICDM.

Index Terms—Explainable Artificial Intelligence, Deep Learn-
ing, Counterfactual, Uncertainty

I. INTRODUCTION

The Path-Integrated Gradients (Path-IG) [1] formulation
presents axiomatic properties that are upheld solely by path-
based explanation methods. The Out-of-Distribution (OoD)
problem is prevalent in the application of path-based expla-
nation methods [2]; here the intuition is that traveling along a
straight line path can incur irregular gradients and thus provide
noisy attribution values [3]. Another known limitation of many
Path-Integrated Gradient based approaches is the selection of
a baseline reference; thus the Adversarial Gradient Integra-
tion (AGI) [4] method relaxes this constraint by generating
baselines in adversarial classes. We note that AGI utilizes the
path-based approach for generating counterfactual examples,
and for this reason will be a primary baseline for our proposed
method throughout this paper.

Counterfactual explanations [5] are often presented in the
form of counterfactual examples [6]; here the goal is to provide
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a counterfactual example belonging to an alternative class with
respect to a reference example. Counterfactual approaches aim
to answer the question:

“Given an instance, what changes can be made to
change the outcome for that instance?”

Naturally, this allows for empirical observation as to which
changes could provide an alternative outcome. The argument
for using counterfactual methods is often developed from a
causal lens [7]. It follows that to better evaluate this causal
relationship, a promising avenue is to unify feature attribution
with counterfactual examples, as demonstrated by the Diverse
Counterfactual Explanations (DiCE) [6] method. Naturally,
given quantitative approaches to feature attribution calculation
such as these, ideally feature attribution methods should adhere
to desirable axioms across XAl literature [8]. Thus, we aim
to utilize state-of-the-art feature attribution assignment as to
satisfy key axioms in our model development. Another concern
with counterfactual examples, is the production of realistic
paths to successfully create a counterfactual example; therefore
we shall be exploring uncertainty.

Uncertainty quantification is not often considered when
producing explanations, although some approaches have ex-
plored this. Autoencoder-based frameworks have been used
to measure uncertainty for machine learning predictions and
explanations [9]. The standard autoencoder approach evaluates
the reconstruction error, which is often utilized in work sur-
rounding anomaly detection [10]; instead, we explore the use
of a variational autoencoder (VAE) for variational inference,
and thus investigate counterfactuals generated with respect to
the approximation of the true data distribution.

To address the above constraints, we propose the Quan-
tified Uncertainty (Path-Based) Counterfactual Explanations
(QUCE) method. The focus of the proposed method is three-
fold. We aim to

e minimize uncertainty and thus maximize the extent to

which the generated paths and counterfactual examples
are within distribution;

o relax the straight-line path constraints of Integrated Gra-

dients;

« provide uncertainty quantification for counterfactual paths

and counterfactual feature attribution.
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In this work, we focus on the minimization of uncertain paths
for counterfactual generation with quantifiable uncertainty
measures on the generated counterfactual. QUCE’s learning
process relaxes IG’s straight-line path restrictions as part of
the generative process.

Intuitively, it is unclear in many scenarios if one single
best path toward an alternative outcome exists; for example
a patient’s treatment path may be unclear [11], or there may
be many viable paths to achieve the same outcome [12].
Therefore, QUCE utilises both a single and multiple-paths
approach. We present the optimisation over the key metrics
— proximity [5], validity [5] and uncertainty [13].

II. EXPLAINABLE AI AND COUNTERFACTUALS

In the work of [8] the authors present a desirable set of
axiomatic foundations for XAI methods. As a brief informal
overview, we consider the following axioms:

o Success: The explainer method should be able to produce
explanations for any instance.

« Explainability: An explanation method should provide
informative explanations. An empty explanation here is
not recommended.

e Irreducability: An explanation should not contain irrel-
evant information.

o Representativity: An explanation should be possible on
unseen instances.

e Relevance: Information should only be included if it
impacts the prediction.

Counterfactual explanations can be presented both in the
form of counterfactual examples and counterfactual feature
attribution [6].

Definition 1 (Counterfactual Example). Given a probabilis-
tic classifier f : R’ — {0,1}, differentiable probabilistic
function F : R’ — [0,1], and class 7 = {0,1} an instance
x = (x',...,27) € X where X € RN*’ and a classification
threshold ¥ € [0, 1] such that

ﬁT,l'fF(X) Sﬁ

T, otherwise.

f(x) = (1)

Then a counterfactual example of x is some X° where f(x°) #
f).

Counterfactual examples are often produced through the use
of a learned generative function, examples of this can be seen
in the work of [14]. Extending this, we define a counterfactual
generator.

Definition 2 (Counterfactual Generator). Given an instance
x € X and a classifier f, a counterfactual generator is a
function G : R? — RY that takes an instance x and returns
a counterfactual example x°¢ ¢ X.

Feature attribution is a common form of XAI, and the
feature attribution approach is seen in many methods [15],
[16]. We continue by defining feature attribution:

Definition 3 (Feature Attribution). Given an instance X, a
feature attribution method is a function ® : R — R,
where ® takes an instance x and returns a vector of feature
attribution values (¢, ..., ¢”).

Concatenating feature attribution methods and counterfac-
tual examples leads to counterfactual feature attribution (CFA)
which is defined as follows:

Definition 4 (Counterfactual Feature Attribution). A coun-
terfactual feature attribution method is a function ®cp
R’ xR’ — R that takes an instance x and a counterfactual
example x°¢ and returns a vector of counterfactual feature
attribution values (¢tp, ..., ¢Lp).

III. PROPOSED MODEL: QUCE
A. Generating Counterfactuals with QUCE

To generate counterfactuals we propose a three-part ob-
jective function with a composite weighting vector A =
(A1, A2, A3), where each A € A is an independent tolerance
(weight) used to determine the influence of each part of the
joint objective function presented in equation 2. By minimiz-
ing the objective function, we obtain the generated counter-
factual x°. Informally, our objective function is composed of
three parts:

e L,,, for the maximization the probability towards the
desired class;

e Ls, to minimize the distance between the instance and a
generated counterfactual;

e L., to minimize the uncertainty of both the generated
paths and generated counterfactual examples.

Combining these terms with our weighting vector, we have

g(X) = arg min Alﬁpr + )\2»65 + )‘3£e~ (2)

Having constructed our generative objective function, we pro-
vide further notation to illustrate the learning process. First, we
consider an iterative learning process such as gradient descent
on x to produce a path from x to a generated x°. Thus, G(x)
is minimized via gradient descent. We initially let x° = x; x°
is updated via

x¢ <= xp,,
A; = pVxe(G(x)),
xa, = x5 — A,

Let x be updated on a loop over i(0 < ¢ < n) iterations; when
i = n we let our x¢ indicating our generated counterfactual.
Here, ¢ represents the “learning rate,” a small positive multi-
plier value ¢ € [0,1] : ¢ << 1. We store each update on x°

as a vector X2 = (Xa,,...,XA, ).

B. Finding Counterfactuals

1) Valid Counterfactuals: A key concept in finding counter-
factual examples is ensuring that the counterfactual is indeed
valid, and thus we aim to produce counterfactual examples
that belong to a counterfactual class.



Remark 1. For the sake of simplicity we let f(x) = -7
throughout the remainder of this work; thus T is the coun-

terfactual class for which we aim to generate some X° such
that f(x€) = 7.

In light of remark 1, given a target counterfactual class 7 and
probabilistic decision threshold ¥ we aim to find an instance
x€ that satisfies

F(r[x) > 0. 3)

Where 1 is a probability threshold for the target class 7. Thus,
we need a generator G that satisfies the condition in equation
3. To achieve this, we minimize the negative log-likelihood:

Ly = | = ool

This constitutes the constrained optimisation problem with
respect to some target class 7.

2) Proximity for Counterfactuals: Given an instance, in the
production of counterfactual examples we often aim to find a
counterfactual example that is “similar” in feature space to the
instance. This is often termed proximity.

In this work, we use the I, norm as the proposed model fo-
cuses on producing counterfactuals from continuous features,
defining proximity as follows:

Definition 5 (Proximity). Given an instance x and its coun-
terfactual example x°, the proximity between the two instances
is given by
s = |l x| @
3) Minimally Uncertain Counterfactuals: To maximize the
certainty of counterfactual examples, we examine their com-
plement—namely, the uncertainty associated with a counter-
factual example. To explore this, we establish the concept
of counterfactual uncertainty. Informally, we consider uncer-
tainty to be the Evidence Lower Bound (ELBO) as measured
by a Variational Autoencoder (VAE) framework. The objective
function ELBO is comprised of two components, namely the
Kullbeck-Leibler (KL) divergence and a reconstruction loss.
This is defines the VAE loss (VAEL) as the following:

VAEL(x) = E

where p and ¢ are probability distributions and z is the latent
representation of x. The aim is to find a 6 that successfully
models the true training data distribution v, and thereby
satisfying the following minimization problem:

{6*,v*} = argmin VAEL(x). 5)
0,9

Posterior to training the VAE we have a fixed representation
shaping our distributions with the 8* and * parameters, and
thus we can provide counterfactual uncertainty as:

Definition 6 (Counterfactual Uncertainty). Given the fixed
parameters 0* and 1p*, counterfactual uncertainty is given by:

L. =Ey,.[log go+(z|X°) — log py~(2)] — Eq,. log py-(x°|2).

= Ey,[log qo(z]x) — log py(z)] — Ey, log py(x|2z),

C. Uncertainty in Counterfactual Explanations

Definition 6 determines how ‘“good” the fit of the new
instance is with respect to the training data distribution, and
similarly how well a path fits into the data distribution. From
definition 6, we have a quantifiable measure of uncertainty
for the generated counterfactual x°. We define Feature-wise
Counterfactual Uncertainty as follows:

Definition 7 (Feature-wise Counterfactual Uncertainty). The
Feature-wise Counterfactual Uncertainty is given by:

ea = (|d*,...,|d7|) : (d',...,d")=d;

where d = x¢ — x°,

(6)
)

where X is the reconstruction of x°.

With this representation, we can then successfully update
x¢ by both adding and subtracting this vector of feature-
wise counterfactual uncertainty as given by the reconstruction
error, and thus we can calculate Counterfactual Explanation
Uncertainty.

Definition 8 (Counterfactual Explanation Uncertainty). Given
a CFA ®cr and the feature-wise counterfactual uncertainty
€d, the counterfactual explanation uncertainty is given by

(I)CC?F = (I)CF(XC + €d|X).

®)
D. Path Explanations

The Path-Integrated Gradients [1] formulation is the only
approach to our knowledge within the landscape of feature
attribution methods that satisfies all the axioms in presented
in [1]. Therefore, we adopt the path-integral formulation and
relax the straight-line constraint present in IG. To achieve this,
recall the set of learned updates on x, namely x*. It follows
that we can produce explanations over x°.

Formally, let the function F' be a continuously differentiable
function, the QUCE explanation takes the path integral formu-
lation such that given a smooth function ¢ = (1, ..., %”7) :
[0,1] — R’ defining a path in R/, where 1(a) is a point
along a path at o € [0, 1] with ¢(0) = xa, and ¢¥(1) = xa,,,
the single-path QUCE explainer is defined as:

PQuCE(X™) == /

XAD

XAan

VE@(e)) - (@)da. (9)

It follows that the explanation uncertainty with respect to a
single generated counterfactual x¢ is given as

(I):I:ed (XC) B x“teq
QUCEX) =

xC

VF($(a)) -4’ (a)da.  (10)
QUCE explanations can be easily computed by following the
Riemann approximation of the integrals for each feature as
defined in [1]. By taking the Riemann approximation of the
explanation between points xa; and xa;_1, we can bound the
explanation to an error o which we illustrate in proposition 1,
following a construction similar to the proof of theorem 1 in
[17].



Assumption 1. VF' is monotonic along a path that is param-
eterised by 1.

Proposition 1. The error o for an explanation associated with
two points xy, and 'y, ,, is bound by

o< |RP — £p|
where R p is the upper-bound and Lp is the lower-bound.

Proof. Under assumption 1, we can consider the upper-bound
of the explanation to be given by the right Riemann sum (R p),
for P steps in the Riemann approximation, such that:

. |‘m£1 - xin,IH » i aF(XAq‘,—l + %(XAi - xAi,—l))

Rp = P oxI

p=1

o We can invert the path to explain x and therefore we can
have many generative baselines. This relaxes the spec-
ified baseline of many existing path-based explanation
methods.

To proceed, we show via proposition 2 that completeness!

holds when working with the many-paths approach for ex-
pected values, ensuring axiomatic guarantees.

Proposition 2. The QUCE method satisfies the following
equality:

o {(DQUCE(XA)} (13)
- E_ {F(XC) - F(x)] (14)

OF (xa,_, +o(xa, —Xa,_,)) doFroof. Due to the completeness axiom the following holds

1
Joo_d
> (@h, —wh, )% [ o

with a left Riemann sum (Lp) giving a lower-bound, where:
J J
2, =2, |l

N Al OFa,, + s, —xs )
b= 5 oI

p=0

<
= (IAi -0 O

then the error o for the explanation is bound by
o < |R p—L p|.
O

Both attributed values from equation 10 illustrate uncer-
tainty in feature attribution values given by the QUCE ex-
plainer.

Due to the potential stochastic nature of our model with
potentially multiple minima (e.g. we may have two points
equally “close” to the decision bound with different values),
we consider a set of generated counterfactual examples to be
given as C' = (x§,,...,x{ ), where k is the number of
generated counterfactual exarflples over some set x. Given C,
we can accumulate attribution over many counterfactuals by
avoiding the specification of x°, so that we have:

@GXQUCE(X) = /C <©QUCE(XA)>pC(XC)dXC (11D

= E |:(I)QUCE(XA):| :

12
x¢~C,a~U(0,1) ( )

Here we let o« ~ U(0,1) indicate interpolation over « for
n counterfactual steps in the generator function. Informally,
we get the expectation of the gradients over the piecewise-
linear path between counterfactual steps of the generator.
We take a similar approach to the Expected Gradients [18]
formulation, except we instead sample from a set of generative
counterfactual examples. We make two arguments as to why
we use this approach:
o In explaining a counterfactual outcome, we do not know
the specific path taken and thus we can average over many
paths.

1
R

true:
F(xa,) — F(xa,) =
| IR ¥ (a)da

Ao

15)
(16)
given xa,, = x° and xa, = x respectively, we have

F(x°) — F(x).

By relaxing a strict definition of x¢, where we instead use a
set of generated counterfactuals C, yielding

L (] " YF(s(a) V)t a7
VE(a) v(a)]

and since F'(x) is a constant, we have:

= E

18
x¢~C,a~U(0,1) (18)

E {F(XC)} ~Fx)= E

xc~C xc~(C'

)P a9
equations 13 and 14 are equivalent. O

Given we can compute many-paths explanations, it follows
that we can also take the expected gradients for the explanation
uncertainty computed by QUCE along each path, such that

ptea E

exQUCEX) = E_ {%SGCE(XC)} : (20)

We proceed to evaluate QUCE against the axioms in section
II. We show that it is inherently straightforward to prove that
our proposed QUCE method satisfies these desirable axioms.

Proposition 3. The QUCE method satisfies success, explain-
ability, irreducability, representativity and relevance.

Proof. As a direct implication of the generative learning
process, QUCE will achieve an explanation satisfying success.
Next, explainability holds assuming that different instances

! Completeness: The difference in prediction between the baseline and input
should be equal to the sum of feature attribution values.



generated by QUCE do not have the same prediction proba-
bility with respect to the target class. Furthermore, we charac-
terize irrelevance under our own interpretation: since a feature
that does not change does not affect the predicted outcome,
it should be assigned zero attribution. Then directly from the
definition of QUCE it is clear that irreducability holds, as the
gradients are multiplied by a zero-value scalar for the same
valued features. It is easy to see that any instance with the
same dimensionality of the instances from a training dataset
can utilize the QUCE approach, satisyfing representativity.
Relevance holds as a direct implication of irreducability and
the fact that explanations utilise the model gradients, thereby
ensuring model-specific relevance.

O

IV. QUANTITATIVE EVALUATION

A. Datasets

1) The Simulacrum: The Simulacrum? is a synthetic dataset

used in this study, the Simulacrum is a large dataset developed
by Health Data Insight CiC and derived from anonymous
cancer data provided by the National Disease Registration
Service, NHS England. We consider five subsets of patient
records based on ICD-10 codes corresponding to lung cancer,
breast cancer, skin cancer, lymphoma and rectal cancer. These
datasets are organised as survival time classification problems,
where patients are predicted a survival time of either at least
6 months or less than 6 months.

2) COVID Rate of Infection: The COVID rate of infection
dataset contains details on control measures, temperature,
humidity and the daily rate of infection for different regions of
the UK. Details on data collection are provided in [19]. This
dataset is a binary classification task identifying an increased
rate of infection against a non-increased rate of infection.

3) Wisconsin Breast Cancer: The Wisconsin Breast Cancer
(W-BC) [20] dataset, provided in the scikit-learn library?, is
a binary classification dataset that classifies malginant and
benign tumours given a set of independent features from breast
mass measurements.

B. Baselines

1) Diverse Counterfactual Explanations: DiCE [6], a coun-
terfactual generator, provides feature attribution values for an
instance with respect to its counterfactual examples. We use
the DiCE method as a comparison for generating counterfac-
tual examples, as DiCE is not a path-based explainer, we can
only compare the generated counterfactuals.

2) Integrated Gradients: 1G [1] produces explanations for
instances in a given dataset. We modify IG in our experiments
so that the baseline becomes the instance to be explained,
while the target instance is the counterfactual generated by
QUCE. This way, we can evaluate the straight-line path
solution against the QUCE-generated path.

Zhttps://simulacrum.healthdatainsight.org.uk/
3https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_
breast_cancer.html

3) Adversarial Gradient Integration: AGI [4] provides fea-
ture attribution values and generative counterfactual examples.
The AGI method is the only path-based generative counter-
factual method currently available to our knowledge and thus
forms the primary focus of our comparison.

C. Results

To evaluate the QUCE method, we provide a comparison of
uncertainty along a path. To do this, we use a pre-trained VAE,
feeding all generated instances along any path into the VAE to
determine the reconstruction error for all given instances along
a path. The intuition behind this is that a smaller reconstruction
error is associated with a path that better follows the data
distribution and is therefore more “realistic”. In Table I we
observe that the QUCE method provides paths that better
follow the data distribution when compared against both IG
and AGI on average.

We also analyze the average VAE loss and reconstruction
error per instance across all 100 instances on both the train-
ing and test datasets. This highlights the closeness of the
reconstructed sample against the ground truth counterfactual
generated by different methods. In Table II we observe that
QUCE provides a lower value with respect to uncertainty
measurement. In Table IIT we observe that our proposed QUCE
method provides better reconstructed counterfactuals.

To compare counterfactual feature attribution methods we
evaluate the deletion score, a common metric used for eval-
uating feature attribution methods for identifying important
features. The deletion score is used in various studies [21],
[22]; here, a lower value indicates better performance. In Table
IV we observe that the QUCE method performs better on
average than both DiCE and AGI for counterfactual feature
attribution performance.

V. CONCLUSION

In this paper, we provide a novel approach that combines
generative counterfactual methods and path-based explainers,
minimizing uncertainty along generated paths and for gen-
erated counterfactual examples. We provide an analysis of
the proposed QUCE method on path uncertainty, generative
counterfactual example uncertainty, counterfactual reconstruc-
tion error and deletion score metrics. Our approach provides
paths that are less uncertain in their interpolations, so that
more reliable gradients and explanations can be extracted,
to facilitate this, we also provide a clear explanation of
uncertainty associated with assigned feature attribution values.

In whole we observe from the results, that not only do we
provide more reliable gradients on the majority of datasets,
more importantly we produce counterfactual examples and
paths that conform better to the underlying data distribution.
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