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 a b s t r a c t

Autonomously completing a contact-rich task for multiple manipulation objects remains a challenging 
problem for robots. To achieve this goal, learning from demonstration has emerged as an efficient 
method for transferring human-like skills to robots. Existing works primarily focus on trajectory or 
impedance learning to design force-impedance controllers for specific tasks, which require precise 
force sensing. However, visual perception plays a critical role in enabling humans to perform dexterous 
manipulation. To bridge the gap between vision and learning in the control loop, this work proposes a 
vision-based humanoid compliant skill transfer (VHCST) framework. Considering the lack of vision-
impedance mapping, a hybrid tree is introduced as a planning bridge to encode skill parameters 
across multiple objects. To simplify skill transfer, an observation-wearable demonstration method 
is employed to capture the position and stiffness of human’s arm. The decoupled learning model 
incorporates the geometric properties of stiffness ellipsoids, which reside on Riemannian manifolds. 
Finally, the proposed approach is validated through robotic cutting experiments involving multiple 
objects. Comparative experimental results demonstrate the effectiveness of the proposed framework.
© 2026 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an 

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Compliance has emerged as an indispensable attribute for 
modern robotic systems, enabling them to achieve the preci-
sion, adaptability, and safety required for complex interactive 
tasks [1]. Significant advancements, such as hybrid position/force 
control and mechanical impedance have been achieved to en-
able reliable force and motion control applicable to both contact 
and non-contact scenarios [2]. Numerous prominent studies have 
enhanced impedance controller using force sensing [3], visual 
error feedback [4], or humanoid-inspired skills [5]. Robots ne-
cessitate robust policy frameworks and advanced task planning 
or learning methodologies to effectively execute contact-rich ma-
nipulation tasks that leverage environmental interactions [6], yet 
challenges persist in intelligent planning and seamless integration 
of multimodal perception and action.

One feasible way to efficiently deploy torque-controlled robots 
in contact-rich scenarios is to equip them with humanoid dexter-
ous manipulation abilities through skill transfer (e.g., kinesthetic 
teaching, teleoperation, passive observation), also referred to as 
learning from demonstration (LfD) [7]. Multiple LfD approaches 

∗ Corresponding author.
E-mail address: chaozeng@ieee.org (C. Zeng).
https://doi.org/10.1016/j.birob.2026.100280
2667-3797/© 2026 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
have been developed for manipulating contact-rich tasks, such as 
statistics-based methods (e.g., Gaussian mixture model–Gaussian 
mixture regression (GMM–GMR) [8]), primitive-based methods 
(e.g., dynamical movement primitives [9] and its extension [10]). 
To address robotic manipulation scenarios involving multiple ref-
erence frames or dynamically-evolving input–output relation-
ships, task-parameterized motion generation methods have been 
proposed (e.g., Task-Parameterized GMM (TP-GMM)) [11,12].

Nevertheless, the aforementioned methods predominantly fo-
cus on data within Euclidean spaces, neglecting certain variables 
inherent to manifold spaces, such as orientation, stiffness and 
manipulability. Consequently, manifold-based learning models 
have been introduced in LfD to encode the manifold of symmetric 
positive definite (SPD) matrices [13,14] and other manifolds [15]. 
As previously established, the modulation of joint impedance 
is crucial for robots to effectively perform contact-rich tasks. 
However, prior works, such as [12,16], often compute stiffness 
matrices (measured on SPD) in Cartesian coordinates or decom-
pose them into column-wise normalized eigenvector matrices 
and corresponding eigenvalue matrices [9], thereby underutiliz-
ing their computational potential within manifold spaces. The 
impedance regulation framework proposed in [17] decomposes 
the stiffness into configuration dependent stiffness (CDS) and 
common mode stiffness (CMS) and reproduces the distribution 
 Communications Co. Ltd. This is an open access article under the CC BY-NC-ND 
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characteristics of stiffness in various directions within the CDS, 
without transferring the magnitude and variation of human stiff-
ness through the CMS to the robot. While, it may not be able to 
replicate the flexible adjustment of stiffness exhibited by humans 
during multi-stage variable stiffness movements. Inspired by [18], 
the proposed system in this paper represents stiffness as SPD 
matrix elements within manifold spaces for both learning and 
reproduction, leveraging GMM/GMR-based policy frameworks.

Meanwhile, current model-based learning approaches are
highly dependent on demonstration data, significantly constrains 
their generalization capabilities in complex scenarios. Further-
more, task-parameterized learning methods lack effective inte-
gration with visual perception systems, hindering their ability 
to semantically interpret dynamic environments. To overcome 
these limitations, a vision-based learning model is proposed in 
this work to enhance the robot’s generalization performance in 
compliant manipulation tasks.

In the domain of implicit force control, contemporary re-
search prioritizes the tracking of desired interaction forces while 
dynamically adjusting impedance parameters through quadratic 
programming framework [8,19]. Alternatively, by estimating the 
geometric parameters of the contact surface in real time, the 
contact parameters and force constraints can be integrated into 
a gradient-based model predictive control framework [20] to 
achieve optimal force–position coordinated control. The above-
mentioned model-based studies continue to rely heavily on force 
sensing, lacking an online generalized mapping model that maps 
visual features to impedance parameters. However, in task sce-
narios involving operations such as cutting or sawing, where 
handheld tools are utilized, it remains challenging to accurately 
measure the interaction forces during demonstrations. To address 
it, we propose a closed-loop framework which integrating visual 
feature understanding (e.g., material properties), dynamic char-
acteristics (e.g., stiffness), and decision-making processes. A strat-
egy selector and condition monitor are indispensable innovations 
in this work.

Behavior Trees (BT), which organize state and task-switching 
logic into a hierarchical tree, have been extensively utilized in 
robotic control. They can be generated via learning, planning, 
or manual design, making them suitable for managing complex 
task execution and multi-task scenarios [21]. Adaptive BT, by 
integrating strategy selection and condition monitoring, enable 
robots to dynamically adjust their behavior during task execu-
tion [22]. To construct BT efficiently and flexibly, LfD serves as an 
effective method for extracting knowledge. In [23], the authors 
propose a novel BT learning approach with logic factorization. 
Building on [23], this paper proposes a hybrid tree that integrates 
decision trees and behavior trees to enable strategy selection and 
condition monitoring through visual recognition capabilities.

The inherent complexity of tool-mediated contact-rich ma-
nipulation motivates robotic cutting as a validation benchmark. 
Imagine slicing food items (e.g., cucumber, potato), the robot arm 
starts at its initial pose and moves the knife until contact. Then 
the blade should be moved down until it cuts through the object 
completely and makes contact with the cutting board [24]. In 
this case, considering the food items differ greatly in both visual 
properties (e.g., shape, color, and texture) and mechanical prop-
erties (e.g., hardness, density, and friction), the robot will need to 
generalize its cutting skills across these varying attributes [25]. 
This simple yet intricate task illustrates the challenges of cutting 
multiple objects, which is introduces distinct technical difficulties 
compared to some contact-rich tasks (e.g., wipe, scoop, grind, pull 
a door and push a button). Previous studies have explored state 
estimation using multi-sensor systems [26] and motion planning 
for cutting actions based on elastic fracture mechanics [25]. LfD 
has also been utilized to capture cutting trajectory motions [24] 
2

and stiffness characteristics [27]. Given the destructive and ir-
reversible nature of cutting tasks, differentiable simulators like 
Roboninja [28] have been employed to optimize cutting strategies 
under task-specific physical constraints.

Rather than modeling the intricate dynamics of cutting in-
teractions in detail, this work directly transfers impedance skills 
within Riemannian manifolds, enabling humans to impart prior 
knowledge to the robot. By employing task-oriented visual detec-
tion, we decompose the cutting task into multiple low-level skills 
(e.g., pose adjustment and stiffness modulation) and integrate 
them using hybrid tree. Interaction forces, robot torques, and 
energy consumption are jointly minimized with the proposed 
framework. The primary contributions are summarized as:

(1) We propose a vision-based humanoid compliant skill trans-
fer framework, which integrates visual perception and
learning-based control within a unified architecture. By in-
corporating task-parameterized decoupled learning model 
and robust visual feature detection, this approach enhances 
the generalization capability of robotic manipulation tasks 
across diverse scenarios.

(2) To address the interaction tasks for multiple manipulation 
objects, we propose a task-oriented hybrid tree strategy to 
dynamically determine critical task parameters, enabling 
the generation of compliant skills. The proposed frame-
work establishes a principled mapping from visual per-
ception to robot impedance and enhances the accuracy 
of compliant skill reproduction through manifold-based 
computations.

(3) To evaluate the effectiveness of our proposed skill transfer 
framework, we apply it to robotic cutting tasks. The results 
demonstrate that our framework allows the robot to suc-
cessfully cut multiple objects, exhibiting good performance 
in terms of generalizability and flexibility.

2. Preliminary work

2.1. Stiffness ellipsoids on SPD manifold

In this paper, we consider a torque-controlled robot that phys-
ically interacts with an unknown environment. Accordingly, the 
robot dynamics is modeled in the joint space as 
M (q) q̈ + C (q, q̇) + G (q) = τ − JT Fe(t) (1)

where q, q̇, q̈ ∈ Rn×1 denote the angle, angular velocity and 
angular acceleration of each joint. Similarly, M ∈ Rn×n, C ∈ Rn

and G ∈ Rn are the inertia matrix, centripetal vector and Coriolis 
and gravity vectors of the robot respectively. J ∈ Rn×3 represents 
the Jacobian matrix, τ  represents the control inputs, and Fe is 
the robot’s interaction force with the environment, which can be 
defined as 
Md (ẍd − ẍ0) + Dd (ẋd − ẋ0) + Kd (xd − x0) = Fe (2)

where Kd ∈ R3×3 and Dd ∈ R3×3 are the stiffness and damping 
factors and Md ∈ R3×3 represents the inertia factors. xo ∈ R3

is the actual trajectory in the Cartesian space and xd ∈ R3

represents the desired trajectory. Considering the non-diagonally 
dominant inertia characteristic of robot, to simplify it, we choose 
the critically-damped condition Dd

2
= 4ΛKd and a fixed natural 

index Λ to guarantee the fastest convergence of the error without 
oscillations [29]. Thus, task variable Kd and xd could be focused 
and learned from demonstration.

As the stiffness K  of human’s arm or robot is an SPD ma-
trix that cannot be computed in Euclidean space due to the 
inadequacy of using Euclidean distance metric to measure the 
distance between two SPD matrices [30]. The SPD manifold S l , 
++
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Fig. 1. The concept of transferring human compliant manipulation skills to a 
robot by considering both trajectories and stiffness profiles, using vision and 
EMG data, respectively.

which is a differentiable space for which each point K ∈ M
locally resembles a Euclidean space and each tangent space TKM
equips with a Riemannian metric, is used to denote the stiffness 
by M(λ) =

{
K ∈ Rl×l

| aTKa > 0, a ∈ Rl, a ̸= 0
}
. It forms the 

interior of a convex cone in TKM with the inner product: 

⟨W1,W2⟩TKM =

⟨
K−

1
2 W1K−

1
2 , K−

1
2 W2K−

1
2

⟩
(3)

where TKM =
{
W ∈ Rl×l

| W = W T
}
 is the tangent space cor-

responding to the point K ∈ M and S1, S2 ∈ TKM. To define 
the distance in the tensor space, an affine-invariant metric is 
introduced: 

dist (Σ1, Σ2) =

log(Σ−1/2
1 Σ2Σ

−1/2
1

)
= dist

(
AΣ1AT , AΣ2AT

) (4)

where ∥ · ∥ represents the Frobenius norm of the matrix for any 
linear transformation A. Thus, there several operations on the 
S l
++

 [31]. The logarithm map, which projects K2 ∈ M to the 
tangent space TK1M can be formulated as 

W2 = logK1 (K2) = K
1
2
1 log

(
K

−
1
2

1 K2K
−

1
2

1

)
K

1
2
1 (5)

The exponential map, which projects W2 back to the K2 ∈ M, 
can be formulated as 

K2 = expK1 (W2) = K
1
2
1 exp

(
K

−
1
2

1 W2K
−

1
2

1

)
K

1
2
1 (6)

2.2. The decoupled learning model with TP-GMM

Instead of kinesthetic teaching, we apply the proposed obser
vation-wearable demonstration to record the wrist position and 
stiffness of the human’s arm, as shown in Fig.  1. Building upon the 
impedance recognition framework proposed in [27], the endpoint 
stiffness Kg  can be derived through a surface electromyography 
(sEMG)-based estimation methodology, which integrates intrinsic 
constant stiffness K̄g  and muscle activations extraction α (p). By 
performing parameter identification based on the results of the 
stochastic perturbation experiments, it is able to calculate the 
end-effector stiffness Kg = α (p) · K̄g .

Considering that the coordinate systems of the target and the 
tool are not fixed, TP-GMM model (see [11] for details) is imple-
mented and improved as decoupled learning model in this work. 
And the learning goal is to estimate the desired profiles from the 
demonstration dataset 

{
Xi, Kg ,i

}N
i=1

. To achieve it, X is used to 
offline train the TP-GMM in Euclidean space and Kg  is calculated 
on SPD manifold. Initially, a set of reference points is selected 
within the operational environment. Subsequently, the recorded 
3

demonstrations are transformed from the base coordinate sys-
tem into the coordinate systems associated with these reference 
points via the following coordinate transformation process. 

X (r)
= R(r)−1 (

X − d(r)
)
, K (r)

g = R(r)T KgR(r) (7)

where the position X ∈ Rm×1 and the stiffness matrices Kg ∈ Rl×l

are concatenated form the dataset ZX = [t; vec (X)] ∈ R(m+1)×1

and ZK =
[
t; vec

(
Kg
)]

∈ R(L+1)×1. The subscript r denotes the rth 
reference point, where R(r)

∈ Rm×m and d(r) ∈ Rm×1 represent the 
rotation matrix and the translation vector, respectively, associ-
ated with the r-th reference point relative to the base coordinates. 
Hence, the TP-GMM in the coordinate system is given as 

p
(
Z (r))

=

N∑
n=1

π (r)
n N

(
Z (r)

|µ(r)
n , Σ (r)

n

)
(8)

where π ∈ [0, 1] is the prior weighting. It is worth noting that N
represents the number of Gaussian models, which are expressed 
in the Riemannian manifolds space [32]: 

N (Z |µ, Σ) =
(
(2π )L|Σ |

)− 1
2 exp−

1
2 logµ(Z)Σ−1logµ(Z) (9)

where µ ∈ RL represents the center and Σ ∈ RL×L is the 
covariance of the Gaussian model. Then the parameters in (9) 
for each reference point would be optimized by Expectation–
Maximization algorithm to maximize the log-likelihood function 
in Eq.  (8) and saved in skill tree.

Data is often represented in a vector form in the GMM model. 
To enable the conversion between stiffness matrices K ∈ Rl×l and 
vectors s ∈ RL, the following is defined: 

sk =

{
Mii, ifk ≤ l
√
2Mij, ifk > l

(10)

where L = l(l + 1)/2 is the dimension of stiffness vector. i and j
represent the row and column of K .

3. Methodology

To enable the generalization of task trajectories, a cutting-
point detection method is proposed to support task-parameterized
learning. Concurrently, a hybrid tree structure is developed to 
efficiently map visual feature space to impedance space, facilitat-
ing effective planning. Subsequently, the generalized trajectories 
and impedance parameters are transformed into joint space to 
achieve precise control execution. The following section system-
atically introduces the four modules of the proposed framework 
(see Fig.  2).

3.1. Cutting-point detection

The 3D camera in this system is installed using a fixed-position 
mounting method, with the process beginning with preprocess-
ing steps for eye-to-hand calibration. The ArUco marker detection 
method in OpenCV is employed to approximate the position 
of the robot’s end-effector, followed by the calculation of the 
rotation matrix Rrob

cam and translation matrix T rob
cam between the 

3D camera and the robot coordinate system through the least 
squares method.

For recognition of the position and orientation of cutting ob-
jects, as shown in Fig.  4(a), the YOLOv8s-OBB model [33] is 
implemented to perform oriented bounding box object detection. 
The inference results for target type and individual cutting targets 
B = (xm, ym, w, h, θ) are obtained from the model, including 
central location, width, height and rotation angle. Then the pixel 
coordinates of the four vertices of the bounding box P , i ∈
i
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Fig. 2. The scheme of the proposed vision-based humanoid compliant skill transfer framework.
Fig. 3. Block diagram of the proposed hybrid tree structure. Strategy selector first decides which strategy to use for the next attempt according to the task-oriented 
decision tree. The condition monitor then instruct the robot to perform specific actions. The right-pointing arrow blocks are sequence nodes. The question mark 
arrow blocks are selector nodes.
{0, 1, 2, 3} and the pixel coordinates of multiple (k) cutting points 
Qt are calculated as follows: 

Pi =

[
xm
ym

]
+

[
cos θ − sin θ

sin θ cos θ

][
±w/2
±h/2

]
(11)[

Qt .x
Qt .y

]
= (1 − t)

(
P0 + P1

2

)
+ t

(
P2 + P3

2

)
(12)

with t ∈ {k/ (n − 1) | k = 0, 1, . . . , n − 1}. And the target cutting 
position of robot coordinate is calculated as follows: [ Xt

Yt
Zt

]
= Rrob

cam

⎡⎣ (Qt .x − cx) · d/fx(
Qt .y − cy

)
· d/fy

d

⎤⎦+ T rob
cam (13)

where d is the depth of the point [Qt .x,Qt .y]. And the camera’s 
intrinsic parameters 

[
cx, cy, fx, fy

]
 were obtained using Zhang’s 

calibration method implemented in the MATLAB toolbox. Then 
the unit cutting direction vector in the horizontal plane is defined 
as follows: 

Vunit =

⎛⎜⎝ −Ly√
L2x + L2y

,
Lx√

L2x + L2y
, 0

⎞⎟⎠ (14)

with Lx = Xt − X0, Ly = Yt − Y0. Finally, the cutting pose 
quaternions of robot could be calculated.
4

3.2. Task-oriented hybrid tree

As illustrated in Fig.  3, the proposed hybrid tree is composed 
of three core stages. Firstly, leveraging the predefined database of 
skill transfer detailed in Section 2, the applied cutting methods 
(e.g., chop, saw, slice) and GMM model are selected based on 
the target detection results within the task-oriented decision 
tree (TO-DT). Secondly, the strategy selector determines the op-
timal strategy for the next attempt and initiates the process by 
integrating visual perception and TO-DT. Finally, the condition 
monitor encapsulates the subtree corresponding to the chosen 
strategy, checking a set of task and strategy-specific conditions 
concurrently to proper operation of the behavior tree. The cat-
egories of BT nodes utilized in this work are referenced in [22]. 
The influence of the perception module, oriented bounding boxes 
object recognition and cutting-point detection, on the hybrid tree 
is primarily evident in three key aspects:

• Object category identification and the determination of task-
oriented decision tree.

• Cutting-point localization and behavior tree state aware-
ness, thereby influencing manipulation skill transfer.

• Classification of object cutting (slicing or sawing) to con-
strain the workspace and limit the output torque of the 
robot.
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Fig. 4. (a) Examples of oriented bounding boxes object detection. (b) Examples of cutting-point detection. (c) The robot slices a cucumber.
3.3. Reproduction of position and stiffness

In the process of reproduction, the proposed decoupled TP-
GMR method is utilized to replicate the sequence of robot end-
effector position on Euclidean space and stiffness on manifold 
derived from TP-GMM [11]. With time serves as the input, the 
reproduced position and stiffness could be adjusted according 
to the temporal progression and cutting state of robot. Conse-
quently, the reproduced data, alongside its center and covariance, 
can be expressed as follows: 

Z =

[
tI

vec (YO)

]
, µ =

[
µI
µO

]
, Σ =

[
ΣII ΣIO
ΣOI ΣOO

]
(15)

where YO can represent position XO or stiffness KO, vec (YO) is 
calculated by (10). The TP-GMR in the coordinate system of the 
r-th reference point is formulated as follows: 

p(Y (r,i)
O |t (r,i)I ) =

N∑
n=1

h(r,i)
n N (µ̂(r)

n , Σ̂ (r)
n ) (16)

h(r,i)
n =

π
(r)
n N (t (r,i)I |µ

(r)
I,n, Σ

(r)
II,n)∑N

j=1 π
(r)
j N (t (r,i)I |µ

(r)
I,j , Σ

(r)
II,j)

(17)

where p(Y (r,i)
O |t (r,i)I ) represents the conditional probability dis-

tribution, h(r,i)
n  is the weight of each Gaussian component, and 

N (µ̂(r)
n , Σ̂

(r)
n ) is a Gaussian distribution with mean µ̂(r)

n  and co-
variance Σ̂ (r)

n . For trajectory learned in Euclidean space, the final 
estimated outputs can be obtained as follow: 

X̂ i
O =

∑
i

h(r,i)
n (t)

[
µ

(r)
O,n + Σ

(r)
OI,nΣ

(r)−1

II,n

(
t − µ

(r)
I,n

)]
(18)

For stiffness matrices learned in SPD manifold, the reproduced 
KO is calculated as 

Φ(r,i)
n = Log

µ
(r)
O
(µ(r)

O,n) + Σ
(r)
OI,nΣ

(r)−1

II,n Logt(r,i)I
(µ(r)

I,n) (19)

K (r,i)
O = Exp

µ
(r)
O

(
N∑

n=1

h(r,i)
n Φ (r,i)

n

)
(20)

where Φ(r,i)
n  is the direction vector on the SPD manifold. Then, 

based on the inverse computation in Eq.  (7), the primary output 
position XO or stiffness KO can be expressed as: 

K (r,i)
g = R(r)K (r,i)

O R(r)T , X (r,i)
g = R(r)X (r,i)

O + d(r) (21)

3.4. Robot impedance control

Considering that excessive joint output torque may cause in-
stability in the robot’s joint movements, while insufficient torque 
may prevent the serial mechanism from operating properly, it 
5

is necessary to impose maximum and minimum limits on the 
joint output torque. Accordingly, the output torque generated 
during model reproduction is normalized and mapped to a rea-
sonable operational range. With the cascaded structure of torque-
controlled robot, combined with the desired end-effector position 
X i
out ∈ Rm×1, i = 0, 1, . . . , T  and stiffness proposed in above-

mentioned methods, variable stiffness Kjr = JTe Kg Je in joint space 
would be optimized as follows: 

Kj = Kj,min +

(
Kjr − Kj,min

)2
Kj,max − Kj,min

(22)

where Kj,min and Kj,max are the minimum and maximum stiffness 
of robot. Then, a torque controller is used in joint space as 
follows: 
τj = Kj (qd − q) + Dj (q̇d − q̇) + τg (23)

where τj ∈ Rn×1 is the control joint torque, Dj = ζ
√
Kj referred 

by [29]. τg ∈ Rn×1 represents the compensating torque. And the 
desired joint angles can be calculated as: {

q̇d = J† (Xd − XI)
qd (k + 1) = qd (k) + q̇d∆t (24)

with J† = JT
(
J JT
)−1 is the Moore–Penrose pseudoinverse of the 

Jacobian matrix.

4. Experiments and results

In this section, we demonstrate the performance of the vision-
based humanoid compliant skill transfer framework. As shown 
in Fig.  5, robotic cutting tasks are performed to evaluate the 
effectiveness of the skill transfer method and the hybrid tree. 
In the experiment, the robot is enabled to cut different types of 
objects using two cutting styles: (1) slicing is used for cucumber 
and potato and (2) sawing is used for carrot and eggplant.

4.1. Experimental setup

The methodology is evaluated in a robotic cutting setup com-
prising a torque controlled manipulator of 7 DoF (the Rethink 
Robotic Baxter), a MYO armband from Thalmic Labs, a Microsoft 
Kinect V2 used for demonstration and the Intel Realsense d435i 
camera used for visual detection. The visual model training and 
real-time recognition are performed on a computer equipped 
with an NVIDIA GeForce RTX 4070 Laptop GPU. The results are 
transmitted to the robot’s ROS-based control host via UDP com-
munication.

To ensure consistency in the interaction during the cutting 
process, the experiment standardizes the use of the freshest 
vegetables and conducted multiple trials in the same time. As 
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Fig. 5. Experimental scene diagram.

the study focuses on learning and controlling the cutting process 
through visual recognition and hybrid tree, the vegetables are 
securely fixed on the cutting board.

The proposed method utilizes a vision-based decoupled com-
pliant learning model to generalize both the target trajectory and 
target stiffness for the cutting task. To validate its effectiveness, 
the robot performes the task using adaptive impedance control 
(AIC) derived from the generalized parameters. For comparison, 
the task is also executed under high impedance control (HIC) and 
low impedance control (LIC), which serve as baselines.

Given the limited force manipulability of the Baxter robot in a 
single direction and inspired by human cutting habits, the cutting 
behavior in this experiment is classified into two categories. The 
first category involves slicing soft or relatively brittle objects, 
such as potatoes and cucumbers, whereas the second category 
focuses on sawing harder objects or those with tough skins, such 
as carrots and eggplants. This classification facilitates the transfer 
of human-like compliant skills to the robot, allowing it to adapt 
its cutting strategy for various objects.

The four types of vegetables are selected as the experimental 
group for testing and focused analysis because their distinct phys-
ical properties are representative of a wide variety of vegetables. 
For example, cucumber is elongated and relatively brittle; potato 
has a uniform texture and a large cutting cross-section; carrot 
is a harder object with significant internal density variation; and 
eggplant has a tough outer skin, making it particularly difficult to 
cut through completely. Many other fruits and vegetables with 
similar physical properties exhibit comparable cutting require-
ments, thereby demonstrating the generalization capability of our 
proposed method to a broader range of objects.
6

4.2. Results of cutting tasks

The robot setup for collecting cutting data is shown in Fig. 
1. With built-in sEMG sensor and Inertial Measurement Unit of 
MYO, as well as the open-source body tracking SDK of Kinect 
[34], humanoid cutting skills could be record precisely. Then 
the decoupled learning model allows the robot to automatically 
extract high-level features for generalizing across the different 
types of food items from demonstrations. The learned model 
parameters are subsequently integrated into the hybrid tree for 
sequencing skills. The target object is predicted from vision-based 
object detection. Then it is mapped to model parameters for 
adapting the slicing or sawing skills, which is initialized with 
the key information of cutting point detection. Some reproduced 
position and stiffness trajectories of slicing or sawing are shown 
in Fig.  8.

During this experiment, four groups are considered: potato, 
cucumber, carrot and eggplant. For each group, four demon-
strations are conducted in total. The position trajectories are 
learned using TP-GMM/GMR with four Gaussian models and two 
candidate frames of reference (start point and end point), and 
the stiffness profiles are learned using TP-GMM/GMR on SPD 
with six Gaussian models and one candidate frames of reference 
(the camera coordinate system), the same as GMM/GMR on SPD. 
Significantly, trajectories between cutting point and end point 
on the board for slicing or sawing method are defined according 
to human demonstrations. The complete reproduced trajectory 
and stiffness profiles are then used to construct an adaptive 
impedance controller to perform cutting tasks on various objects. 
Additionally, two control groups with high impedance and low 
impedance settings are established to conduct the same tasks 
for comparison. Finally, both the HIC and the proposed AIC suc-
cessfully complete the cutting tasks, whereas the LIC fails it. For 
both the HIC and AIC groups, during the period from the object 
is completely cut through to the end of the cutting action, the 
contact interface of the knife transitions from the object to the 
cutting board. Due to the change in environmental impedance, 
the contact force exhibits a rapid increase, as shown in Fig.  6. 
In contrast, for the LIC group, the output force is insufficient to 
complete the cut, resulting in the knife becoming embedded in 
the middle of the object. Subsequently, we will focus on the HIC 
and AIC groups.

It is indicated that the HIC and AIC achieve different perfor-
mances in the contact force as is shown in Fig.  6. Compared to the 
HIC, the robot using the AIC demonstrates a significant reduction 
in both the average interaction force (potato: 51.18%, cucumber: 
53.89%, carrot: 27.56%, eggplant: 13.33%) and the maximum in-
teraction force (potato: 40.68%, cucumber: 53.66%, carrot: 26.26%, 
eggplant: 10.38%). Meanwhile, the robotic cutting in HIC mode 
occasionally fails to follow the reproduced trajectory or produce 
Fig. 6. The comparison results of interaction force using different control modes (HIC, AIC and LIC).
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Fig. 7. The comparison results of robot joint torque using different control modes (HIC and AIC).
Fig. 8. The reproduced position trajectories and stiffness profiles using (a) slicing and (b) sawing cutting styles.
Fig. 9. The comparison of energy consumption between HIC and AIC.

a flat cutting surface due to intense vibrations. Considering that 
the high contact forces in HIC lead to unstable experimental 
performance, the proposed AIC not only reduces the interaction 
forces between the robot and the environment but also improves 
task execution, enhances system stability, and protects the robot 
7

itself. What is more, the AIC would provide a lower torque of 
each joint compared with HIC, as shown in Fig.  7. During the 
slicing of eggplant and carrot, both the joint torques of the robot 
and the interaction forces exhibit noticeable oscillations. This 
phenomenon arises because slicing is a short-range, back and 
forth motion, resulting in periodic changes in the end-effector 
torque and interaction force along the cutting plane. And these 
oscillations do not affect the overall stability of the system.

To comparatively evaluate the effects of HIC and AIC modali-
ties on robotic power consumption, we formulate the robot joint 
operation power estimation model as Pj =

∑n
i=1 πi · τi · ωi, where 

π = [0.1, 0.4, 0.2, 0.15, 0.05, 0.05, 0.05] is the associated weight 
of each joint torque defined by the robot structure. τi and ωi are 
the joint torque and angular velocity. The power consumption re-
sults calculated based on the above equations are shown in Fig.  9. 
Given the inherent variability in the physical properties of the test 
objects, such as cutting surface length and area, it is ensured that 
both the control group and the experimental group conducted 
the experiments at locations on the same object that are in very 
close proximity and have nearly identical cross-sectional areas. 
It can be observed that the AIC is capable of reducing torque 
output and reducing energy consumption while completing the 
task. Specifically, it can be observed that the power consumption 
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Fig. 10. The comparison of (a) joint torque variation rates (b) angular accelerations between HIC and AIC.
for slicing eggplant is significantly higher than that of the other 
samples. This can be attributed to the relatively tough skin of 
the eggplant, which requires a greater slicing force and higher 
tool stiffness to achieve a successful cut. Furthermore, the greater 
distance between the knife and the cutting point requires the 
robot to traverse a longer path during the slicing process.

In addition, the comparisons of joint torque variation rates 
and angular accelerations are presented in Fig.  10. These results 
further demonstrate that the proposed method produces a nat-
ural and smooth motion trajectory during the cutting process, 
effectively reducing wear on the robot’s movements.

4.3. Discussion

The experimental results demonstrate the superior perfor-
mance of our proposed method in achieving compliant
robot-environment interaction. Notably, we observe that when 
processing objects with heterogeneous internal density or ma-
terial composition (e.g., carrots), while greater cutting force was 
applied, the HIC mode occasionally fails to penetrate the dense 
core region, whereas the AIC mode successfully completes it. This 
comparative analysis substantiates the practical significance of 
implementing variable impedance control in robotic cutting ap-
plications, particularly when contrasted with position-controlled 
robotic systems. Moreover, our vision-based hybrid tree method-
ology exhibits distinct advantages over previous research in cut-
ting scenarios, manifested through several principal aspects.

The proposed approach eliminates the requirement for pre-
cise modeling of cutting forces, frictional dynamics, or fracture 
mechanics predictions during the cutting process. Instead of de-
pending on accurate measurements of material thickness and 
deformation, our methodology achieves safe multiple objects cut-
ting through effective skill transfer of the demonstrator’s stiffness 
to the robot.

Human intuitively employ distinct cutting strategies for differ-
ent objects, as exemplified by the slicing method for potatoes and 
cucumbers versus the sawing method for carrots and eggplants in 
above-mentioned experiments. Training a monolithic network to 
encompass all cutting skills risks compromised accuracy and ex-
cessive complexity. To address this, our framework implements a 
decoupled learning model that separately encodes object-specific 
cutting strategies with minimal parameterization.
8

The proposed framework employs visual object detection to 
facilitate compliant manipulation tasks, circumventing the de-
pendency on high-precision force sensors for perceptual input. 
Experimental results from cutting trials demonstrate the frame-
work’s potentiality in addressing tool-mediated manipulation 
tasks, as well as applications inherently compatible with implicit 
force control methodologies.

While the proposed method demonstrates promising perfor-
mance in the targeted scenarios, it is subject to two practical 
limitations. First, given that the present study concentrates on 
implementing the proposed compliant skill transfer framework 
in contact-rich operations, the issue of workpiece immobilization 
has been deliberately simplified. However, practical cutting ap-
plications may necessitate the coordinated control of additional 
robotic arms to address this challenge effectively. Additionally, 
a current limitation of the framework lies in its absence of on-
line relearning capabilities, potentially reduce the accuracy of 
positioning when encountering substantial changes between ini-
tial and target positional parameters. Future work plans to ad-
dress the above issues and achieve the peeling task via dual-arm 
tool-in-hand manipulation.

5. Conclusions

This paper proposes a novel vision-based humanoid compliant 
skill transfer framework. The intuitive demonstration interface 
combined with a decoupled modeling framework enables effi-
cient and precise acquisition of human skills, while the inte-
gration of visual recognition with hybrid tree ensures reliable 
and rapid skill reproduction. Experimental results demonstrate 
that the adaptive impedance cutting method based on decou-
pled skill transfer position trajectories and stiffness ellipsoids 
can effectively reduce the interaction force, reduce the energy 
consumption and improve the stability of the system. Notably, 
the visual-impedance mapping within the learning for control 
structure significantly enhances human-in-the-loop robot learn-
ing efficacy, enabling adaptability across a contact-rich task for 
multiple objects.
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