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Abstract

Autonomously completing a contact-rich task for multiple manipulation ob-
jects remains a challenging problem for robots. To achieve this goal, learn-
ing from demonstration has emerged as an efficient method for transferring
human-like skills to robots. Existing works primarily focus on trajectory or
impedance learning to design force-impedance controllers for specific tasks,
which require precise force sensing. However, visual perception plays a crit-
ical role in enabling humans to perform dexterous manipulation. To bridge
the gap between vision and learning in the control loop, this work proposes
a vision-based humanoid compliant skill transfer (VHCST) framework. Con-
sidering the lack of vision-impedance mapping, a hybrid tree is introduced
as a planning bridge to encode skill parameters across multiple objects. To
simplify skill transfer, an observation-wearable demonstration method is em-
ployed to capture the position and stiffness of human’s arm. The decoupled
learning model incorporates the geometric properties of stiffness ellipsoids,
which reside on Riemannian manifolds. Finally, the proposed approach is
validated through robotic cutting experiments involving multiple objects.
Comparative experimental results demonstrate the effectiveness of the pro-
posed framework.

∗Corresponding author.
Email address: chaozeng@ieee.org (Chao Zeng)
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1. INTRODUCTION

Compliance has emerged as an indispensable attribute for modern robotic
systems, enabling them to achieve the precision, adaptability, and safety re-
quired for complex interactive tasks [1]. Significant advancements, such as
hybrid position/force control and mechanical impedance have been achieved
to enable reliable force and motion control applicable to both contact and
non-contact scenarios [2]. Numerous prominent studies have enhanced impedance
controller using force sensing [3], visual error feedback [4], or humanoid-
inspired skills [5]. Robots necessitate robust policy frameworks and advanced
task planning or learning methodologies to effectively execute contact-rich
manipulation tasks that leverage environmental interactions [6], yet chal-
lenges persist in intelligent planning and seamless integration of multimodal
perception and action.

Figure 1: The concept of transferring human compliant manipulation skills to a robot by
considering both trajectories and stiffness profiles, using vision and EMG data, respec-
tively.

One feasible way to efficiently deploy torque-controlled robots in contact-
rich scenarios is to equip them with humanoid dexterous manipulation abil-
ities through skill transfer (e.g., kinesthetic teaching, teleoperation, pas-
sive observation), also referred to as learning from demonstration (LfD) [7].
Multiple LfD approaches have been developed for manipulating contact-rich
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mixture regression (GMM–GMR) [8]), primitive-based methods (e.g., dy-
namical movement primitives [9] and its extension [10]). To address robotic
manipulation scenarios involving multiple reference frames or dynamically-
evolving input-output relationships, task-parameterized motion generation
methods have been proposed (e.g., Task-Parameterized GMM (TP-GMM))
[11, 12].

Nevertheless, the aforementioned methods predominantly focus on data
within Euclidean spaces, neglecting certain variables inherent to manifold
spaces, such as orientation, stiffness and manipulability. Consequently, manifold-
based learning models have been introduced in LfD to encode the manifold of
symmetric positive definite (SPD) matrices [13, 14] and other manifolds [15].
As previously established, the modulation of joint impedance is crucial for
robots to effectively perform contact-rich tasks. However, prior works, such
as [12, 16], often compute stiffness matrices (measured on SPD) in Cartesian
coordinates or decompose them into column-wise normalized eigenvector ma-
trices and corresponding eigenvalue matrices [9], thereby underutilizing their
computational potential within manifold spaces. The impedance regulation
framework proposed in [17] decomposes the stiffness into configuration de-
pendent stiffness (CDS) and common mode stiffness (CMS) and reproduces
the distribution characteristics of stiffness in various directions within the
CDS, without transferring the magnitude and variation of human stiffness
through the CMS to the robot. While, it may not be able to replicate the
flexible adjustment of stiffness exhibited by humans during multi-stage vari-
able stiffness movements. Inspired by [18], the proposed system in this paper
represents stiffness as SPD matrix elements within manifold spaces for both
learning and reproduction, leveraging GMM/GMR-based policy frameworks.

Meanwhile, current model-based learning approaches are highly depen-
dent on demonstration data, significantly constrains their generalization ca-
pabilities in complex scenarios. Furthermore, task-parameterized learning
methods lack effective integration with visual perception systems, hindering
their ability to semantically interpret dynamic environments. To overcome
these limitations, a vision-based learning model is proposed in this work to
enhance the robot’s generalization performance in compliant manipulation
tasks.

In the domain of implicit force control, contemporary research priori-
tizes the tracking of desired interaction forces while dynamically adjusting
impedance parameters through quadratic programming framework [8, 19].
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in real time, the contact parameters and force constraints can be integrated
into a gradient-based model predictive control framework [20] to achieve op-
timal force–position coordinated control. The above-mentioned model-based
studies continue to rely heavily on force sensing, lacking an online generalized
mapping model that maps visual features to impedance parameters. How-
ever, in task scenarios involving operations such as cutting or sawing, where
handheld tools are utilized, it remains challenging to accurately measure the
interaction forces during demonstrations. To address it, we propose a closed-
loop framework which integrating visual feature understanding (e.g., mate-
rial properties), dynamic characteristics (e.g., stiffness), and decision-making
processes. A strategy selector and condition monitor are indispensable inno-
vations in this work.

Behavior Trees (BT), which organize state and task-switching logic into a
hierarchical tree, have been extensively utilized in robotic control. They can
be generated via learning, planning, or manual design, making them suitable
for managing complex task execution and multi-task scenarios [21]. Adaptive
BT, by integrating strategy selection and condition monitoring, enable robots
to dynamically adjust their behavior during task execution [22]. To construct
BT efficiently and flexibly, LfD serves as an effective method for extracting
knowledge. In [23], the authors propose a novel BT learning approach with
logic factorization. Building on [23], this paper proposes a hybrid tree that
integrates decision trees and behavior trees to enable strategy selection and
condition monitoring through visual recognition capabilities.

The inherent complexity of tool-mediated contact-rich manipulation mo-
tivates robotic cutting as a validation benchmark. Imagine slicing food items
(e.g., cucumber, potato), the robot arm starts at its initial pose and moves
the knife until contact. Then the blade should be moved down until it cuts
through the object completely and makes contact with the cutting board
[24]. In this case, considering the food items differ greatly in both visual
properties (e.g., shape, color, and texture) and mechanical properties (e.g.,
hardness, density, and friction), the robot will need to generalize its cutting
skills across these varying attributes [25]. This simple yet intricate task illus-
trates the challenges of cutting multiple objects, which is introduces distinct
technical difficulties compared to some contact-rich tasks (e.g., wipe, scoop,
grind, pull a door and push a button). Previous studies have explored state
estimation using multi-sensor systems [26] and motion planning for cutting
actions based on elastic fracture mechanics [25]. LfD has also been utilized
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Given the destructive and irreversible nature of cutting tasks, differentiable
simulators like Roboninja [28] have been employed to optimize cutting strate-
gies under task-specific physical constraints.

Rather than modeling the intricate dynamics of cutting interactions in
detail, this work directly transfers impedance skills within Riemannian man-
ifolds, enabling humans to impart prior knowledge to the robot. By em-
ploying task-oriented visual detection, we decompose the cutting task into
multiple low-level skills (e.g., pose adjustment and stiffness modulation) and
integrate them using hybrid tree. Interaction forces, robot torques, and en-
ergy consumption are jointly minimized with the proposed framework. The
primary contributions are summarized as:

1. We propose a vision-based humanoid compliant skill transfer frame-
work, which integrates visual perception and learning-based control
within a unified architecture. By incorporating task-parameterized de-
coupled learning model and robust visual feature detection, this ap-
proach enhances the generalization capability of robotic manipulation
tasks across diverse scenarios.

2. To address the interaction tasks for multiple manipulation objects, we
propose a task-oriented hybrid tree strategy to dynamically determine
critical task parameters, enabling the generation of compliant skills.
The proposed framework establishes a principled mapping from visual
perception to robot impedance and enhances the accuracy of compliant
skill reproduction through manifold-based computations.

3. To evaluate the effectiveness of our proposed skill transfer framework,
we apply it to robotic cutting tasks. The results demonstrate that
our framework allows the robot to successfully cut multiple objects,
exhibiting good performance in terms of generalizability and flexibility.

2. PRELIMINARY WORK

2.1. Stiffness Ellipsoids on SPD Manifold
In this paper, we consider a torque-controlled robot that physically in-

teracts with an unknown environment. Accordingly, the robot dynamics is
modelled in the joint space as:

M (q) q̈ + C (q, q̇) +G (q) = τ − JTFe(t) (1)
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tion of each joint. Similarly, M ∈ Rn×n, C ∈ Rn and G ∈ Rn are the inertia
matrix, centripetal vector and Coriolis and gravity vectors of the robot re-
spectively. J ∈ Rn×3 represents the Jacobian matrix, τ represents the control
inputs, and Fe is the robot’s interaction force with the environment, which
can be defined as:

Md (ẍd − ẍ0) +Dd (ẋd − ẋ0) +Kd (xd − x0) = Fe (2)

where Kd ∈ R3×3 and Dd ∈ R3×3 are the stiffness and damping factors and
Md ∈ R3×3 represents the inertia factors. xo ∈ R3 is the actual trajectory in
the Cartesian space and xd ∈ R3 represents the desired trajectory. Consider-
ing the non-diagonally dominant inertia characteristic of robot, to simplify it,
we choose the critically-damped condition Dd

2 = 4ΛKd and a fixed natural
index Λ to guarantee the fastest convergence of the error without oscilla-
tions [29]. Thus, task variable Kd and xd could be focused and learned from
demonstration.

As the stiffness K of human’s arm or robot is an SPD matrix that cannot
be computed in Euclidean space due to the inadequacy of using Euclidean
distance metric to measure the distance between two SPD matrices [30].
The SPD manifold Sl

++ , which is a differentiable space for which each point
K ∈ M locally resembles a Euclidean space and each tangent space TKM
equips with a Riemannian metric, is used to denote the stiffness by M(λ) ={
K ∈ Rl×l | aTKa > 0, a ∈ Rl, a ̸= 0

}
. It forms the interior of a convex cone

in TKM with the inner product:

⟨W1,W2⟩TKM =
〈
K− 1

2W1K
− 1

2 , K− 1
2W2K

− 1
2

〉
(3)

where TKM =
{
W ∈ Rl×l | W = W T

}
is the tangent space corresponding to

the point K ∈ M and S1, S2 ∈ TKM . To define the distance in the tensor
space, an affine-invariant metric is introduced:

dist (Σ1,Σ2) =
∥∥∥log

(
Σ

−1/2
1 Σ2Σ

−1/2
1

)∥∥∥
= dist

(
AΣ1A

T , AΣ2A
T
) (4)

where ∥ · ∥ represents the Frobenius norm of the matrix for any linear trans-
formation A. Thus, there several operations on the Sl

++ [31]. The logarithm
map, which projects K2 ∈ M to the tangent space TK1M can be formulated
as:

6
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(K2) = K
1
2
1 log

(
K

− 1
2

1 K2K
− 1

2
1

)
K

1
2
1 (5)

The exponential map, which projects W2 back to the K2 ∈ M , can be
formulated as:

K2 = expK1
(W2) = K

1
2
1 exp

(
K

− 1
2

1 W2K
− 1

2
1

)
K

1
2
1 (6)

2.2. The Decoupled Learning Model with TP-GMM
Instead of kinesthetic teaching, we apply the proposed observation-wearable

demonstration to record the wrist position and stiffness of the human’s arm,
as shown in Fig.1. Building upon the impedance recognition framework pro-
posed in [27], the endpoint stiffness Kg can be derived through a surface
electromyography (sEMG)-based estimation methodology, which integrates
intrinsic constant stiffness K̄g and muscle activations extraction α (p). By
performing parameter identification based on the results of the stochastic
perturbation experiments, it is able to calculate the end-effector stiffness
Kg = α (p) · K̄g.

Considering that the coordinate systems of the target and the tool are
not fixed, TP-GMM model (see [11] for details) is implemented and improved
as decoupled learning model in this work. And the learning goal is to esti-

mate the desired profiles from the demonstration dataset
{
Xi, Kg,i

}N

i=1
. To

achieve it, X is used to offline train the TP-GMM in Euclidean space and Kg

is calculated on SPD manifold. Initially, a set of reference points is selected
within the operational environment. Subsequently, the recorded demonstra-
tions are transformed from the base coordinate system into the coordinate
systems associated with these reference points via the following coordinate
transformation process.

X(r) = R(r)−1 (
X − d(r)

)
, K(r)

g = R(r)TKgR
(r) (7)

where the position X ∈ Rm×1 and the stiffness matrices Kg ∈ Rl×l are
concatenated form the dataset ZX = [t; vec (X)] ∈ R(m+1)×1 and ZK =
[t; vec (Kg)] ∈ R(L+1)×1 . The subscript r denotes the r-th reference point,
where R(r) ∈ Rm×m and d(r) ∈ Rm×1 represent the rotation matrix and
the translation vector, respectively, associated with the r-th reference point
relative to the base coordinates. Hence, the TP-GMM in the coordinate
system is given as:

7
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(
Z(r)

)
=

N∑

n=1

π(r)
n N

(
Z(r)|µ(r)

n ,Σ(r)
n

)
(8)

where π ∈ [0, 1] is the prior weighting. It is worth noting that N represents
the number of Gaussian models, which are expressed in the Riemannian
manifolds space [32]:

N (Z|µ,Σ) =
(
(2π)L|Σ|

)− 1
2
exp− 1

2
logµ(Z)Σ−1logµ(Z) (9)

where µ ∈ RL represents the center and Σ ∈ RL×L is the covariance of the
Gaussian model. Then the parameters in (9) for each reference point would
be optimized by Expectation–Maximization algorithm to maximize the log-
likelihood function in Equation (8) and saved in skill tree.

Data is often represented in a vector form in the GMM model. To enable
the conversion between stiffness matrices K ∈ Rl×l and vectors s ∈ RL , the
following is defined:

sk =

{
Mii, ifk ≤ l√
2Mij, ifk > l

(10)

where L = l(l + 1)/2 is the dimension of stiffness vector. i and j represent
the row and column of K.

3. METHODOLOGY

To enable the generalization of task trajectories, a cutting-point detection
method is proposed to support task-parameterized learning. Concurrently, a
hybrid tree structure is developed to efficiently map visual feature space to
impedance space, facilitating effective planning. Subsequently, the general-
ized trajectories and impedance parameters are transformed into joint space
to achieve precise control execution. The following section systematically
introduces the four modules of the proposed framework.

3.1. Cutting-point Detection
The 3D camera in this system is installed using a fixed-position mounting

method, with the process beginning with preprocessing steps for eye-to-hand
calibration. The ArUco marker detection method in OpenCV is employed to
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Figure 2: The scheme of the proposed vision-based humanoid compliant skill transfer
framework.

approximate the position of the robot’s end-effector, followed by the calcula-
tion of the rotation matrix Rrob

cam and translation matrix T rob
cam between the 3D

camera and the robot coordinate system through the least squares method.
For recognition of the position and orientation of cutting objects, as shown

in Fig. 4(a), the YOLOv8s-OBB model [33] is implemented to perform ori-
ented bounding box object detection. The inference results for target type
and individual cutting targets B = (xm, ym, w, h, θ) are obtained from the
model, including central location, width, height and rotation angle. Then the
pixel coordinates of the four vertices of the bounding box Pi, i ∈ {0, 1, 2, 3}
and the pixel coordinates of multiple (k) cutting points Qt are calculated as
follows

Pi =

[
xm

ym

]
+

[
cos θ − sin θ
sin θ cos θ

] [
±w/2
±h/2

]
(11)

[
Qt.x
Qt.y

]
= (1− t)

(
P0 + P1

2

)
+ t

(
P2 + P3

2

)
(12)

with t ∈ {k/ (n− 1) |k = 0, 1, . . . , n− 1}. And the target cutting position of
robot coordinate is calculated as follows:




Xt

Yt

Zt


 = Rrob

cam




(Qt.x− cx) · d/fx
(Qt.y − cy) · d/fy

d


+ T rob

cam (13)

where d is the depth of the point [Qt.x,Qt.y] . And the camera’s intrinsic
parameters [cx, cy, fx, fy] were obtained using Zhang’s calibration method im-
plemented in the MATLAB toolbox. Then the unit cutting direction vector
in the horizontal plane is defined as follows:

9
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Figure 3: Block diagram of the proposed hybrid tree structure. Strategy selector first
decides which strategy to use for the next attempt according to the task-oriented decision
tree. The condition monitor then instruct the robot to perform specific actions. The right-
pointing arrow blocks are sequence nodes. The question mark arrow blocks are selector
nodes.

Vunit =

(
−Ly√
L2
x + L2

y

,
Lx√

L2
x + L2

y

, 0

)
(14)

with Lx = Xt − X0, Ly = Yt − Y0. Finally, the cutting pose quaternions of
robot could be calculated.

3.2. Task-Oriented Hybrid Tree
As illustrated in Fig.3, the proposed hybrid tree is composed of three

core stages. Firstly, leveraging the predefined database of skill transfer de-
tailed in Section II, the applied cutting methods (e.g., chop, saw, slice) and
GMM model are selected based on the target detection results within the
task-oriented decision tree (TO-DT). Secondly, the strategy selector deter-
mines the optimal strategy for the next attempt and initiates the process
by integrating visual perception and TO-DT. Finally, the condition monitor
encapsulates the subtree corresponding to the chosen strategy, checking a set
of task and strategy-specific conditions concurrently to proper operation of
the behavior tree. The categories of BT nodes utilized in this work are ref-
erenced in [22]. The influence of the perception module, oriented bounding
boxes object recognition and cutting-point detection, on the hybrid tree is
primarily evident in three key aspects:

10
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Figure 4: (a) Examples of oriented bounding boxes object detection. (b) Examples of
cutting-point detection. (c) The robot slices a cucumber.

• Object category identification and the determination of task-oriented
decision tree.

• Cutting-point localization and behavior tree state awareness, thereby
influencing manipulation skill transfer.

• Classification of object cutting (slicing or sawing) to constrain the
workspace and limit the output torque of the robot.

3.3. Reproduction of Position and Stiffness
In the process of reproduction, the proposed decoupled TP-GMR method

is utilized to replicate the sequence of robot end-effector position on Eu-
clidean space and stiffness on manifold derived from TP-GMM [11]. With
time serves as the input, the reproduced position and stiffness could be ad-
justed according to the temporal progression and cutting state of robot. Con-
sequently, the reproduced data, alongside its center and covariance, can be
expressed as follows:

Z =

[
tI

vec (YO)

]
, µ =

[
µI

µO

]
,Σ =

[
ΣII ΣIO

ΣOI ΣOO

]
(15)

where YO can represent position XO or stiffness KO, vec (YO) is calculated
by (10). The TP-GMR in the coordinate system of the r-th reference point
is formulated as follows:

p(Y
(r,i)
O |t(r,i)I ) =

N∑

n=1

h(r,i)
n N (µ̂(r)

n , Σ̂(r)
n ) (16)

11
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n =
π
(r)
n N (t

(r,i)
I |µ(r)

I,n,Σ
(r)
II,n)

N∑
j=1

π
(r)
j N (t

(r,i)
I |µ(r)

I,j ,Σ
(r)
II,j)

(17)

where p(Y
(r,i)
O |t(r,i)I ) represents the conditional probability distribution, h(r,i)

n

is the weight of each Gaussian component, and N (µ̂
(r)
n , Σ̂

(r)
n ) is a Gaussian

distribution with mean µ̂
(r)
n and covariance Σ̂

(r)
n . For trajectory learned in

Euclidean space, the final estimated outputs can be obtained as follow:

X̂ i
O =

∑

i

h(r,i)
n (t)

[
µ
(r)
O,n + Σ

(r)
OI,nΣ

(r)−1

II,n

(
t− µ

(r)
I,n

)]
(18)

For stiffness matrices learned in SPD manifold, the reproduced KO is
calculated as:

Φ(r,i)
n = Log

µ
(r)
O
(µ

(r)
O,n) + Σ

(r)
OI,nΣ

(r)−1

II,n Log
t
(r,i)
I

(µ
(r)
I,n) (19)

K
(r,i)
O = Exp

µ
(r)
O

(
N∑

n=1

h(r,i)
n Φ(r,i)

n

)
(20)

where Φ
(r,i)
n is the direction vector on the SPD manifold. Then, based on

the inverse computation in Equation (7), the primary output position XO or
stiffness KO can be expressed as:

K(r,i)
g = R(r)K

(r,i)
O R(r)T , X(r,i)

g = R(r)X
(r,i)
O + d(r) (21)

3.4. Robot Impedance Control
Considering that excessive joint output torque may cause instability in

the robot’s joint movements, while insufficient torque may prevent the serial
mechanism from operating properly, it is necessary to impose maximum and
minimum limits on the joint output torque. Accordingly, the output torque
generated during model reproduction is normalized and mapped to a rea-
sonable operational range. With the cascaded structure of torque-controlled
robot, combined with the desired end-effector position X i

out ∈ Rm×1, i =
0, 1, . . . T and stiffness proposed in above-mentioned methods, variable stiff-
ness Kjr = JT

e KgJe in joint space would be optimized as follows:

12
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(Kjr −Kj,min)
2

Kj,max −Kj,min

(22)

where Kj,min and Kj,max are the minimum and maximum stiffness of robot.
Then, a torque controller is used in joint space as follows:

τj = Kj (qd − q) +Dj (q̇d − q̇) + τg (23)

where τj ∈ Rn×1 is the control joint torque, Dj = ζ
√
Kj referred by [29].

τg ∈ Rn×1 represents the compensating torque. And the desired joint angles
can be calculated as:

{
q̇d = J† (Xd −XI)

qd (k + 1) = qd (k) + q̇d∆t
(24)

with J† = JT
(
JJT

)−1 is the Moore-Penrose pseudoinverse of the Jacobian
matrix.

4. EXPERIMENTS AND RESULTS

In this section, we demonstrate the performance of the vision-based hu-
manoid compliant skill transfer framework. As shown in Fig. 5, robotic
cutting tasks are performed to evaluate the effectiveness of the skill trans-
fer method and the hybrid tree. In the experiment, the robot is enabled to
cut different types of objects using two cutting styles: 1) slicing is used for
cucumber and potato. and 2) sawing is used for carrot and eggplant.

4.1. Experimental Setup
The methodology is evaluated in a robotic cutting setup comprising a

torque controlled manipulator of 7 DoF (the Rethink Robotic Baxter), a
MYO armband from Thalmic Labs, a Microsoft Kinect V2 used for demon-
stration and the Intel Realsense d435i camera used for visual detection. The
visual model training and real-time recognition are performed on a computer
equipped with an NVIDIA GeForce RTX 4070 Laptop GPU. The results are
transmitted to the robot’s ROS-based control host via UDP communication.

To ensure consistency in the interaction during the cutting process, the
experiment standardizes the use of the freshest vegetables and conducted
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Figure 5: Experimental scene diagram.

multiple trials in the same time. As the study focuses on learning and con-
trolling the cutting process through visual recognition and hybrid tree, the
vegetables are securely fixed on the cutting board.

The proposed method utilizes a vision-based decoupled compliant learn-
ing model to generalize both the target trajectory and target stiffness for
the cutting task. To validate its effectiveness, the robot performes the task
using adaptive impedance control (AIC) derived from the generalized pa-
rameters. For comparison, the task is also executed under high impedance
control (HIC) and low impedance control (LIC), which serve as baselines.

Given the limited force manipulability of the Baxter robot in a single
direction and inspired by human cutting habits, the cutting behavior in this
experiment is classified into two categories. The first category involves slicing
soft or relatively brittle objects, such as potatoes and cucumbers, whereas the
second category focuses on sawing harder objects or those with tough skins,
such as carrots and eggplants. This classification facilitates the transfer of
human-like compliant skills to the robot, allowing it to adapt its cutting
strategy for various objects.

The four types of vegetables are selected as the experimental group for
testing and focused analysis because their distinct physical properties are
representative of a wide variety of vegetables. For example, cucumber is
elongated and relatively brittle; potato has a uniform texture and a large
cutting cross-section; carrot is a harder object with significant internal den-
sity variation; and eggplant has a tough outer skin, making it particularly
difficult to cut through completely. Many other fruits and vegetables with
similar physical properties exhibit comparable cutting requirements, thereby
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Figure 6: The comparison results of interaction force using different control modes (HIC,
AIC and LIC).

Figure 7: The comparison results of robot joint torque using different control modes (HIC
and AIC).

demonstrating the generalization capability of our proposed method to a
broader range of objects.

4.2. Results of Cutting Tasks
The robot setup for collecting cutting data is shown in Fig. 1. With

built-in sEMG sensor and Inertial Measurement Unit of MYO, as well as the
open-source body tracking SDK of Kinect [34], humanoid cutting skills could
be record precisely. Then the decoupled learning model allows the robot to
automatically extract high-level features for generalizing across the different
types of food items from demonstrations. The learned model parameters are
subsequently integrated into the hybrid tree for sequencing skills. The target
object is predicted from vision-based object detection. Then it is mapped to
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ized with the key information of cutting point detection. Some reproduced
position and stiffness trajectories of slicing or sawing are shown in Fig. 8.

Figure 8: The reproduced position trajectories and stiffness profiles using (a) slicing and
(b) sawing cutting styles.

During this experiment, four groups are considered: potato, cucumber,
carrot and eggplant. For each group, four demonstrations are conducted in
total. The position trajectories are learned using TP-GMM/GMR with four
Gaussian models and two candidate frames of reference (start point and end
point), and the stiffness profiles are learned using TP-GMM/GMR on SPD
with six Gaussian models and one candidate frames of reference (the camera
coordinate system), the same as GMM/GMR on SPD. Significantly, trajec-
tories between cutting point and end point on the board for slicing or sawing
method are defined according to human demonstrations. The complete repro-
duced trajectory and stiffness profiles are then used to construct an adaptive
impedance controller to perform cutting tasks on various objects. Addition-
ally, two control groups with high impedance and low impedance settings are
established to conduct the same tasks for comparison. Finally, both the HIC
and the proposed AIC successfully complete the cutting tasks, whereas the
LIC fails it. For both the HIC and AIC groups, during the period from the
object is completely cut through to the end of the cutting action, the contact
interface of the knife transitions from the object to the cutting board. Due
to the change in environmental impedance, the contact force exhibits a rapid
increase, as shown in Fig. 6. In contrast, for the LIC group, the output force
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in the middle of the object. Subsequently, we will focus on the HIC and AIC
groups.

It is indicated that the HIC and AIC achieve different performances in the
contact force as is shown in Fig. 6. Compared to the HIC, the robot using the
AIC demonstrates a significant reduction in both the average interaction force
(potato: 51.18%, cucumber: 53.89%, carrot: 27.56%, eggplant: 13.33%) and
the maximum interaction force (potato: 40.68%, cucumber: 53.66%, carrot:
26.26%, eggplant: 10.38%). Meanwhile, the robotic cutting in HIC mode
occasionally fails to follow the reproduced trajectory or produce a flat cutting
surface due to intense vibrations. Considering that the high contact forces
in HIC lead to unstable experimental performance, the proposed AIC not
only reduces the interaction forces between the robot and the environment
but also improves task execution, enhances system stability, and protects
the robot itself. What’s more, the AIC would provide a lower torque of each
joint compared with HIC, as shown in Fig. 7. During the slicing of eggplant
and carrot, both the joint torques of the robot and the interaction forces
exhibit noticeable oscillations. This phenomenon arises because slicing is
a short-range, back and forth motion, resulting in periodic changes in the
end-effector torque and interaction force along the cutting plane. And these
oscillations do not affect the overall stability of the system.

To comparatively evaluate the effects of HIC and AIC modalities on
robotic power consumption, we formulate the robot joint operation power es-
timation model as Pj =

∑n
i=1 πi · τi · ωi, where π = [0.1, 0.4, 0.2, 0.15, 0.05, 0.05, 0.05]

is the associated weight of each joint torque defined by the robot structure.
τi and ωi are the joint torque and angular velocity. The power consumption
results calculated based on the above equations are shown in Fig. 9. Given
the inherent variability in the physical properties of the test objects, such
as cutting surface length and area, it is ensured that both the control group
and the experimental group conducted the experiments at locations on the
same object that are in very close proximity and have nearly identical cross-
sectional areas. It can be observed that the AIC is capable of reducing torque
output and reducing energy consumption while completing the task. Specif-
ically, it can be observed that the power consumption for slicing eggplant is
significantly higher than that of the other samples. This can be attributed
to the relatively tough skin of the eggplant, which requires a greater slicing
force and higher tool stiffness to achieve a successful cut. Furthermore, the
greater distance between the knife and the cutting point requires the robot
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Figure 9: The comparison of energy consumption between HIC and AIC.

In addition, the comparisons of joint torque variation rates and angular
accelerations are presented in Fig. 10. These results further demonstrate
that the proposed method produces a natural and smooth motion trajectory
during the cutting process, effectively reducing wear on the robot’s move-
ments.

4.3. Discussion
The experimental results demonstrate the superior performance of our

proposed method in achieving compliant robot-environment interaction. No-
tably, we observe that when processing objects with heterogeneous internal
density or material composition (e.g., carrots), while greater cutting force was
applied, the HIC mode occasionally fails to penetrate the dense core region,
whereas the AIC mode successfully completes it. This comparative analysis
substantiates the practical significance of implementing variable impedance
control in robotic cutting applications, particularly when contrasted with
position-controlled robotic systems. Moreover, our vision-based hybrid tree
methodology exhibits distinct advantages over previous research in cutting
scenarios, manifested through several principal aspects.
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Figure 10: The comparison of (a) joint torque variation rates (b) angular accelerations
between HIC and AIC.

The proposed approach eliminates the requirement for precise modeling
of cutting forces, frictional dynamics, or fracture mechanics predictions dur-
ing the cutting process. Instead of depending on accurate measurements of
material thickness and deformation, our methodology achieves safe multiple
objects cutting through effective skill transfer of the demonstrator’s stiffness
to the robot.

Human intuitively employ distinct cutting strategies for different objects,
as exemplified by the slicing method for potatoes and cucumbers versus the
sawing method for carrots and eggplants in above-mentioned experiments.
Training a monolithic network to encompass all cutting skills risks compro-
mised accuracy and excessive complexity. To address this, our framework im-
plements a decoupled learning model that separately encodes object-specific
cutting strategies with minimal parameterization.

The proposed framework employs visual object detection to facilitate
compliant manipulation tasks, circumventing the dependency on high-precision
force sensors for perceptual input. Experimental results from cutting trials
demonstrate the framework’s potentiality in addressing tool-mediated ma-
nipulation tasks, as well as applications inherently compatible with implicit
force control methodologies.
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targeted scenarios, it is subject to two practical limitations. First, given
that the present study concentrates on implementing the proposed compli-
ant skill transfer framework in contact-rich operations, the issue of workpiece
immobilization has been deliberately simplified. However, practical cutting
applications may necessitate the coordinated control of additional robotic
arms to address this challenge effectively. Additionally, a current limita-
tion of the framework lies in its absence of online relearning capabilities,
potentially reduce the accuracy of positioning when encountering substan-
tial changes between initial and target positional parameters. Future work
plans to address the above issues and achieve the peeling task via dual-arm
tool-in-hand manipulation.

5. CONCLUSIONS

This paper proposes a novel vision-based humanoid compliant skill trans-
fer framework. The intuitive demonstration interface combined with a decou-
pled modeling framework enables efficient and precise acquisition of human
skills, while the integration of visual recognition with hybrid tree ensures reli-
able and rapid skill reproduction. Experimental results demonstrate that the
adaptive impedance cutting method based on decoupled skill transfer posi-
tion trajectories and stiffness ellipsoids can effectively reduce the interaction
force, reduce the energy consumption and improve the stability of the sys-
tem. Notably, the visual-impedance mapping within the learning for control
structure significantly enhances human-in-the-loop robot learning efficacy,
enabling adaptability across a contact-rich task for multiple objects.

CRediT authorship contribution statement

Zhaohong Mai: Methodology, Software, Writing – original draft. Chao
Zeng: Supervision, Methodology, Writing – review and editing. Ning
Wang: Formal analysis, Validation. Chenguang Yang: Resources, Project
administration.

Declaration of competing interest

The authors declare that they have no known competing financial inter-
ests or personal relationships that could have appeared to influence the work
reported in this paper.

20



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofAcknowledgment

This work was supported by the UKRI Postdoctoral Fellowships Guar-
antee (EP/Z00117X/1).

References

[1] Botao Lin, Shuang Song, and Jiaole Wang. “Variable stiffness methods of flexible
robots for minimally invasive surgery: A review”. In: Biomimetic Intelligence and
Robotics (2024), p. 100168.

[2] Moses C Nah, Johannes Lachner, and Neville Hogan. “Robot control based on mo-
tor primitives: A comparison of two approaches”. In: The International Journal of
Robotics Research 43.12 (2024), pp. 1959–1991.

[3] Sami Haddadin and Erfan Shahriari. “Unified force-impedance control”. In: The
International Journal of Robotics Research 43.13 (2024), pp. 2112–2141.

[4] Vincenzo Lippiello, Giuseppe Andrea Fontanelli, and Fabio Ruggiero. “Image-based
visual-impedance control of a dual-arm aerial manipulator”. In: IEEE Robotics and
Automation Letters 3.3 (2018), pp. 1856–1863.

[5] Chenguang Yang et al. “Human-like adaptation of force and impedance in stable
and unstable interactions”. In: IEEE transactions on robotics 27.5 (2011), pp. 918–
930.

[6] Markku Suomalainen, Yiannis Karayiannidis, and Ville Kyrki. “A survey of robot
manipulation in contact”. In: Robotics and Autonomous Systems 156 (2022), p. 104224.

[7] Harish Ravichandar et al. “Recent advances in robot learning from demonstration”.
In: Annual review of control, robotics, and autonomous systems 3.1 (2020), pp. 297–
330.

[8] Chao Zeng et al. “Hierarchical impedance, force, and manipulability control for robot
learning of skills”. In: IEEE/ASME Transactions on Mechatronics (2024).

[9] Zhiwei Liao et al. “Simultaneously learning of motion, stiffness, and force from
human demonstration based on riemannian dmp and qp optimization”. In: IEEE
Transactions on Automation Science and Engineering (2024).

[10] Chao Zeng et al. “An approach for robotic leaning inspired by biomimetic adaptive
control”. In: IEEE Transactions on Industrial Informatics 18.3 (2021), pp. 1479–
1488.

[11] Sylvain Calinon. “A tutorial on task-parameterized movement learning and retrieval”.
In: Intelligent service robotics 9 (2016), pp. 1–29.

[12] Chenzui Li et al. “Towards Robo-Coach: Robot Interactive Stiffness/Position Adap-
tation for Human Strength and Conditioning Training”. In: 2024 IEEE International
Conference on Robotics and Automation (ICRA). IEEE. 2024, pp. 860–866.

21



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of[13] Martijn JA Zeestraten et al. “An approach for imitation learning on Riemannian

manifolds”. In: IEEE Robotics and Automation Letters 2.3 (2017), pp. 1240–1247.

[14] Sylvain Calinon. “Gaussians on Riemannian manifolds: Applications for robot learn-
ing and adaptive control”. In: IEEE Robotics & Automation Magazine 27.2 (2020),
pp. 33–45.

[15] Fares J Abu-Dakka, Matteo Saveriano, and Ville Kyrki. “A unified formulation of
geometry-aware discrete dynamic movement primitives”. In: Neurocomputing 598
(2024), p. 128056.

[16] Rui Wu, He Zhang, and Jie Zhao. “Robot variable impedance skill transfer and
learning framework based on a simplified human arm impedance model”. In: IEEE
Access 8 (2020), pp. 225627–225638.

[17] Yuqiang Wu et al. “A framework for autonomous impedance regulation of robots
based on imitation learning and optimal control”. In: IEEE Robotics and Automation
Letters 6.1 (2020), pp. 127–134.

[18] Noémie Jaquier and Sylvain Calinon. “Gaussian mixture regression on symmetric
positive definite matrices manifolds: Application to wrist motion estimation with
sEMG”. In: 2017 IEEE/RSJ international conference on intelligent robots and sys-
tems (IROS). IEEE. 2017, pp. 59–64.

[19] Luca Beber et al. “A passive variable impedance control strategy with viscoelastic
parameters estimation of soft tissues for safe ultrasonography”. In: 2024 IEEE Inter-
national Conference on Robotics and Automation (ICRA). IEEE. 2024, pp. 1298–
1304.

[20] Haochen Zheng et al. “Interaction model estimation-based robotic force-position
coordinated optimization for rigid–soft heterogeneous contact tasks”. In: Biomimetic
Intelligence and Robotics 5.1 (2025), p. 100194.

[21] Matteo Iovino et al. “A survey of behavior trees in robotics and ai”. In: Robotics and
Autonomous Systems 154 (2022), p. 104096.

[22] Jacques Cloete, Wolfgang Merkt, and Ioannis Havoutis. “Adaptive Manipulation
using Behavior Trees”. In: arXiv preprint arXiv:2406.14634 (2024).

[23] Simona Gugliermo et al. “Learning behavior trees from planning experts using de-
cision tree and logic factorization”. In: IEEE Robotics and Automation Letters 8.6
(2023), pp. 3534–3541.

[24] Kevin Zhang et al. “Leveraging multimodal haptic sensory data for robust cut-
ting”. In: 2019 IEEE-RAS 19th International Conference on Humanoid Robots (Hu-
manoids). IEEE. 2019, pp. 409–416.

[25] Prajjwal Jamdagni and Yan-Bin Jia. “Robotic Cutting of Fruits and Vegetables:
Modeling the Effects of Deformation, Fracture Toughness, Knife Edge Geometry,
and Motion”. In: IEEE Transactions on Robotics (2024).

[26] Ryan Wright et al. “Safely and autonomously cutting meat with a collaborative
robot arm”. In: Scientific Reports 14.1 (2024), p. 299.

22



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of[27] Chenguang Yang et al. “Interface design of a physical human–robot interaction

system for human impedance adaptive skill transfer”. In: IEEE Transactions on
Automation Science and Engineering 15.1 (2017), pp. 329–340.

[28] Zhenjia Xu et al. “RoboNinja: Learning an Adaptive Cutting Policy for Multi-
Material Objects”. In: Proceedings of Robotics: Science and Systems (RSS). 2023.

[29] Mathew Jose Pollayil et al. “Choosing stiffness and damping for optimal impedance
planning”. In: IEEE Transactions on Robotics 39.2 (2022), pp. 1281–1300.

[30] Rajendra Bhatia. Positive definite matrices. Princeton university press, 2009.

[31] Xavier Pennec, Pierre Fillard, and Nicholas Ayache. “A Riemannian framework for
tensor computing”. In: International Journal of computer vision 66 (2006), pp. 41–
66.

[32] Liwen Situ et al. “Human Multi-dimensional Stiffness Skills Transfer for Robot Tele-
operation System”. In: 2024 IEEE International Conference on Systems, Man, and
Cybernetics (SMC). IEEE. 2024, pp. 321–327.

[33] Glenn Jocher, Ayush Chaurasia, and Jing Qiu. Ultralytics YOLOv8. Version 8.0.0.
2023. url: https://github.com/ultralytics/ultralytics.

[34] Juan R Terven and Diana M Córdova-Esparza. “Kin2. A Kinect 2 toolbox for MAT-
LAB”. In: Science of Computer Programming 130 (2016), pp. 97–106.

23



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofHighlights

A Vision-Based Humanoid Compliant Skill Transfer Framework:
Application to Robotic Cutting Tasks

Zhaohong Mai, Chao Zeng, Ning Wang, Chenguang Yang

• We propose a humanoid compliant skill transfer framework that com-
bines observation-wearable demonstrations with a task-parameterized
decoupled learning model. This method enables effective encoding and
learning of human upper limb motion trajectories and manipulation
stiffness.

• To facilitate the reproduction of task skills across various target objects,
we develop a pose detection algorithm for object-tool manipulation that
integrates human intent (such as identifying cutting points). This ap-
proach enhances the generalization capability of robotic manipulation
tasks in diverse scenarios.

• To enhance the accuracy of stiffness reproduction, we perform stiffness
computation and learning on the Riemannian manifold. Additionally,
we employ a task-oriented hybrid tree strategy to achieve a principled
mapping from visual perception to robot impedance.

• We validate the effectiveness and generalization capability of the pro-
posed method through experiments involving various objects and mul-
tiple cutting techniques.
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A Vision-Based Humanoid Compliant Skill Transfer Framework:
Application to Robotic Cutting Tasks

Zhaohong Mai, Chao Zeng, Ning Wang, Chenguang Yang
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