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Abstract

Link Prediction (LP) aims to infer missing or future interactions in complex networks by exploiting structural patterns.
Although widely applied in social, biological, and recommendation systems, traditional graph based LP methods rely
solely on pairwise connections and therefore fail to capture the higher-order relationships that naturally arise in many
real-world datasets. Hypergraphs offer a richer representation by allowing hyperedges to connect multiple nodes simul-
taneously. However, converting hypergraphs into simple graphs an approach commonly used in existing work collapses
multi-node interactions and results in substantial information loss. Traditional LP metrics also treat all shared neighbors
uniformly, despite the fact that shared neighbors may contribute differently to link formation depending on their structural
importance or functional relevance. While centrality weighted LP extensions exist, they remain fundamentally restricted by
graph structure and do not leverage higher-order dependencies. To address these limitations, we propose CLPH, a hyper-
graph based link prediction framework that incorporates hypercentrality to weight shared neighbors according to their
structural influence. Experiments on four real-world hypergraphs demonstrate that CLPH achieves consistent improve-
ments in AUPR, Fl-score, and Precision. Notably, weighting shared neighbors using hypercentrality yields performance

gains of 26%—68% compared to traditional centrality based weighting schemes.

Keywords Hypergraphs - Link prediction - Centralities - HyperCentralities

Introduction

Complex hypergraphs extend the traditional concept of
complex graphs by allowing hyperedges to connect multiple
nodes simultaneously, rather than being restricted to pairwise
interactions. This multidimensional structure distinguishes
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hypergraphs from graphs, where edges represent simple
relationships between two nodes. hypergraphs are more
suited to modeling real-world systems that involve higher-
order interactions, such as in social, biological, and tech-
nological domains [1]. For instance, in biological systems,
protein-protein interaction networks often require more than
just pairwise interactions to model multi-protein complexes.
Similarly, in social networks, groups of individuals collabo-
rating on tasks are better represented through hyperedges
that link several nodes simultaneously, rather than through
multiple pairwise edges. In complex hypergraphs [2], vari-
ous tasks such as centrality measures, influence maximi-
zation, community detection, and link prediction present
unique challenges due to the higher-order interactions. This
work specifically focuses on link prediction and the use of
centrality measures to improve its accuracy. Link Prediction
[3] in complex hypergraphs differs significantly from tradi-
tional link prediction in graphs. In complex graphs, the focus
is typically on predicting future pairwise edges between
nodes based on their existing connections and shared neigh-
bors. However, in hypergraphs, the task is more intricate,
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as hyperedges can involve multiple nodes, and the relation-
ships between groups of nodes must be considered simul-
taneously. This introduces additional complexity because
the formation of a hyperedge depends not just on individual
pairwise interactions, but on the overall structure and con-
nectivity of the hypergraphs. For example, in collaborative
networks, while graph based link prediction might focus on
predicting a new co-authorship between two researchers [4,
5], hypergraphs based link prediction aims to predict new
collaborative groups involving multiple researchers. This
shift from pairwise to higher-order interaction prediction is
critical in real-world applications, such as identifying new
scientific collaborations or forecasting interactions within
protein complexes. Chen et al. [6] conducted a thorough
survey on hyperlink prediction, categorizing the different
methods used for link prediction in hypergraphs, which
include similarity based approaches, probabilistic mod-
els, matrix based techniques, and deep learning methods.
Among the various approaches to link prediction in hyper-
graphs, this study focuses on a select set of widely recog-
nized similarity based methods. In particular, we emphasize
shared neighbors and resource allocation, two prominent
techniques that have been effectively extended to the hyper-
graphs paradigm. One of the main limitations of traditional
link prediction methods in hypergraphs is that they often
treat all shared neighbors as equally important, overlook-
ing the varying influence of nodes within a hypergraphs.
In reality, not all nodes contribute equally to the formation
of new links. To address this issue, centrality measures,
which capture the importance or influence of nodes within
the network, can be incorporated into link prediction mod-
els to enhance their predictive power. Centralities such as
degree centrality, closeness centrality, betweenness central-
ity, and clustering coefficient provide critical insights into
a node’s significance in the overall network structure. By
integrating centrality scores into link prediction algorithms,
we can better account for the differing influence of nodes,
improving the accuracy of predictions. For instance, nodes
with high degree centrality may be more likely to form new
links, while nodes with high betweenness centrality may
play crucial roles in connecting different subgroups within
the hypergraphs. Centrality measures in hypergraphs are an
extension of those in traditional graphs, but they need to
account for the complexity of higher-order interactions. In
graphs, centrality typically focuses on direct edges between
nodes, but in hypergraphs, centrality must consider the role
of nodes in hyperedges that involve multiple participants.
For example: Hyperdegree centrality in a hypergraph mea-
sures the number of hyperedges a node is part of, as opposed
to just the number of edges in a graph.

SN Computer Science
A SPRINGER NATURE journal

Hypercloseness centrality and hyperbetweenness cen-
trality similarly extend their graph counterparts to account
for the connectivity and influence of a node across groups of
nodes, rather than simple pairwise connections. These adap-
tations are necessary because hypergraphs encode richer
structural information than graphs, and nodes play more
complex roles in the formation of new links. Using centrality
measures to guide link prediction in hypergraphs provides
a more nuanced approach to understanding and predicting
interactions, especially in networks where the importance of
nodes varies significantly across different contexts. In this
work, we aim to leverage centrality measures to improve link
prediction accuracy in complex hypergraphs, demonstrating
their effectiveness across several real-world datasets. By
comparing the performance of centrality based link predic-
tion in hypergraphs with graph based approaches, we pro-
vide a clearer understanding of how centrality measures can
enhance link prediction in networks with higher-order inter-
actions. The study of [7] seeks to utilize the centrality scores
of shared neighbors to enhance the accuracy of future link
prediction. Prior to presenting the proposed approach, we
review existing centrality measures used for link prediction
in graphs [8] and discuss how these measures are adapted
to the context of hypergraphs. Kshira Sagar Sahoo et al. [9]
proposed an enhanced SDN security framework that detects
DDoS attacks using an SVM model optimized with KPCA
and a genetic algorithm. Their approach improves feature
reduction, parameter tuning, and classification accuracy,
making it suitable for real-time deployment within SDN
controllers. S. Vimal et al. [10] propose a multiobjective Ant
Colony Optimization and Double Q-learning—based energy-
efficient clustering framework for IoT cognitive networks,
improving network lifetime, throughput, and jamming pre-
diction compared with conventional optimization methods.
A. Rajagopal et al. [11] develop an optimal deep learning
based UAV scene classification model combining residual
network feature extraction with SGHS-optimized tuning
and LVSVM classification, achieving superior accuracy. A.
Rajagopal et al. [12] introduce an MBAS-ELM based dis-
tributed routing framework for LEO satellite networks that
leverages traffic forecasting and mobile agents to achieve
superior performance in delay, packet loss, and queuing effi-
ciency compared with existing methods. G. Saranya et al.
[13] proposed a DEL-CUBE framework using a hybrid Bald
Eagle—Secretary Bird Optimization algorithm to achieve
efficient and dynamic load balancing in cloud computing,
that show significantly improved throughput and overall
performance compared to existing methods.

The structure of this paper is organized as follows: Sec-
tion Related Work reviews related work and discusses
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existing methods for link prediction and centrality mea-
sures in both graphs and hypergraphs. Section Proposed
Work details the methodology, including the hypercentrality
measures applied, the calculation of average hypercentral-
ity, and the proposals of this paper. Section Experimenta-
tion describes the experimental setup, covering hypergraph
sampling, datasets used, and presents the evaluation results.
Sections Results and Discussion provides the results and an
in-depth discussion of the findings and the results. Lastly,
Section Conclusion and Future Work concludes the paper
and suggests potential directions for future research.

Related Work

This section provides the necessary technical foundation,
including key definitions and pertinent information relevant
to this study. The formal definitions are presented as fol-
lows. Table.1 provides a summary of the notations used
throughout this study.

Table 1 Notations employed throughout this study

Notation Description

H Hypergraphs

v Set of Nodes

E Set of Hyperedges

1,j,p.q Nodes within the graphs and hypergraphs

I'(:),0(5) Neighbors of nodes 7, j

In Incidence Matrix of hypergraph

d Represents the distance between nodes

N Represents total number of nodes within
Graph and Hypergraph

k(i) Degree of node i

K(i) Number of triangles associated with node i

heihes Hyperedges

K size of hyperedge /e

LP(H) Link Prediction in Hypergraphs

LP. Link Prediction based Centralities

D Degree

cc Clustering Coefficient

B Betweenness

or Closeness Centrality

HSN Shared Neighbor in Hypergraphs

HRA Resource Allocation in Hypergraphs

ue HyperCentralities

»D HyperDegree

e HyperClustering Coefficient

uB HyperBetweenness

wer HyperCloseness

AC(H) Average HyperCentralities

SN#C Shared Neighbor based HyperCentralities

RA»C Resource Allocation based HyperCentralities

AUPR Area Under the Precision-Recall Curve

Definition 1 Link Prediction in  Hypergraphs
(LP[H]): Given an undirected, unweighted hypergraph
H = (V,HE,t), where Vis the set of vertices, HE is the set
of hyperedges, and ¢ is a time function on £, the link predic-
tion in hypergraphs is to output a set of hyperedges that are
not present in the hypergraphs H [to, ¢;], but are predicted to
appear in H|[t;] fort; > t; > to [14].

Definition 2 Hyper Centralities #C : Given a hypergraph
H = (V,HE), where V denotes the set of vertices and E
represents the set of hyperedges, the centrality in hyper-
graphs, referred to as hypercentrality, is defined as a func-
tion C : V — R, which assigns a real valued score C(i) to
each node 7 € V. This score quantifies the significance of
i within the hypergraph structure, taking into account the
node’s participation in hyperedges and its connectivity
across the hypergraph.

The score C(i) can be influenced by:

e The number of hyperedges that contain the node i (i.e.,
{he € HE : i € he}|,

e The size of each hyperedge he € HE(i.c.,|he| where
i € he).

e The role of i in terms of its connections to other ver-
tices within the hypergraph structure, either directly or
through shared hyperedges.

Link Prediction in Hypergraphs

Link prediction in hypergraphs involves predicting the for-
mation of future hyperedges among multiple nodes, where
connections extend beyond the traditional pairwise relation-
ships found in standard graphs. Unlike traditional graphs,
hyperedges in hypergraphs link several nodes simultane-
ously, and the objective is to determine which groups of
nodes are likely to establish new connections based on the
structural properties of the hypergraph. Kumar et al. [15]
address the challenge of hyperedge prediction, a complex
task with applications in domains such as social networks
and metabolic systems. The authors introduce HPRA
(Hyperedge Prediction using Resource Allocation), a novel
algorithm that predicts hyperedges of any size without the
need for a predefined candidate set. Our work is largely
inspired by the study conducted by [16], which focuses on
local similarity measures. Local similarity based link pre-
diction utilizes the immediate neighborhoods of nodes to
compute similarity scores, typically based on shared con-
nections. In this approach, the authors propose link pre-
diction measures for hypergraphs directly, avoiding the
conventional step of converting hypergraphs into pairwise
graphs. The benefit of this method lies in its preservation of

SN Computer Science
A SPRINGER NATURE journal



119 Page 4 of 20

SN Computer Science (2026) 7:119

the intrinsic structure of hypergraphs, ensuring the original
complexity and information integrity are maintained, unlike
traditional approaches that simplify hypergraphs into stan-
dard graphs. The work defines two primary measures, HSN
(Shared Neighbor in Hypergraph) and HRA (Resource Allo-
cation in Hypergraph), both of which are elaborated upon
below.

Shared Neighbor in Hypergraph: HSN

The authors in [16] extended the concept of shared neigh-
bors to hypergraphs by computing the average of pairwise
Shared Neighbor (SN) indices among the nodes within
each hyperedge. The Link Prediction in hypergraphs using
Shared Neighbors (HSN) is formally defined in Eq. 1 below.

. 2
€1 712 e (het )T (hes)

where, he; and he, are the hyperedges containing nodes i
and j, s corresponds to the size of the hyperedge, I'(he) is
the set of nodes incident to hyperedge #e.

Resource Allocation in Hypergraph: HRA

The HRA method predicts pairwise links based on the prin-
ciples of resource allocation, drawing inspiration from the
work of [15]. Unlike in traditional graphs, hypergraphs per-
mit nodes i and j to already belong to an existing hyperedge.
As a result, resources at node i can be transferred to node j
either directly or through shared neighbors. Consequently,
the resource allocation between nodes i and j is determined
in the below Eq. 2:

HRA(i,j):ZSh — ifij € he
R
! ! ! _ @)
— Z m ¥ , otherwise
rer(onrg) ) She Thes

where I'(¢) N I'(j) represents the shared neighbors of nodes
i and j, k(r) is the degree of the shared neighbor r, sp., and
She, Tepresent the sizes of the hyperedges containing i and
J, respectively. The first term in Eq. 2 computes the resource
transferred directly between i and j if they both belong to a
shared hyperedge he. If they do not share the same hyper-
edges, this term evaluates to zero. The second term accounts
for the resource transmitted through all shared neighbors
between the two nodes.
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Centralities and HyperCentralities

In graph theory, centrality measures are widely utilized to
evaluate the importance or influence of individual nodes
within a network. Traditional centrality metrics in graphs
focus on pairwise relationships, measuring a node’s signifi-
cance based on its direct connections. Four of the most com-
monly applied centrality measures include degree centrality
[17], clustering coefficient [18] [19], betweenness centrality
[20], and closeness centrality [21]. These metrics provide
insights into the structural role of nodes and their contribu-
tions to the overall dynamics of the network. Degree and
clustering coefficient are classified as local centrality mea-
sures, as they consider only a node’s immediate neighbor-
hood and evaluate its importance based on its proximate
connections. In contrast, betweenness and closeness cen-
trality are prominent global measures that analyze the entire
network to assess a node’s significance, as discussed below.

e Degree (D): The degree centrality of a node i is cal-
culated as the fraction of nodes adjacent to i relative to
the total possible connections within the network. Nodes
with high degree centrality are commonly referred to as
hub nodes, as they are highly connected and play a criti-
cal role in the network’s structure.

D) = ]\]:(j)l

3)

In Eq. 3, N represents the total number of nodes in the
graph, and k(i) denotes the degree of node i, which refers
to the number of direct connections that node i has within
the network.

e Clustering Coefficient (CC): The clusteringcoefficient
of a node is defined as the ratio of the number of closed
triangles (i.e., groups of three mutually connected
nodes) within the node’s local neighborhood to the to-
tal possible number of triangles that could exist in that
neighborhood. This metric is also referred to as transi-
tivity, reflecting the extent to which a node’s neighbors
are interconnected.

, 2K (1)
CC(i) =~ 4
FORG) — 1 @
In Eq. 4, node i has a degree denoted by 4(7), and the num-
ber of triangles associated with node i is represented as K(7).
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e Betweenness (53): Betweenness centrality of a node
quantifies the extent to which the node lies on the short-
est paths between other node pairs, reflecting its role in
facilitating communication within the network.

Z Op,q(4) 5)

—~
p#iztq P

B(i) =

In Eq. 5, 0, 4 represents the total number of shortest paths
between nodes p and ¢, while o, ,(¢) refers to the number of
those shortest paths that pass through node i. This captures
the extent to which node 7 acts as a bridge in the network,
facilitating connections between other nodes.

o Closeness (CL): Closeness centrality is a measure used
to identify nodes that can effectively disseminate infor-
mation across a network. The closeness centrality of
a node i is calculated as the reciprocal of the average
shortest path distance from node i to all other N — 1
reachable nodes in the network. This measure highlights
nodes that are well positioned to quickly interact with
others within the network.

N -1
S ©

ing @ji

CL(i) =

In Eq. 6, the shortest path distance between nodes i and j
is represented by d; ;. The node with the highest closeness
centrality is the one that, on average, has the shortest path to
all other nodes in the network, indicating its proximity and
efficiency in reaching every other node.

Centrality measures have been extended to centrality based
link prediction, where shared neighbors may not contribute
equally to the formation of future links. Many researchers
aims to evaluate the significance of shared neighbors in link
prediction. Since centrality values reflect different forms of
importance within a network, the centrality of shared neigh-
bors influences the likelihood of link formation. The authors
of [16] propose an approach for link prediction that relies
on the average centrality of shared neighbors. This method,
termed Link Prediciton on Centrality (LFP¢), computes
a prediction score based on the similarity between nodes,
factoring in the centrality scores of their shared neighbors.
The method initially calculates various centrality scores for
the shared neighbors and considers only those nodes whose
scores exceed the average centrality value across the net-
work. Let C(v) represent the centrality score of a node i,

and AC(G) denote the average centrality value of the graph,
which is computed using Eq. 7.

Yiev(a) C(1)

~ ()

AC(G) =

In Eq. 7, C (i) represents the centrality value of node 7, and N
denotes the total number of nodes in the graph G. The simi-
larity between two vertices, based on the average centrality
of the graph, is defined as shown in Eq. 8.

LPe(i,j) =] {r|r € T@E)NT(j) and C(r) > AC(G)} | ®)

In Eq. 8, LP¢(i,j) represents the similarity score between
the nodepair i and j, calculated by identifying all shared
neighbors and applying centrality scores to them. Only those
shared neighbors whose centrality values exceed the average
centrality of the graph are considered. Here, » denotes the
shared neighbors between nodes i and j, while I'(z) and T'(5)
represent the neighbors of nodes i and j, respectively. The
average centrality (AC) of the graph is as defined in Eq. 7.
For instance, in link prediction LP, both Shared Neighbors
(SN) and Resource Allocation (RA) can be incorporated
using various centrality measures. If the centrality measure
C represents degree centrality, the average degree centrality
(AD) can be calculated as defined in Eq. 7, facilitating the
computation of similarity between two vertices based on the
graph’s average degree centrality. Moreover, the centrality
measure C can be adapted to alternative centrality measures,
such as betweenness centrality, closeness centrality, or clus-
tering coefficient, depending on the context.

However, the centralities fail to capture more complex
group interactions or multi-node connections that are prev-
alent in real-world networks. Hypercentrality measures in
hypergraphs overcome this limitation by incorporating
hyperedges, which connect multiple nodes simultaneously.
These measures enable the identification of key nodes and
relationships in the intricate topology of hypergraphs,
where influence, connectivity, and centrality are defined
by higher-order interactions rather than just pairwise links.
Roy et al. [22] suggests using Shapley value-based central-
ity within a node centrality framework while maintaining
the hypergraph structure. Li et al. [23] presents an inno-
vative link prediction method for social networks through
hypergraphs, which efficiently captures both pairwise and
higher-order relationships, thereby improving the accu-
racy and effectiveness of link prediction tasks. Thsan et
al. [24] introduces entropy based centrality measures for
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hypergraphs, leveraging local similarities to determine
centralities. Aksoy et al. [25] adapts graph metrics to
s-metrics (higher-order hypergraph walks) in hypergraphs
by utilizing their s-connected components. This approach
involves first computing the s edge-adjacency matrix,
which is then used to form the graph representation of the
hypergraph. A few centrality measures for hypergraphs are
briefly discussed below.

e HyperDegree (HD): The hyperdegree of a node
refers to the number of hyperedges that the node is
involved in. Unlike traditional graphs, where edges
connect only two nodes, hyperedges in hypergraphs
can connect multiple nodes simultaneously. However,
each hyperedge is counted only once for a node, ir-
respective of how many other nodes it connects. The
core concept is that a node’s significance or influence
in a hypergraph is higher if it is part of more hyper-
edges, as this implies a wider range of connections
and interactions within the network. The Degree Cen-
trality of a node i in hypergraphs can be mathemati-
cally defined in Eq. 9:

HD(i) = > IM; pe )

In this context, /M denotes the incidence matrix of the
hypergraph, where IM; . indicates the participation of
node i in hyperedge he. The hyperdegree of node 7 is com-
puted by summing the number of hyperedges in which node
i is involved. This provides a measure of how connected
node i is within the hypergraph.

e HyperClustering Coefficient (HCC): In hypergraphs,
the clusteringcoefficient is used to assess the likelihood
of nodes forming tightly connected groups or clusters
within the overall network structure [25]. Unlike tra-
ditional graphs, where clustering is measured by the
probability that a node’s neighbors are also directly con-
nected, in hypergraphs, clustering evaluates the involve-
ment of nodes in hyperedges that facilitate group inter-
actions. This measure captures the probability that two
nodes, which already share a hyperedge, are also linked
by additional hyperedges. The formal mathematical ex-
pression for the clustering coefficient in hypergraphs is
presented in Eq. 10.

SN Computer Science
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Z |hey N hes|

hel,heg

( 0 > (10)

where k(i) represents the set of hyperedges that contain

HCC (i) =

node i, < k(;) > denotes the total number of possible pairs

of hyperedges involving i, and |hey N hey| refers to the
size of the intersection between two hyperedges that both
include i.

e HyperBetweenness (HB): Betweenness Central-
ity in hypergraphs identifies nodes that serve as criti-
cal connectors within the network [25]. Nodes with a
higher number of shortest paths passing through them
are considered more influential, as they facilitate com-
munication and interactions across various parts of the
hypergraph. Betweenness centrality in hypergraphs can
be calculated for both nodes and hyperedges; however,
in this work, we focus exclusively on the centrality of
nodes. The betweenness centrality for a node i (denoted
as HB(7)) is calculated using the following Eq. 11:

HB(i) = >

ag.
uFiF£v u,v

Ou,v (7')

(11)

In Eq. 11, 0, (4) represents the number of shortest paths
from node u to node v that pass through node i, while o, ,,
denotes the total number of shortest paths between nodes
u and v. In traditional graphs, distance is defined by the
number of edges in the shortest path connecting two nodes.
However, in hypergraphs, hyperedges can connect multiple
nodes simultaneously, altering the concept of distance. In its
simplest form, the distance between two nodes in a hyper-
graph is defined as the number of hyperedges that must be
traversed to connect them. If two nodes are part of the same
hyperedge, the distance is 1. If they are not directly con-
nected by a hyperedge, intermediate hyperedges must be
traversed, increasing the distance.

e HyperCloseness (HCL): Closeness centrality in hyper-
graphs measures how close a node is to all other nodes
in the network [25]. Unlike traditional graphs, where
distance is typically defined as the shortest path between
two nodes, in hypergraphs, this concept is adapted to
account for hyperedges that can simultaneously connect
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multiple nodes. Closeness centrality can be calculated
for either nodes or edges within the hypergraph. If the
edge parameter is set to True, it computes closeness
centrality for edges; otherwise, it computes it for nodes.
Additionally, the size of the hyperedges can be specified
to adjust the calculation. The closeness centrality for a
node i is computed using the Eq. 12:

N-1
HCL(H) = =+
(4) S oy (i) (12)
In this equation, d(i, j) represents the distance between
nodes 7 and j, while N denotes the total number of nodes in
the hypergraph.
This study aims to adapt centrality measures to the more
complex structure of hypergraphs, positing that centrality
based approaches can yield deeper insights into connectiv-
ity patterns. Inspired by the work of [8], which introduced a
novel link prediction method using similarity scores based
on average centrality measures in traditional graphs, this
research extends the methodology to hypergraphs. Met-
rics such as degree, clusteringcoefficient, betweenness, and
closeness are modified to accommodate multi-node connec-
tions, offering a more comprehensive view of node influ-
ence in environments characterized by group interactions.
By incorporating node centrality metrics into the link pre-
diction framework, this method seeks to better capture the
multifaceted relationships in hypergraphs, thereby improv-
ing predictive performance. The following section provides
a detailed explanation of the proposed approach.

Proposed Work

The concept of link prediction for conventional graphs is
rigorously defined in [3]. In this paper, we build upon that
framework to tackle the challenge of link prediction and
centralities in hypergraphs.

In this study, we introduce an innovative approach for
predicting links in hypergraphs by utilizing node centralities,

/ Input a Hypergraph H=(V,E) \

E ©
HyperEdge?2

Fig. 1 Toy hypergraph with seven nodes and four hyperedges:
HE, ={B,C,E}, HE; ={A,E,F,G}, HE3={A, D} and
HE,={A,B,D,F}

termed Link Prediction based HyperCentralities (CLPH).
This method seeks to enhance the accuracy of link predic-
tion by concentrating on shared nodes with greater influence
within the network structure. To achieve this, we employ
both the Shared Neighbor and Resource Allocation as link
prediction metrics, both of which heavily rely on identifying
shared neighbors. The CLPH algorithm is outlined in the
following steps:

1. Computing the HyperCentralities for each node within
the hypergraphs is a key step in this process. In this
study, we employ four distinct centrality measures,
which are detailed in Sect. 2.4.

2. Next, the average centralities of all nodes is computed,
as illustrated in Eq. 13.

2ievm HC()

AC(H) = 7

(13)
In Eq. 13, HC(i) represents the HyperCentrality score

of node i, computed using the hypergraph centrality
measures outlined in Section Centralities and Hyper-
Centralities. The generalized form of the Average Cen-
trality score AC(H ), as shown in Eq. 13, can be adapted
based on the specific centrality measure utilized. For
example, if the chosen HyperCentrality measure is
hyperdegree, then AD(H) should be applied; if hyper-
betweenness is used, then AB(H) replaces AC(H).
The criterion for selecting the average hypercentrality as
the threshold is based on its role as a statistically repre-
sentative baseline for the structural importance of nodes
in a hypergraph. A node is considered influential only if
its hypercentrality exceeds this mean value, indicating
that its structural involvement is above the network’s
expected centrality level. This provides an objective
and parameter free cutoff that naturally adapts to the
centrality distribution of each dataset, ensuring con-
sistent identification of meaningful shared neighbours.
The use of the average also avoids distortions caused
by hub nodes that would disproportionately affect maxi-
mum based thresholds. Applying this criterion has been
empirically shown to suppress low-influence neigh-
bours and improve the reliability of the computed link
prediction scores.

3. Topredict a potential link between two nodes, i and j, the
method first identifies their shared neighbors within the
hypergraphs. In the subsequent step, only shared neigh-
bors whose HyperCentrality scores exceed the average
centrality are considered for calculating the link predic-
tion scores. These selected shared neighbors are then
used to compute the link prediction scores. In this work,
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Input a Hypergraph H=(V,E)

é Compute the centrality scores of each node ‘

HC= {<nodel:Centrality of node1>, <node2:
Centrality of node2> ... }

\_ _/
|

Compute Average Centrality(AC) score of
Hypergraph H.

' J
i |

4 )

Initialize CLPH (key-value pairs) where keys
are non-adjacent node pairs in H and the values
corresponds to the Link Prediction score of that

pair.

CLPH= {<node-pairl:LPscorel>, <node-
pair2:LPscore2> ... }

\_ _4

Computation of CLPH

Pick a node # from V;
pute I'(u) containing neighbors

ute U containing all non-adjacent |

neighbors SN = I'(u) N I'(v). For
: compute the weight as follows:

Add the key-value pair
<((u,v), Ip_scorc>to CLPH

Fig. 2 Link Prediction in hypergraphs through Centrality Weighted Shared Connections

Table 2 The proposed link prediction measures based on HyperCentralities (CLPH(i, j))

Average HyperCentralities (AC)

CLPHC(i,7)

HyperDegree (HD) AHD(H) = Ziev?% HD(3)
g{ygt(:jr)Clustering CoefTicient AHCC(H) = Ziev(ﬁ)‘ﬂccu)
HyperBetweenness (H15) AMB(H) = Zevf"f)‘ HB(i)
HyperCloseness (HCL) AHCL(H) = Ziev‘ﬁ}chai)

SN#D(i,j) = |{r | r € T(i) NT(j) and HD(r) > AHD(H)}|
SNwuce(i,j) = |{r | r € T(i) NT(j) and HCC(r) > AHCC(H)}|
SNuB(i,j) = |{r | r € (i) NT(j) and HB(r) > AHB(H)}|
SNuce(i,j) = [{r | r € T(i) NT(j) and HCL(r) > AHCL(H)}|

two specific link prediction measures are employed, as
detailed in Section Link prediction in Hypergraphs.

For the toy hypergraph shown in Fig. 1, hyper-
centrality is computed wusing hyperdegree, yield-
ing HD(A) =3, HD(B) =2, HD(C)=1

SN Computer Science
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HD(D)=2,HD(E) =2,HD(F) = 2,HD(G) = 1,with
average hyperdegree

13
— = 1.857,
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so the nodes satisfying the threshold (HD(v) > AD(H).
For example, for the non-adjacent nodepair (4, C) we obtain
I'(A)={B,D,E,F,G} and TI(C)={B,E}, hence
SNy D(A,C) = (B, E). Rather than treating these neigh-
bors uniformly, we incorporate their hyperdegree central-
ity: both B and E have HD = 2, which exceeds AD(H),
and therefore (4, C) passes the centrality threshold and is
retained as a candidate for link prediction. In general, for
each non-adjacent nodepair, only those shared neighbors
satisfying (HC(r) > AD(H) contribute to the score; pairs
with no qualifying neighbors are discarded. This selective
inclusion focuses the predictor on structurally meaningful
candidate pairs and improves prediction quality relative to
methods that treat all non-adjacent nodepairs equally.

The computational procedure is depicted in Fig. 2

HyperCentralities

In this research, we employ several hypergraph specific cen-
tralities, such as hyperdegree, hyperclustering coefficient,
hyperbetweenness, and hypercloseness, in place of HC. The
precise mathematical formulations for these hypercentrali-
ties are outlined in Table 2, demonstrating their adaptation
to hypergraphs for accurately capturing node influence.

Link Prediction based HyperCentralities in
Hypergraphs

(a) Shared Neighbor based HyperCentralities (SN#C) :
To calculate the similarity scores between non-adjacent
nodepairs (i, /) in hypergraphs using average centrality,
we extend the notion of shared neighbors to incorporate
hyperedges. The Shared Neighbor based HyperCen-
tralities for hypergraphs, denoted as SNy, is formally
defined in Eq. 14:

2 >

Shey Shes

SNyc(i,j) =
(hez) (14)

Here, he; and hes represent hyperedges, with s, indi-
cating the size of hyperedge /e. The term r refers to a
shared neighbor shared between the hyperedges, while
HC(r) denotes the hypercentrality score of the shared
neighbor r. The average hypercentrality, AC(H), is
defined in Eq. 13.

The given Eq. 14 determines the link prediction score
by evaluating the number of shared neighbors whose
centrality values are equal to or exceed the average
centrality of the hypergraph. The hypercentrality mea-
sure, HC, can be adapted to other hypergraph centrality
metrics, such as the hyperdegree (D), hyperclustering
coefficient (HCC), hyperbetweenness centrality (HB),
and hypercloseness centrality (HCL), as presented in
Table 2. These adaptations result in the computation of
CNyC.

(b) Resource Allocation based HyperCentralities
(RA4C) : In traditional graphs, the Resource Alloca-
tion (RA4) Index operates on the principle of distribut-
ing resources between two nodes through their shared
neighbors. In hypergraphs, the Resource Allocation
Index is adapted to accommodate the complexity of
hyperedges, which can connect multiple nodes simulta-
neously. Instead of focusing on pairwise neighbors, the
RA score in hypergraphs evaluates resource distribution
through shared hyperedges. This approach quantifies
the potential for "resource" transfer between two nodes
based on their shared hyperedges, assigning greater
importance to smaller hyperedges where connections
are more concentrated. The Resource Allocation based
HyperCentralities for hypergraphs is formally defined
in Eq. 15:

RAYC(i,5) =Y ; ! if 4,7 € he
i e T
— Z 1 * ! * ! ,otherwise (15)
- ) E(r)  shey =1 Spe, — 1
rel'(i)NT(j)
and HC(r) > AC(H)

where T'(i) NT'(j) represents the shared neighbors of

nodes i and j, HC(r) is the hypercentrality score of the
shared neighbor », AC(H) is the average hypercen-
trality of the hypergraph H, k(r) is the degree of the
shared neighbor 7, spe, and spe, represent the sizes of
the hyperedges containing i and j, respectively. RA+C
can also be formulated using different HyperCentrality
measures, analogous to those presented in Table.2.

The effectiveness of the proposed method is evaluated
through experimental testing on four distinct hypergraphs.
A detailed account of this evaluation is provided in the fol-
lowing section. The proposed method is summarised in
Algorithm 1.

SN Computer Science
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. Initialization: CLPH Scores = ¢ // LPycScores holds key-value pairs, where

the keys represent non-adjacent nodepairs (i, j), and the values correspond to their

respective CLPH scores.

2: for every vertex i in V' do

3: Calculate HC(7) // HyperCentralities for node i

4: end for )

5. Compute AC(H) = W // AverageCentralities of the hypergraph AC(H)

6: for every vertex ¢ in V do

7: Compute I'(7) // Set of neighbors of node 4

8: for every vertex j in V do

9: if (i,j) ¢ E then // Non-adjacent nodepair

10: Compute T'(5) // Set of neighbors of node j

11: Compute r = T'(:) N T(5) // Shared neighbors of i and j

12: for every r do

13: if HC(r) < AC(H) then

14: Remove 7 // Retain only the significant shared neighbors based
on hypercentrality, and similarly, for resource allocation, compute by adding the
degrees of the shared neighbors to facilitate resource transfer.

15: end if

16: end for

17: Step 1: Shared Neighbor based Link Prediction:

18: Calculate SNy from Eq.14 // Shared Neighbor based HyperCentrali-
ties

19: Step 2: Resource Allocation based Link Prediction:

20: Calculate RAyc from Eq.15 // Resource Allocation based Hyper-
centralities

21: Add ((4,7) : (SNycScores, RAycScores))toLPycScores // Store
both scores

22: end if

23: end for

24: end forreturn CLPH Scores

The CLPH algorithm proceeds through the following

stag

(a)

(b)

€S:

Computation of node HyperCentralities. For each
node in the hypergraph, the corresponding Hyper-
Centrality score HC(7) is computed. In this study, we
employ four distinct hypergraph adapted centrality
measures like hyperdegree, hyperclustering coefficient,
hyperbetweenness, and hypercloseness as described in
Section Centralities and HyperCentralities.

Derivation of the average HyperCentrality base-
line. Once individual node centralities are obtained, the

Table 3 Datasets containing nodes and hyperedges after sampling

Datasets #Nodes #Hyperedges
NDC-classes 640 411
email-Eu 745 4868
cat-edge-geometry-questions 450 247
hyperedges-contact-high-school 317 781
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AC(H) =

average HyperCentrality of the hypergraph is computed
using Eq. 16:

>iev HC () (16)
V]
Here, HC(4) denotes the HyperCentrality of node i,
as defined by the selected measure. The expression in
Eq. 16 is general and adapts to any centrality variant
used. For example, when the chosen HyperCentral-
ity corresponds to hyperdegree, hyperbetweenness,
hyperclustering coefficient, or hypercloseness, the
corresponding average values AHD(H), AHB(H),
AHCC(H), and AHCL(H) are employed respectively.
Identification and filtering of structurally signifi-
cant shared neighbours. For each non-adjacent pair
of nodes (i, j), their shared neighbours are identified.
Only those neighbours whose HyperCentrality val-
ues exceed the average centrality baseline AC(H) are
retained for subsequent computation. These structurally
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influential shared neighbours are then used to compute
the link prediction scores. In this work, two centrality
weighted link prediction indices like Shared Neigh-
bour based and Resource Allocation based are utilized,
as detailed in Section Proposed Work.Computational
Complexity. The computational cost of the proposed
CLPH algorithm can be analysed by considering the
major operations involved in the procedure. Com-
puting the Hypercentrality score for all nodepairs
requires O(|V|- Cyc) time, where Cye denotes the
complexity of the selected centrality measure. The
identification of all non-adjacent node pairs involves
a worst-case cost of O(|V|?). For each such pair (i, ),
determining the shared neighbours entails extracting
the neighbour sets I'(¢) and I'(j) and computing their
intersection, which requires O(k(i) + k(j)) time. The
subsequent filtering of shared neighbours based on the
average Hypercentrality threshold incurs an additional
O(|T(i) NT'(5)]) cost. The computation of the Shared
Neighbour score SNy and the Resource Allocation
score RAc also requires O(|T'(¢) NT'(j)|) time for
each pair.

Combining these factors, the overall worst-case time com-
plexity of the algorithm is given by

OV - A),

where A is the maximum node degree in the hypergraph.
This complexity is consistent with neighbourhood based
link prediction methods and reflects the inherent cost of
evaluating pairwise interactions in hypergraph structures.

Experimentation

We utilized four datasets to demonstrate the effectiveness of
the proposed approach, each dataset sampled from hyper-
graphs available in the ARB repository "https://www.cs.cor
nell.edu/~arb/data/email-Eu/".

e National Drug Code Directory NDC [26]: In the NDC-
classes dataset, nodes represent class labels assigned to
drugs, with each node corresponding to a particular label
linked to a drug. Hyperedges are formed by simplices,
where each simplex represents a group of nodes (class
labels) interconnected by a drug.

e email-Eu: In the email-Eu dataset, nodes correspond to
email addresses within a European research institution,
with a hyperedge formed by grouping the sender and all
recipients involved in a particular email. "https://www.c
s.cornell.edu/~arb/data/email-Eu/"

e cat-edge-geometry-questions: In this hypergraph data-
set, nodes represent individual geometry related ques-
tions, while hyperedges are formed by grouping ques-
tions that are conceptually linked, indicating they share
shared topics and connect multiple questions (nodes)
within a single hyperedge.

e hyperegdes-contact-high-school [27]: In this dataset,
nodes represent individuals at the high school who in-
teracted with each other, while hyperedges correspond
to the maximal cliques of these interactions, represented
as simplices, where each hyperedge links all individuals
who engaged in mutual interactions (see Table 3).

Due to the large size of the hypergraphs, we applied a sam-
pling approach based on hyperedge distribution to reduce
their scale. The hyperedge distribution function indicates
the number of hyperedges of each possible size (cardinal-
ity), effectively describing how many hyperedges contain a
specified number of nodes. In most datasets, pairwise hyper-
edges (size 2) are predominant, while larger hyperedges
(sizes 3, 4, etc.) occur with decreasing frequency. This dis-
tribution reveals the prevalence of pairwise interactions in
hypergraphs. Our research, while focused on hypergraphs
where hyperedges can link multiple no des, primarily con-
siders non-adjacent node pairs (hyperedge size 2). This focus
is supported by the observation that approximately 60-70%
of the datasets consist of hyperedges involving exactly two
nodes, making it efficient and insightful to start with these
smaller hyperedges. The sampling process organizes hyper-
edges by size to allow for proportional sampling. From each
size group, a user-defined fraction of hyperedges (e.g., 50%)
is selected, with at least one hyperedge retained in each
group to ensure continuity. Isolated nodes, which no lon-
ger connect to any hyperedge, are removed. This approach
effectively reduces hypergraph size while preserving criti-
cal node relationships, facilitating analysis within time and
memory constraints. Grouping hyperedges by size and sam-
pling proportionally ensures that the sampled hypergraphs
maintain a distribution akin to the original data. This study
was conducted on a system equipped with an 11th genera-
tion Intel(R) Core(TM) i7-8700 CPU, six cores, twelve
logical processors, and a base clock of 3.20 GHz, running
Windows 10 Education with 16 GB RAM. Python was used
for the analysis.

Evaluation Metrices

Although various evaluation metrics exist for link predic-
tion, our study focuses on AUPR, precision, and F1-score
for several key reasons. AUPR is particularly effective in
handling class imbalance, a common scenario in link pre-
diction tasks where actual links are sparse, which makes
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sure for predicting important links. Precision ensures that
the predicted links are highly accurate, which is crucial for
practical applications such as biological networks and col-
laboration networks, where incorrect predictions can lead
to misleading outcomes whereas F1-score strikes a balance
between precision and recall, ensuring that the model does
not prioritize one at the expense of the other which assess
overall performance in link prediction.

e AUPR [28]: AUPR refers to the area under the pre-
cision-recall curve, where precision is plotted on the
y-axis and recall on the x-axis across various threshold
values. It offers a comprehensive summary of the trade-
off between precision and recall, highlighting the mod-
el’s ability to correctly classify positive instances. In the
context of link prediction, particularly in hypergraphs,
datasets are frequently imbalanced, with far fewer links
(positive class) compared to non-links (negative class).
AUPR directly addresses this by focusing on how well
the model identifies true links, while disregarding ir-
relevant connections that could skew other metrics.
For link prediction tasks involving centrality measures,
AUPR ensures that the model is evaluated on its ability
to correctly identify rare but significant links. It provides
a more accurate evaluation than metrics like accuracy,
which can be misleading in skewed datasets.

e Precision [29]: Precision quantifies the proportion of
correctly predicted links (true positives) among all pre-
dicted links (true positives + false positives). Mathemat-
ically, it is expressed in Eq. 17:

TP
P ) = —
recision TP+ FP (17)

where TP denotes true positives and FP represents false
positives. Precision is critical in scenarios where minimizing
false positives is a priority. In hypergraphs, predicting non-
existent links can disrupt the understanding of the network
structure, making precision a key metric in evaluating the
reliability of a model’s predictions. Precision is particularly
important in hypergraphs with higher-order interactions,
where the cost of incorrect predictions can be significant.
For instance, in protein-protein interaction networks, inac-
curately predicting links can result in false biological infer-
ences, affecting critical research outcomes.

o F1-score [30]: The Fl-score is the harmonic mean of
precision and recall, providing a balanced evaluation of
a model’s performance. It is calculated in Eq. 18 as:

Precision x Recall
F1— =2 18
seore x Precision + Recall (%)
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Table 4 Performance of centrality based LP in graph Vs hypergrpah modes. D and ‘HD represent Degree Centrality in the graph and hypergraph models respectively. SN and R4 signify the Link

Prediction (LP) measures of Shared Neighbor and Resource Allocation

Evaluation Metrics

LP Measures

Precision

F1-score

AUPR

RALD
0.513

RAp
0.215

SN2, D

0.462

SNo
0.167

0.211

RALD
0.786

RAn
0.184

0.099

SN, D

0.861

SNp
0.162
0.103

SN, D RAn RALD
0.017 0.021
0.231

0.024

SNp

0.019

NDC-classes

0.282 0.616

0.521

0.753

0.121 0.067 0.112 0.838
0.654

0.286

0.072

email-Eu
c-e-g-q

h-c-h-s

0.502
0.512

0.115 0.519 0.156
0.149

0.712

0.261

0.313

0.067

0.029
0.055

0.065 0.086 0.258 0.868 0.229 0.872 0.131 0.498

0.077
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This metric combines both precision and recall to offer a
single, comprehensive measure. The Fl-score effectively
balances the trade-off between precision (minimizing false
positives) and recall (minimizing false negatives), making it
especially useful in situations where both types of errors are
critical. In link prediction tasks, the F1-score ensures that
the model is not only avoiding false positives (precision)
but also capturing as many true links as possible (recall).
In hypergraphs, it is insufficient for the model to only have
high precision (predicting a few but accurate links). It must
also achieve high recall by identifying as many true links as
possible. The F1-score ensures that the model maintains this
balance, which is essential in domains such as scientific col-
laboration or biological networks, where missing a true link
can be as detrimental as predicting a false one.

Results

The simulations for the proposed hypergraph based link pre-
diction models were performed using the top 20,000 node-
pairs, with results averaged over 10 data points to ensure
greater accuracy and reliability. The evaluated HyperCen-
trality measures include Shared Neighbor based Hyper-
Degree (S Nyp), Shared Neighbor based HyperClustering
Coefficient (SNycc), Shared Neighbor based HyperBe-
tweenness (SNxp), and Shared Neighbor based Hyper-
Closeness (SNycr), along with their Resource Allocation
based counterparts (RAyp, RAyce, RAyug, and RAxcr).
These hypergraph measures were compared to graph based
similarity centralities, including SNp, SN¢e, SN, SNeg,
and RAp, RAcc, RAg, RAc . Performance was assessed
using three key metrics: Area under Precision-Recall Curve
(AUPR), F1 score, and Precision, as summarized in Tables
4,5,6and 7.

e AUPR Analysis
For the NDC-classes dataset which is in Table.4, the
highest AUPR of 0.024 is achieved by SNyp, repre-
senting a 26.3% improvement over the graph based
SNp (0.019). This result underscores the effective-
ness of hyperdegree centrality in capturing multi-node
interactions and dense connectivity patterns character-
istic of hypergraphs. Graph based measures, such as
S Np, rely on pairwise relationships and fail to account
for the broader structural participation of nodes within
hyperedges. In the email-Eu dataset, SNy p achieves
the highest AUPR of 0.121, which is 68% higher than
SNp (0.072). The dataset reflects communication net-
works where nodes frequently engage in multiple hy-
peredges. Hyperdegree centrality excels in identifying
nodes with diverse and frequent interactions, making

it more robust in predicting future links. For the cat-
edge-geometry-questions dataset, RAyp achieves the
best AUPR score of 0.313, which is 9.4% higher than
SNyp (0.286). The Resource Allocation based hyper-
degree measure effectively models the direct connec-
tivity and interaction dynamics within geometrically
organized clusters, demonstrating its superiority in this
scenario. In the hyperedges-contact-high-school data-
set, RAyp leads with an AUPR of 0.086, surpassing
S Nyp (0.077) by 11.7%. This dataset represents group
based social interactions where resource allocation
methods capture the probabilistic formation of links
within closely-knit communities more effectively than
shared neighbor-based methods.

F1-Score Analysis

For the NDC-classes dataset which is in Table 4, SNy p
achieves the highest F1-score of 0.861, which is 9.5%
higher than RAxp (0.786). The Fl-score balances
precision and recall, highlighting SNyp’s ability to
identify future links accurately while minimizing false
positives. Its superior performance is attributed to the
hypergraph’s inherent structure, where nodes exhibit
dense connectivity within hyperedges. In the email-Eu
dataset, SNy p achieves the highest F1-score of 0.838,
surpassing R Ay p (0.753) by 11.3%. This dataset, char-
acterized by frequent multi-node interactions, benefits
from hyperdegree centrality’s focus on nodes central
to existing hyperedges, resulting in more reliable link
predictions. For the cat-edge-geometry-questions data-
set, SNyp leads with an Fl-score of 0.654, which is
10.5% higher than SNyp (0.591). This improvement
demonstrates SNy p’s ability to capture dense, local-
ized group interactions within geometrically structured
hyperedges, outperforming other methods. In the hy-
peredges-contact-high-school dataset, RAyp records
the highest Fl-score of 0.872, marginally outperform-
ing SNyp (0.868) by 0.5%. This slight edge reflects
RA#p’s strength in recall, which is particularly benefi-
cial for densely connected, group centric datasets.

Precision Analysis

Precision evaluates the accuracy of positive link predic-
tions while minimizing false positives. For the NDC-
classes,email-Eu and hyperedges-contact-high-school
datasets which are in Table.4, RAyp achieves the
highest precision of 0.513, 0.616 and 0.512, which is
11%, 8.6%, and 1.6% higher than SN3;p. Resource
allocation methods prioritize accurate identification of
true links, making them particularly effective in hyper-
graphs with well-defined and also emphasizes on direct
node participation within hyperedges enables resource
allocation methods to excel in diverse and large-scale
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Table 5 Performance of centrality based LP in graph Vs hypergraph modes. CC and HCC represent Clustering Coefficient in the graph and hypergraph models respectively. SN and R4 signify the

Link Prediction (LP) measures of Shared Neighbor and Resource Allocation

Evaluation Metrics

LP Measures
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Precision

F1-score

AUPR

R Aill’/"
0.489

RACC
0.208

q N’Llf‘ﬁ
0.496

0.501

SNeC
0.198

0.257

RAGJI’I"
0.812

RAC
0.198
0.258

q N’JJF‘('
0.898

0.013 0.019 0.211
0.891

0.033

SNC
0.022

NDC-classes

0.589
0.496

0.255

0.792

0.055 0.083 0.292
0.245
0.161

0.059

0.062

email-Eu
c-e-g-q

h-c-h-s

0.133
0.141

0.221 0.512

0.789
0.893

0.278

0.702
0.886

0.322 0.083 0.339
0.129

0.086

0.061

0.507

0.496

0.131

0.271

0.072

0.043

communication networks and also Hyperdegree central-
ity’s focus on immediate connectivity ensures highly
accurate predictions for socially clustered interactions.
For the cat-edge-geometry-questions dataset, SNyp
achieves the highest precision of 0.519, which is 3.4%
higher than RAyp. This result indicates that degree-
based measures perform better in geometric datasets,
where simpler connectivity patterns dominate. The
analysis demonstrates that hypergraph based measures,
particularly S N3;p and RA«p, consistently outperform
traditional graph-based centralities across all datasets
and metrics. Hyperdegree centrality SNyp excels in
AUPR and F1-score due to its ability to capture dense
connectivity and multi-node interactions within hyper-
edges. In contrast, resource allocation-based hyperde-
gree RA4p achieves superior precision by effectively
minimizing false positives. These findings highlight
the advantages of hypergraph based methods in model-
ing complex interaction patterns and predicting future
connections in datasets characterized by multi-node
relationships.

Evaluation of the remaining centrality measures, including
Clustering Coefficient (CC) and HyperClustering Coefficient
(HCC) which is in Table.5, Betweenness (13) and HyperBe-
tweenness (HB) in Table.6, as well as Closeness (CL) and
HyperCloseness (HCL) in Table.7, reveals consistent trends
in the data sets for AUPR, F1 score and Precision. For the
Clustering Coefficient (CC) and HyperClustering Coefficient
(HCC) in Table.5, C' Nycce outperforms its traditional coun-
terpart C' N¢e in most datasets. In the NDC-classes dataset,
C Ny cc achieves the highest AUPR of 0.024, which is 9%
higher than C'Ng¢¢, while its Fl-score is 0.898, exceeding
RAzcc by 14.2%. This underscores the importance of
hyperclustering in capturing dense local structures within
hyperedges. Similarly, in the email-Eu dataset, C' Nycc
achieves the best AUPR of 0.121, 98% higher than C'N¢c,
while its Fl-score reaches 0.891, further emphasizing the
effectiveness of hyperclustering in multi-node interactions.
However, for Precision, RA,cc performs slightly better in
some datasets, such as email-Eu, where it achieves a Pre-
cision of 0.525, indicating that resource allocation is more
effective at minimizing false positives in these settings. For
datasets like cat-edge-geometry-questions and hyperedges-
contact-high-school, RA#cc dominates in AUPR, achiev-
ing 0.313 and 0.086, respectively, highlighting the role of
resource allocation in scenarios involving cohesive group
structures.

When considering Betweenness (53) and HyperBetween-
ness (HB) from Table.6, SNyp consistently outperforms
SNyp in AUPR across all datasets. In the NDC-classes
dataset, SNy p achieves an AUPR of 0.022, which is
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Table 6 Performance of centrality based LP in graph Vs hypergraph modes. BB and ‘H.BB represent Betweenness in the graph and hypergraph models respectively. SN and R4 signify the Link Predic-

tion (LP) measures of Shared Neighbor and Resource Allocation

Evaluation Metrics

LP Measures

Precision

F1-score

AUPR

RALB
0.471

RAg
0.186
0.249
0.112
0.133

SN, B
0.489
0.513

qN‘V)
0.114
0.143

0.213

RALB
0.779

RAR
0.177
0.156

0.208

SNy 3
0.837

SNg
0.196
0.182
0.189
0.152

SN, B RAg RALRB
0.011 0.016

0.022

QNIQ

0.013

NDC-classes

0.548
0.478

0.766

0.829

0.075
0.289
0.057

0.049
0.049
0.031

0.092

0.063

email-Eu
c-e-g-q

h-c-h-s

0.483
0.471

0.705

0.622

0.233

0.016

0.493

0.119 0.867 0.127

0.841

0.042

0.071

69.2% higher than S Ng. Similarly, in the email-Eu dataset,
SNy scores 0.092, 46% higher than SNg. These results
indicate that hyperbetweenness effectively captures multi-
node bridging roles within hypergraphs. While SN 5 often
excels in Fl-score due to its ability to balance precision
and recall, RAyp demonstrates its strength in Precision,
particularly in datasets like cat-edge-geometry-questions,
where it achieves a Precision of 0.483, 2.5% higher than
SNyp. In the hyperedges-contact-high-school dataset,
RA3 5 achieves the highest Fl-score of 0.831, surpassing
SNyup by 6.5%, highlighting its ability to model group-
based social interactions effectively. For Closeness (CL)
and HyperCloseness (HCL) from Table.7, SNyc consis-
tently outperforms C'N¢ . in AUPR and F1-score across all
datasets. In the NDC-classes dataset, SNy, achieves an
AUPR 0f 0.027, 28.6% higher than SN¢ ., and an F1-score
of 0.798, surpassing RAycc by 4.6%. This trend is also
evident in the email-Eu dataset, where S Ny, records an
AUPR of 0.97, 70.3% higher than SN¢,, and an Fl-score
of 0.812. In contrast, RAyc, demonstrates its strength in
Precision, particularly in the email-Eu dataset, where it
achieves 0.528, 6% higher than SNyc,. In the cat-edge-
geometry-questions dataset, RAyc, achieves the highest
AUPR of 0.312, surpassing SNy by 8.7%, emphasizing
the effectiveness of resource allocation in modeling local-
ized connectivity. However, for Fl-score and Precision,
SNy, remains competitive, particularly in datasets like
hyperedges-contact-high-school, where it achieves a Preci-
sion of 0.497, slightly outperforming RAxc .

Overall, these results demonstrate the advantages of
hypergraph based measures over their graph based counter-
parts. The hypergraph specific adaptations HCC, HB, and
‘HCL consistently outperform traditional centralities CC, B,
and CL across AUPR, Fl-score, and Precision. This high-
lights the ability of hypergraph based methods to cap-
ture complex, multi-node interactions within hyperedges,
thereby providing a more accurate prediction of future links
in diverse datasets. Additionally, resource allocation based
hypercentralities RAxcc, RAxyp and RAyc often per-
form well in Precision due to their emphasis on minimiz-
ing false positives, making them suitable for datasets where
accurate link prediction is critical.

In addition to the detailed tabular analysis presented ear-
lier, the corresponding visual representations provided in
Fig. 3a, b, Fig. 4a, b collectively offer a clear and intuitive
understanding of the performance trends across all datas-
ets and evaluation metrics. These figures present a picto-
rial summary of the same results explained in the tables,
enabling a direct comparison between graph based and
hypergraph based approaches across multiple centrality
perspectives, including Degree, Closeness, Betweenness,
and Clustering Coefficient. The visual patterns consistently
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Table 7 Performance of centrality based LP in graph Vs hypergraph modes. CL and HC L represent Closeness in the graph and hypergraph models respectively. SN and R4 signify the Link Predic-

tion (LP) measures of Shared Neighbor and Resource Allocation

Evaluation Metrics

LP Measures
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Precision

F1-score

AUPR

RA’LIﬁ
0.467

RA:L
0.189

0.212

q N’J_If’
0.492

0.518

SN L.
0.189
0.153

0.215

R A’Llf‘
0.752

RACL
0.152
0.148
0.202
0.127

q N’Llf'
0.798

SN[
0.123
0.202
0.192
0.156

0.015 0.018

0.027

SN L
0.021

NDC-classes

0.577
0.476

0.741

0.812

0.069
0.243

0.089 0.051
0.039

0.111

0.066

email-Eu
c-e-g-q

h-c-h-s

0.121
0.118

0.498
0.462

0.688

0.841

0.512

0.052

0.027
0.063

0.477

0.029

0.838

0.027

0.051

reinforce the quantitative findings reported earlier: hyper-
graph based variants of Shared Neighbors and Resource
Allocation exhibit superior performance across AUPR,
Fl-score, and Precision, regardless of the underlying cen-
trality framework. By bringing together multiple centrality
driven analyses into unified graphical formats, the figures
strengthen the interpretation of performance differences and
provide an immediate comparative view of how effectively
hypergraph modeling captures higher-order interactions,
multi-node participation, and complex structural dependen-
cies within real-world datasets.

Discussion

In the discussion section, we can conduct a comparative
analysis of the highest performing Shared Neighbor and
Resource Allocation based hypercentrality measures across
each dataset, as follows: In terms of AUPR, SNgcce con-
sistently outperforms all other measures, including RAc.
This superior performance of S Nycce can be attributed to
its effectiveness in capturing dense local structures within
hyperedges, a crucial factor in datasets where clustering
dynamics are predominant. In contrast, Resource Alloca-
tion based measures, such as RAycc, emphasize the dis-
tribution of resources across connections, which may not
encapsulate clustering to the same extent as the Shared
Neighbor-based approach. Comparing S Nycc to the low-
est performing measure, RAxc, in this dataset demon-
strates an approximate improvement of 97%, underscoring
the robustness of SNy e in predicting future links based
on clustering properties. For the email-Eu dataset, SNy p
achieves the highest AUPR among the proposed measures,
highlighting the effectiveness of hyperdegree centrality in
settings characterized by high communication volumes
across numerous nodes. The focus on hyperdegree enables
S Nyp to capture the frequency and intensity of direct con-
nections, a critical feature in email communication net-
works. Although Resource Allocation-based measures, such
as RAyp, also utilize hyperdegree, the Shared Neighbor
approach provides a better representation of direct con-
nectivity patterns. Here, SNyp performs approximately
75.3% better than least RAyc, measure, emphasizing the
advantage of focusing on shared neighbors in networks with
frequent interactions. In the cat-edge-geometry dataset,
RA3cc demonstrates the highest performance, surpassing
S Nyce. This dataset likely consists of geometrically simi-
lar nodes that form cohesive groups, which aligns well with
the Resource Allocation approach that distributes resources
across clusters. The hyperclusteringcoefficient within the
Resource Allocation framework is particularly effective at
capturing these localized group interactions, as it reflects the



SN Computer Science (2026) 7:119

Page 170f20 119

Fig. 3 Performance comparison of
Centrality based Link Prediction
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(b) Performance comparison of Clustering Coefficient based Shared Neighbors and
Resource Allocation methods in Graphs and Hypergraphs using AUPR, Fl-score,

and Precision

resource concentration within cohesive clusters. Similarly,
RA4cc achieves the highest performance in the contact-
high-school dataset. This dataset likely consists of tightly
knit communities where frequent group-based interactions
occur, such as student groups or classes. The Resource
Allocation approach with hyperclustering (RAcc) effec-
tively captures these frequent interactions by distributing
link prediction weight across clusters, aligning closely
with group-based social dynamics. Compared to SNycc,
RAce shows an superiority, highlighting the importance

of resource-based distribution in hypergraphs with strong
community structures.

For the Fl-score analysis between Shared Neighbor-
based and Resource Allocation based hypercentralities in
hypergraphs, the following insights emerge based on the
top performing and lowest performing measures across
the datasets. In the NDC-classes and email-Eu datasets,
SNyce achieves the highest Fl-scores. This success can
be attributed to the Shared Neighbor approach’s strength in
datasets where clustering and group dynamics are central.
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Fig.4 Performance comparison of
Centrality based Link Prediction
in Graphs and Hypergraphs using

AUPR, F1-score, and Precision 82
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(b) Performance comparison of Closeness based Shared Neighbors and Resource
Allocation methods in Graphs and Hypergraphs using AUPR, F1-score, and Preci-

sion

The SNy cc measure leverages clustering properties within
hyperedges, allowing it to effectively capture dense, cohe-
sive structures characteristic of NDC-classes and email-Eu.
This focus on clustering aligns with the structure of hyper-
graphs in these datasets, where connections are typically
concentrated within distinct groups. When S Nycc is com-
pared to the least-performing Resource Allocation-based
measure, RAxcrc, a notable performance difference is
observed. In the NDC-classes dataset, SNy e outperforms

SN Computer Science
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RA3cr by approximately 12.5% in Fl-score. Similarly,
in the email-Eu dataset, S Nycc shows an improvement of
9.4% over RA+c.. These differences indicate that Shared
Neighbor based measures, particularly those emphasizing
clustering, are more effective at capturing the connection
patterns in these datasets than Resource Allocation based
measures, which focus on resource distribution and may
not as strongly emphasize local clustering. In contrast,
within the cat-edge-geometry and contact-high-school
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datasets, RAycc achieves the highest Fl-scores, surpass-
ing Shared Neighbor-based measures. The effectiveness of
Resource Allocation in these datasets can be linked to its
approach of distributing prediction weight across clusters,
effectively capturing relational dynamics in datasets where
nodes frequently interact within tightly bound communi-
ties. Resource Allocation-based hypercentralities model
group-based interactions particularly well, especially in
contexts where the network structure highlights multi-node
participation in hyperedges. When RAycc is compared to
the lowest performing SNy, a substantial performance
difference is evident. In the cat-edge-geometry dataset,
RAycc outperforms SNycre by approximately 27.6%.
Similarly, in the contact-high-school dataset, RAcc
demonstrates an advantage of about 29.5% over SNyc..
This significant difference underscores the importance of
Resource Allocation in accurately modeling resource distri-
bution within densely interconnected clusters, a crucial fea-
ture in community-oriented datasets like cat-edge-geometry
and contact-high-school.

Although hypergraph centrality distributions may exhibit
heterogeneity or skewness, the empirical results across all
datasets demonstrate that the global average hypercentral-
ity serves as an effective and reliable threshold within the
CLPH framework. The average provides a network wide
structural baseline that is entirely parameter free and natu-
rally adapts to each dataset, avoiding the added complex-
ity of percentile or region specific thresholds. Importantly,
the superior performance of the proposed measures indi-
cates that this threshold successfully suppresses low influ-
ence neighbours without excluding structurally significant
ones, thereby maintaining the predictive stability observed
throughout our evaluation.

Conclusion and Future Work

In this paper, we proposed a link prediction framework that
employs hypercentrality measures to address the intricacies
of multi-node interactions within hypergraphs. By adapt-
ing traditional centrality metrics such as degree, clustering
coefficient, betweenness, and closeness to the hypergraph
context, we developed a novel link prediction model that
leverages the rich structural information of hypergraphs.
This approach enhances traditional link prediction methods
by incorporating node importance through hypercentrality
scores. Our empirical analysis, conducted across multiple
real-world datasets, demonstrates that hypercentrality-
based models, particularly those utilizing hyperdegree and
hyperclustering coefficients, consistently surpass exist-
ing link prediction based centrality approaches in terms of
AUPR, F1-score and Precision. These findings suggest that

link prediction based hypercentrality measures offer a more
precise and nuanced approach for predicting link formation
in hypergraphs, especially in graphs characterized by dense
connectivity and pronounced clustering.

This study focuses exclusively onundirected, unweighted,
and static hypergraphs, and the reported results may there-
fore not directly generalize to dynamic or multi-modal
systems. Extending the CLPH framework to incorporate
temporal evolution, weighted interactions, and multi-layer
structural information constitutes an important direction for
future work, enabling its applicability to dynamic financial
networks, evolving social platforms, and heterogeneous real-
world hypergraph data. Future research will explore hybrid
models in which centrality weighted shared neighbour fea-
tures derived from CLPH are incorporated into supervised
learning pipelines or hypergraph neural architectures. Such
integration may enhance predictive performance, particu-
larly for large-scale, dynamic, or richly annotated hyper-
graph datasets. For future research, we intend to expand our
exploration beyond local based to global based measures.
Additionally, rather than considering all non-adjacent node
pairs, we plan to investigate the impact of limiting the pre-
diction scope to node pairs within specific hop distances,
such as 2, 3, and beyond. Another key direction is to extend
our current model—which focuses on non-adjacent node
pairs of size 2 to include interactions among groups of size
3, 4, and larger, thereby capturing more complex group
dynamics. These extensions will enable a more comprehen-
sive understanding of link prediction in hypergraphs, further
enhancing the model’s applicability to real-world scenarios.
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