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hypergraphs from graphs, where edges represent simple 
relationships between two nodes. hypergraphs are more 
suited to modeling real-world systems that involve higher-
order interactions, such as in social, biological, and tech-
nological domains [1]. For instance, in biological systems, 
protein-protein interaction networks often require more than 
just pairwise interactions to model multi-protein complexes. 
Similarly, in social networks, groups of individuals collabo-
rating on tasks are better represented through hyperedges 
that link several nodes simultaneously, rather than through 
multiple pairwise edges. In complex hypergraphs [2], vari-
ous tasks such as centrality measures, influence maximi-
zation, community detection, and link prediction present 
unique challenges due to the higher-order interactions. This 
work specifically focuses on link prediction and the use of 
centrality measures to improve its accuracy. Link Prediction 
[3] in complex hypergraphs differs significantly from tradi-
tional link prediction in graphs. In complex graphs, the focus 
is typically on predicting future pairwise edges between 
nodes based on their existing connections and shared neigh-
bors. However, in hypergraphs, the task is more intricate, 

Introduction

Complex hypergraphs extend the traditional concept of 
complex graphs by allowing hyperedges to connect multiple 
nodes simultaneously, rather than being restricted to pairwise 
interactions. This multidimensional structure distinguishes 
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Abstract
Link Prediction (LP) aims to infer missing or future interactions in complex networks by exploiting structural patterns. 
Although widely applied in social, biological, and recommendation systems, traditional graph based LP methods rely 
solely on pairwise connections and therefore fail to capture the higher-order relationships that naturally arise in many 
real-world datasets. Hypergraphs offer a richer representation by allowing hyperedges to connect multiple nodes simul-
taneously. However, converting hypergraphs into simple graphs an approach commonly used in existing work collapses 
multi-node interactions and results in substantial information loss. Traditional LP metrics also treat all shared neighbors 
uniformly, despite the fact that shared neighbors may contribute differently to link formation depending on their structural 
importance or functional relevance. While centrality weighted LP extensions exist, they remain fundamentally restricted by 
graph structure and do not leverage higher-order dependencies. To address these limitations, we propose CLPH, a hyper-
graph based link prediction framework that incorporates hypercentrality to weight shared neighbors according to their 
structural influence. Experiments on four real-world hypergraphs demonstrate that CLPH achieves consistent improve-
ments in AUPR, F1-score, and Precision. Notably, weighting shared neighbors using hypercentrality yields performance 
gains of 26%–68% compared to traditional centrality based weighting schemes.
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as hyperedges can involve multiple nodes, and the relation-
ships between groups of nodes must be considered simul-
taneously. This introduces additional complexity because 
the formation of a hyperedge depends not just on individual 
pairwise interactions, but on the overall structure and con-
nectivity of the hypergraphs. For example, in collaborative 
networks, while graph based link prediction might focus on 
predicting a new co-authorship between two researchers [4, 
5], hypergraphs based link prediction aims to predict new 
collaborative groups involving multiple researchers. This 
shift from pairwise to higher-order interaction prediction is 
critical in real-world applications, such as identifying new 
scientific collaborations or forecasting interactions within 
protein complexes. Chen et al. [6] conducted a thorough 
survey on hyperlink prediction, categorizing the different 
methods used for link prediction in hypergraphs, which 
include similarity based approaches, probabilistic mod-
els, matrix based techniques, and deep learning methods. 
Among the various approaches to link prediction in hyper-
graphs, this study focuses on a select set of widely recog-
nized similarity based methods. In particular, we emphasize 
shared neighbors and resource allocation, two prominent 
techniques that have been effectively extended to the hyper-
graphs paradigm. One of the main limitations of traditional 
link prediction methods in hypergraphs is that they often 
treat all shared neighbors as equally important, overlook-
ing the varying influence of nodes within a hypergraphs. 
In reality, not all nodes contribute equally to the formation 
of new links. To address this issue, centrality measures, 
which capture the importance or influence of nodes within 
the network, can be incorporated into link prediction mod-
els to enhance their predictive power. Centralities such as 
degree centrality, closeness centrality, betweenness central-
ity, and clustering coefficient provide critical insights into 
a node’s significance in the overall network structure. By 
integrating centrality scores into link prediction algorithms, 
we can better account for the differing influence of nodes, 
improving the accuracy of predictions. For instance, nodes 
with high degree centrality may be more likely to form new 
links, while nodes with high betweenness centrality may 
play crucial roles in connecting different subgroups within 
the hypergraphs. Centrality measures in hypergraphs are an 
extension of those in traditional graphs, but they need to 
account for the complexity of higher-order interactions. In 
graphs, centrality typically focuses on direct edges between 
nodes, but in hypergraphs, centrality must consider the role 
of nodes in hyperedges that involve multiple participants. 
For example: Hyperdegree centrality in a hypergraph mea-
sures the number of hyperedges a node is part of, as opposed 
to just the number of edges in a graph.

Hypercloseness centrality and hyperbetweenness cen-
trality similarly extend their graph counterparts to account 
for the connectivity and influence of a node across groups of 
nodes, rather than simple pairwise connections. These adap-
tations are necessary because hypergraphs encode richer 
structural information than graphs, and nodes play more 
complex roles in the formation of new links. Using centrality 
measures to guide link prediction in hypergraphs provides 
a more nuanced approach to understanding and predicting 
interactions, especially in networks where the importance of 
nodes varies significantly across different contexts. In this 
work, we aim to leverage centrality measures to improve link 
prediction accuracy in complex hypergraphs, demonstrating 
their effectiveness across several real-world datasets. By 
comparing the performance of centrality based link predic-
tion in hypergraphs with graph based approaches, we pro-
vide a clearer understanding of how centrality measures can 
enhance link prediction in networks with higher-order inter-
actions. The study of [7] seeks to utilize the centrality scores 
of shared neighbors to enhance the accuracy of future link 
prediction. Prior to presenting the proposed approach, we 
review existing centrality measures used for link prediction 
in graphs [8] and discuss how these measures are adapted 
to the context of hypergraphs. Kshira Sagar Sahoo et al. [9] 
proposed an enhanced SDN security framework that detects 
DDoS attacks using an SVM model optimized with KPCA 
and a genetic algorithm. Their approach improves feature 
reduction, parameter tuning, and classification accuracy, 
making it suitable for real-time deployment within SDN 
controllers. S. Vimal et al. [10] propose a multiobjective Ant 
Colony Optimization and Double Q-learning–based energy-
efficient clustering framework for IoT cognitive networks, 
improving network lifetime, throughput, and jamming pre-
diction compared with conventional optimization methods. 
A. Rajagopal et al. [11] develop an optimal deep learning 
based UAV scene classification model combining residual 
network feature extraction with SGHS-optimized tuning 
and LVSVM classification, achieving superior accuracy. A. 
Rajagopal et al. [12] introduce an MBAS-ELM based dis-
tributed routing framework for LEO satellite networks that 
leverages traffic forecasting and mobile agents to achieve 
superior performance in delay, packet loss, and queuing effi-
ciency compared with existing methods. G. Saranya et al. 
[13] proposed a DEL-CUBE framework using a hybrid Bald 
Eagle–Secretary Bird Optimization algorithm to achieve 
efficient and dynamic load balancing in cloud computing, 
that show significantly improved throughput and overall 
performance compared to existing methods.

The structure of this paper is organized as follows: Sec-
tion  Related Work reviews related work and discusses 
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existing methods for link prediction and centrality mea-
sures in both graphs and hypergraphs. Section  Proposed 
Work details the methodology, including the hypercentrality 
measures applied, the calculation of average hypercentral-
ity, and the proposals of this paper. Section Experimenta-
tion describes the experimental setup, covering hypergraph 
sampling, datasets used, and presents the evaluation results. 
Sections Results and Discussion provides the results and an 
in-depth discussion of the findings and the results. Lastly, 
Section Conclusion and Future Work concludes the paper 
and suggests potential directions for future research.

Related Work

This section provides the necessary technical foundation, 
including key definitions and pertinent information relevant 
to this study. The formal definitions are presented as fol-
lows. Table.1 provides a summary of the notations used 
throughout this study.

Definition 1  Link Prediction in Hypergraphs 
(LP[H]): Given an undirected, unweighted hypergraph 
H = (V, HE, t), where V is the set of vertices, HE is the set 
of hyperedges, and t is a time function on E, the link predic-
tion in hypergraphs is to output a set of hyperedges that are 
not present in the hypergraphs H[t0, ti], but are predicted to 
appear in H[tj ] for tj > ti > t0 [14].

Definition 2  Hyper Centralities  HC : Given a hypergraph 
H = (V, HE), where V denotes the set of vertices and E 
represents the set of hyperedges, the centrality in hyper-
graphs, referred to as hypercentrality, is defined as a func-
tion C : V → R, which assigns a real valued score C(i) to 
each node i ∈ V . This score quantifies the significance of 
i within the hypergraph structure, taking into account the 
node’s participation in hyperedges and its connectivity 
across the hypergraph.

The score C(i) can be influenced by:

	● The number of hyperedges that contain the node i (i.e., 
|{he ∈ HE : i ∈ he}|,

	● The size of each hyperedge he ∈ HE(i.e., |he| where 
i ∈ he).

	● The role of i in terms of its connections to other ver-
tices within the hypergraph structure, either directly or 
through shared hyperedges.

Link Prediction in Hypergraphs

Link prediction in hypergraphs involves predicting the for-
mation of future hyperedges among multiple nodes, where 
connections extend beyond the traditional pairwise relation-
ships found in standard graphs. Unlike traditional graphs, 
hyperedges in hypergraphs link several nodes simultane-
ously, and the objective is to determine which groups of 
nodes are likely to establish new connections based on the 
structural properties of the hypergraph. Kumar et al. [15] 
address the challenge of hyperedge prediction, a complex 
task with applications in domains such as social networks 
and metabolic systems. The authors introduce HPRA 
(Hyperedge Prediction using Resource Allocation), a novel 
algorithm that predicts hyperedges of any size without the 
need for a predefined candidate set. Our work is largely 
inspired by the study conducted by [16], which focuses on 
local similarity measures. Local similarity based link pre-
diction utilizes the immediate neighborhoods of nodes to 
compute similarity scores, typically based on shared con-
nections. In this approach, the authors propose link pre-
diction measures for hypergraphs directly, avoiding the 
conventional step of converting hypergraphs into pairwise 
graphs. The benefit of this method lies in its preservation of 

Table 1  Notations employed throughout this study
Notation Description
H Hypergraphs
V Set of Nodes
E Set of Hyperedges
i,j,p,q Nodes within the graphs and hypergraphs

Γ(i), Γ(j) Neighbors of nodes i, j

IH
Incidence Matrix of hypergraph

d Represents the distance between nodes
N Represents total number of nodes within 

Graph and Hypergraph
k(i) Degree of node i
K(i) Number of triangles associated with node i

he1he2
Hyperedges

s size of hyperedge he
LP(H) Link Prediction in Hypergraphs

LPC
Link Prediction based Centralities

D Degree

CC Clustering Coefficient

B Betweenness

CL Closeness Centrality
HSN Shared Neighbor in Hypergraphs
HRA Resource Allocation in Hypergraphs

HC HyperCentralities

HD HyperDegree

HCC HyperClustering Coefficient

HB HyperBetweenness

HCL HyperCloseness
AC(H) Average HyperCentralities

SNHC Shared Neighbor based HyperCentralities

RAHC Resource Allocation based HyperCentralities
AUPR Area Under the Precision-Recall Curve
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Centralities and HyperCentralities

In graph theory, centrality measures are widely utilized to 
evaluate the importance or influence of individual nodes 
within a network. Traditional centrality metrics in graphs 
focus on pairwise relationships, measuring a node’s signifi-
cance based on its direct connections. Four of the most com-
monly applied centrality measures include degree centrality 
[17], clustering coefficient [18] [19], betweenness centrality 
[20], and closeness centrality [21]. These metrics provide 
insights into the structural role of nodes and their contribu-
tions to the overall dynamics of the network. Degree and 
clustering coefficient are classified as local centrality mea-
sures, as they consider only a node’s immediate neighbor-
hood and evaluate its importance based on its proximate 
connections. In contrast, betweenness and closeness cen-
trality are prominent global measures that analyze the entire 
network to assess a node’s significance, as discussed below.

	● Degree  (D): The degree centrality of a node i is cal-
culated as the fraction of nodes adjacent to i relative to 
the total possible connections within the network. Nodes 
with high degree centrality are commonly referred to as 
hub nodes, as they are highly connected and play a criti-
cal role in the network’s structure. 

D(i) = k(i)
N − 1

� (3)

 In Eq.  3, N represents the total number of nodes in the 
graph, and k(i) denotes the degree of node i, which refers 
to the number of direct connections that node i has within 
the network.

	● Clustering Coefficient  (CC): The clusteringcoefficient 
of a node is defined as the ratio of the number of closed 
triangles (i.e., groups of three mutually connected 
nodes) within the node’s local neighborhood to the to-
tal possible number of triangles that could exist in that 
neighborhood. This metric is also referred to as transi-
tivity, reflecting the extent to which a node’s neighbors 
are interconnected. 

CC(i) = 2K(i)
k(i)[k(i) − 1] � (4)

 In Eq. 4, node i has a degree denoted by k(i), and the num-
ber of triangles associated with node i is represented as K(i).

the intrinsic structure of hypergraphs, ensuring the original 
complexity and information integrity are maintained, unlike 
traditional approaches that simplify hypergraphs into stan-
dard graphs. The work defines two primary measures, HSN 
(Shared Neighbor in Hypergraph) and HRA (Resource Allo-
cation in Hypergraph), both of which are elaborated upon 
below.

Shared Neighbor in Hypergraph: HSN

The authors in [16] extended the concept of shared neigh-
bors to hypergraphs by computing the average of pairwise 
Shared Neighbor (SN) indices among the nodes within 
each hyperedge. The Link Prediction in hypergraphs using 
Shared Neighbors (HSN) is formally defined in Eq. 1 below.

HSN(i, j) = 2
she1 she2

∑
r∈Γ(he1)∩Γ(he2)

1� (1)

where, he1 and he2 are the hyperedges containing nodes i 
and j, she corresponds to the size of the hyperedge, Γ(he) is 
the set of nodes incident to hyperedge he.

Resource Allocation in Hypergraph: HRA

The HRA method predicts pairwise links based on the prin-
ciples of resource allocation, drawing inspiration from the 
work of [15]. Unlike in traditional graphs, hypergraphs per-
mit nodes i and j to already belong to an existing hyperedge. 
As a result, resources at node i can be transferred to node j 
either directly or through shared neighbors. Consequently, 
the resource allocation between nodes i and j is determined 
in the below Eq. 2:

HRA(i, j) =
∑
i̸=j

1
she − 1

, if i, j ∈ he

=
∑

r∈Γ(i)∩Γ(j)

1
k(r)

∗ 1
she1 − 1

∗ 1
she2 − 1

, otherwise
� (2)

 where Γ(i) ∩ Γ(j) represents the shared neighbors of nodes 
i and j, k(r) is the degree of the shared neighbor r, she1  and 
she2  represent the sizes of the hyperedges containing i and 
j, respectively. The first term in Eq. 2 computes the resource 
transferred directly between i and j if they both belong to a 
shared hyperedge he. If they do not share the same hyper-
edges, this term evaluates to zero. The second term accounts 
for the resource transmitted through all shared neighbors 
between the two nodes.
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and AC(G) denote the average centrality value of the graph, 
which is computed using Eq. 7.

AC(G) =
∑

i∈V (G) C(i)
N

� (7)

In Eq. 7, C(i) represents the centrality value of node i, and N 
denotes the total number of nodes in the graph G. The simi-
larity between two vertices, based on the average centrality 
of the graph, is defined as shown in Eq. 8.

LPC(i, j) =| {r | r ∈ Γ(i) ∩ Γ(j) and C(r) ≥ AC(G)} |� (8)

In Eq. 8, LPC(i, j) represents the similarity score between 
the nodepair i and j, calculated by identifying all shared 
neighbors and applying centrality scores to them. Only those 
shared neighbors whose centrality values exceed the average 
centrality of the graph are considered. Here, r denotes the 
shared neighbors between nodes i and j, while Γ(i) and Γ(j) 
represent the neighbors of nodes i and j, respectively. The 
average centrality (AC) of the graph is as defined in Eq. 7. 
For instance, in link prediction LP, both Shared Neighbors 
(SN) and Resource Allocation (RA) can be incorporated 
using various centrality measures. If the centrality measure 
C represents degree centrality, the average degree centrality 
(AD) can be calculated as defined in Eq. 7, facilitating the 
computation of similarity between two vertices based on the 
graph’s average degree centrality. Moreover, the centrality 
measure C can be adapted to alternative centrality measures, 
such as betweenness centrality, closeness centrality, or clus-
tering coefficient, depending on the context.

However, the centralities fail to capture more complex 
group interactions or multi-node connections that are prev-
alent in real-world networks. Hypercentrality measures in 
hypergraphs overcome this limitation by incorporating 
hyperedges, which connect multiple nodes simultaneously. 
These measures enable the identification of key nodes and 
relationships in the intricate topology of hypergraphs, 
where influence, connectivity, and centrality are defined 
by higher-order interactions rather than just pairwise links. 
Roy et al. [22] suggests using Shapley value-based central-
ity within a node centrality framework while maintaining 
the hypergraph structure. Li et al. [23] presents an inno-
vative link prediction method for social networks through 
hypergraphs, which efficiently captures both pairwise and 
higher-order relationships, thereby improving the accu-
racy and effectiveness of link prediction tasks. Ihsan et 
al. [24] introduces entropy based centrality measures for 

	● Betweenness (B): Betweenness centrality of a node 
quantifies the extent to which the node lies on the short-
est paths between other node pairs, reflecting its role in 
facilitating communication within the network. 

B(i) =
∑

p̸=i ̸=q

σp,q(i)
σp,q

� (5)

 In Eq. 5, σp,q  represents the total number of shortest paths 
between nodes p and q, while σp,q(i) refers to the number of 
those shortest paths that pass through node i. This captures 
the extent to which node i acts as a bridge in the network, 
facilitating connections between other nodes.

	● Closeness  (CL): Closeness centrality is a measure used 
to identify nodes that can effectively disseminate infor-
mation across a network. The closeness centrality of 
a node i is calculated as the reciprocal of the average 
shortest path distance from node i to all other N − 1 
reachable nodes in the network. This measure highlights 
nodes that are well positioned to quickly interact with 
others within the network. 

CL(i) = N − 1∑
i¬j dj,i

� (6)

 In Eq. 6, the shortest path distance between nodes i and j 
is represented by dj,i. The node with the highest closeness 
centrality is the one that, on average, has the shortest path to 
all other nodes in the network, indicating its proximity and 
efficiency in reaching every other node.
Centrality measures have been extended to centrality based 
link prediction, where shared neighbors may not contribute 
equally to the formation of future links. Many researchers 
aims to evaluate the significance of shared neighbors in link 
prediction. Since centrality values reflect different forms of 
importance within a network, the centrality of shared neigh-
bors influences the likelihood of link formation. The authors 
of [16] propose an approach for link prediction that relies 
on the average centrality of shared neighbors. This method, 
termed Link Prediciton on Centrality (LPC), computes 
a prediction score based on the similarity between nodes, 
factoring in the centrality scores of their shared neighbors. 
The method initially calculates various centrality scores for 
the shared neighbors and considers only those nodes whose 
scores exceed the average centrality value across the net-
work. Let C(v) represent the centrality score of a node i, 
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HCC(i) =

∑
he1,he2

|he1 ∩ he2|

(
k(i)

2

) � (10)

 where k(i) represents the set of hyperedges that contain 

node i, 
(

k(i)
2

)
 denotes the total number of possible pairs 

of hyperedges involving i, and |he1 ∩ he2| refers to the 
size of the intersection between two hyperedges that both 
include i.

	● HyperBetweenness (HB): Betweenness Central-
ity in hypergraphs identifies nodes that serve as criti-
cal connectors within the network [25]. Nodes with a 
higher number of shortest paths passing through them 
are considered more influential, as they facilitate com-
munication and interactions across various parts of the 
hypergraph. Betweenness centrality in hypergraphs can 
be calculated for both nodes and hyperedges; however, 
in this work, we focus exclusively on the centrality of 
nodes. The betweenness centrality for a node i (denoted 
as HB(i)) is calculated using the following Eq. 11: 

HB(i) =
∑

u ̸=i ̸=v

σu,v(i)
σu,v

� (11)

 In Eq. 11, σu,v(i) represents the number of shortest paths 
from node u to node v that pass through node i, while σu,v  
denotes the total number of shortest paths between nodes 
u and v. In traditional graphs, distance is defined by the 
number of edges in the shortest path connecting two nodes. 
However, in hypergraphs, hyperedges can connect multiple 
nodes simultaneously, altering the concept of distance. In its 
simplest form, the distance between two nodes in a hyper-
graph is defined as the number of hyperedges that must be 
traversed to connect them. If two nodes are part of the same 
hyperedge, the distance is 1. If they are not directly con-
nected by a hyperedge, intermediate hyperedges must be 
traversed, increasing the distance.

	● HyperCloseness (HCL): Closeness centrality in hyper-
graphs measures how close a node is to all other nodes 
in the network [25]. Unlike traditional graphs, where 
distance is typically defined as the shortest path between 
two nodes, in hypergraphs, this concept is adapted to 
account for hyperedges that can simultaneously connect 

hypergraphs, leveraging local similarities to determine 
centralities. Aksoy et al. [25] adapts graph metrics to 
s-metrics (higher-order hypergraph walks) in hypergraphs 
by utilizing their s-connected components. This approach 
involves first computing the s edge-adjacency matrix, 
which is then used to form the graph representation of the 
hypergraph. A few centrality measures for hypergraphs are 
briefly discussed below.

	● HyperDegree  (HD): The hyperdegree of a node 
refers to the number of hyperedges that the node is 
involved in. Unlike traditional graphs, where edges 
connect only two nodes, hyperedges in hypergraphs 
can connect multiple nodes simultaneously. However, 
each hyperedge is counted only once for a node, ir-
respective of how many other nodes it connects. The 
core concept is that a node’s significance or influence 
in a hypergraph is higher if it is part of more hyper-
edges, as this implies a wider range of connections 
and interactions within the network. The Degree Cen-
trality of a node i in hypergraphs can be mathemati-
cally defined in Eq. 9: 

HD(i) =
m∑

j=1

IMi,he� (9)

 In this context, IM denotes the incidence matrix of the 
hypergraph, where IMi,he indicates the participation of 
node i in hyperedge he. The hyperdegree of node i is com-
puted by summing the number of hyperedges in which node 
i is involved. This provides a measure of how connected 
node i is within the hypergraph.

	● HyperClustering Coefficient (HCC): In hypergraphs, 
the clusteringcoefficient is used to assess the likelihood 
of nodes forming tightly connected groups or clusters 
within the overall network structure [25]. Unlike tra-
ditional graphs, where clustering is measured by the 
probability that a node’s neighbors are also directly con-
nected, in hypergraphs, clustering evaluates the involve-
ment of nodes in hyperedges that facilitate group inter-
actions. This measure captures the probability that two 
nodes, which already share a hyperedge, are also linked 
by additional hyperedges. The formal mathematical ex-
pression for the clustering coefficient in hypergraphs is 
presented in Eq. 10. 
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termed Link Prediction based HyperCentralities (CLPH). 
This method seeks to enhance the accuracy of link predic-
tion by concentrating on shared nodes with greater influence 
within the network structure. To achieve this, we employ 
both the Shared Neighbor and Resource Allocation as link 
prediction metrics, both of which heavily rely on identifying 
shared neighbors. The CLPH algorithm is outlined in the 
following steps: 

1.	 Computing the HyperCentralities for each node within 
the hypergraphs is a key step in this process. In this 
study, we employ four distinct centrality measures, 
which are detailed in Sect. 2.4.

2.	 Next, the average centralities of all nodes is computed, 
as illustrated in Eq. 13. 

AC(H) =
∑

i∈V (H) HC(i)
|V |

� (13)

	  In Eq. 13, HC(i) represents the HyperCentrality score 
of node i, computed using the hypergraph centrality 
measures outlined in Section  Centralities and Hyper-
Centralities. The generalized form of the Average Cen-
trality score AC(H), as shown in Eq. 13, can be adapted 
based on the specific centrality measure utilized. For 
example, if the chosen HyperCentrality measure is 
hyperdegree, then AD(H) should be applied; if hyper-
betweenness is used, then AB(H) replaces AC(H).

	 The criterion for selecting the average hypercentrality as 
the threshold is based on its role as a statistically repre-
sentative baseline for the structural importance of nodes 
in a hypergraph. A node is considered influential only if 
its hypercentrality exceeds this mean value, indicating 
that its structural involvement is above the network’s 
expected centrality level. This provides an objective 
and parameter free cutoff that naturally adapts to the 
centrality distribution of each dataset, ensuring con-
sistent identification of meaningful shared neighbours. 
The use of the average also avoids distortions caused 
by hub nodes that would disproportionately affect maxi-
mum based thresholds. Applying this criterion has been 
empirically shown to suppress low-influence neigh-
bours and improve the reliability of the computed link 
prediction scores.

3.	 To predict a potential link between two nodes, i and j, the 
method first identifies their shared neighbors within the 
hypergraphs. In the subsequent step, only shared neigh-
bors whose HyperCentrality scores exceed the average 
centrality are considered for calculating the link predic-
tion scores. These selected shared neighbors are then 
used to compute the link prediction scores. In this work, 

multiple nodes. Closeness centrality can be calculated 
for either nodes or edges within the hypergraph. If the 
edge parameter is set to True, it computes closeness 
centrality for edges; otherwise, it computes it for nodes. 
Additionally, the size of the hyperedges can be specified 
to adjust the calculation. The closeness centrality for a 
node i is computed using the Eq. 12: 

HCL(i) = N − 1∑
i̸=j∈V d(i, j) � (12)

 In this equation, d(i,  j) represents the distance between 
nodes i and j, while N denotes the total number of nodes in 
the hypergraph.
This study aims to adapt centrality measures to the more 
complex structure of hypergraphs, positing that centrality 
based approaches can yield deeper insights into connectiv-
ity patterns. Inspired by the work of [8], which introduced a 
novel link prediction method using similarity scores based 
on average centrality measures in traditional graphs, this 
research extends the methodology to hypergraphs. Met-
rics such as degree, clusteringcoefficient, betweenness, and 
closeness are modified to accommodate multi-node connec-
tions, offering a more comprehensive view of node influ-
ence in environments characterized by group interactions. 
By incorporating node centrality metrics into the link pre-
diction framework, this method seeks to better capture the 
multifaceted relationships in hypergraphs, thereby improv-
ing predictive performance. The following section provides 
a detailed explanation of the proposed approach.

Proposed Work

The concept of link prediction for conventional graphs is 
rigorously defined in [3]. In this paper, we build upon that 
framework to tackle the challenge of link prediction and 
centralities in hypergraphs.

In this study, we introduce an innovative approach for 
predicting links in hypergraphs by utilizing node centralities, 

Fig. 1  Toy hypergraph with seven nodes and four hyperedges: 
HE1 = {B, C, E}, HE2 = {A, E, F, G}, HE3 = {A, D} and 
HE4 = {A, B, D, F }
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HD(D) = 2, HD(E) = 2, HD(F ) = 2, HD(G) = 1, with 
average hyperdegree

AD(H) = 13
7

≈ 1.857,

two specific link prediction measures are employed, as 
detailed in Section Link prediction in Hypergraphs.

For the toy hypergraph shown in Fig.  1, hyper-
centrality is computed using hyperdegree, yield-
ing HD(A) = 3, HD(B) = 2, HD(C) = 1, 

Table 2  The proposed link prediction measures based on HyperCentralities (CLPH(i, j))
Average HyperCentralities (AC) CLP HHC(i, j)

HyperDegree (HD)
AHD(H) =

∑
i∈V (H)

HD(i)

|V |
SNHD(i, j) =

∣∣{r | r ∈ Γ(i) ∩ Γ(j) and HD(r) ≥ AHD(H)}
∣∣

HyperClustering Coefficient 
(HCC) AHCC(H) =

∑
i∈V (H)

HCC(i)

|V |
SNHCC(i, j) =

∣∣{r | r ∈ Γ(i) ∩ Γ(j) and HCC(r) ≥ AHCC(H)}
∣∣

HyperBetweenness (HB)
AHB(H) =

∑
i∈V (H)

HB(i)

|V |
SNHB(i, j) =

∣∣{r | r ∈ Γ(i) ∩ Γ(j) and HB(r) ≥ AHB(H)}
∣∣

HyperCloseness (HCL)
AHCL(H) =

∑
i∈V (H)

HCL(i)

|V |
SNHCL(i, j) =

∣∣{r | r ∈ Γ(i) ∩ Γ(j) and HCL(r) ≥ AHCL(H)}
∣∣

Fig. 2  Link Prediction in hypergraphs through Centrality Weighted Shared Connections
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	 The given Eq. 14 determines the link prediction score 
by evaluating the number of shared neighbors whose 
centrality values are equal to or exceed the average 
centrality of the hypergraph. The hypercentrality mea-
sure, HC, can be adapted to other hypergraph centrality 
metrics, such as the hyperdegree (HD), hyperclustering 
coefficient (HCC), hyperbetweenness centrality (HB), 
and hypercloseness centrality (HCL), as presented in 
Table 2. These adaptations result in the computation of 
CNHC.

(b)	 Resource Allocation based HyperCentralities  
(RAHC) : In traditional graphs, the Resource Alloca-
tion (RA) Index operates on the principle of distribut-
ing resources between two nodes through their shared 
neighbors. In hypergraphs, the Resource Allocation 
Index is adapted to accommodate the complexity of 
hyperedges, which can connect multiple nodes simulta-
neously. Instead of focusing on pairwise neighbors, the 
RA score in hypergraphs evaluates resource distribution 
through shared hyperedges. This approach quantifies 
the potential for "resource" transfer between two nodes 
based on their shared hyperedges, assigning greater 
importance to smaller hyperedges where connections 
are more concentrated. The Resource Allocation based 
HyperCentralities for hypergraphs is formally defined 
in Eq. 15: 

RAHC(i, j) =
∑
i̸=j

1
she − 1

, if i, j ∈ he

=
∑

r ∈ Γ(i) ∩ Γ(j)
and HC(r) ≥ AC(H)

1
k(r)

∗ 1
she1 − 1

∗ 1
she2 − 1

, otherwise � (15)

	  where Γ(i) ∩ Γ(j) represents the shared neighbors of 
nodes i and j, HC(r) is the hypercentrality score of the 
shared neighbor r, AC(H) is the average hypercen-
trality of the hypergraph H, k(r) is the degree of the 
shared neighbor r, she1  and she2  represent the sizes of 
the hyperedges containing i and j, respectively. RAHC 
can also be formulated using different HyperCentrality 
measures, analogous to those presented in Table.2.

The effectiveness of the proposed method is evaluated 
through experimental testing on four distinct hypergraphs. 
A detailed account of this evaluation is provided in the fol-
lowing section. The proposed method is summarised in 
Algorithm 1.

so the nodes satisfying the threshold (HD(v) ≥ AD(H). 
For example, for the non-adjacent nodepair (A, C) we obtain 
Γ(A) = {B, D, E, F, G} and Γ(C) = {B, E}, hence 
SNHD(A, C) = (B, E). Rather than treating these neigh-
bors uniformly, we incorporate their hyperdegree central-
ity: both B and E have HD = 2, which exceeds AD(H), 
and therefore (A, C) passes the centrality threshold and is 
retained as a candidate for link prediction. In general, for 
each non-adjacent nodepair, only those shared neighbors 
satisfying (HC(r) ≥ AD(H) contribute to the score; pairs 
with no qualifying neighbors are discarded. This selective 
inclusion focuses the predictor on structurally meaningful 
candidate pairs and improves prediction quality relative to 
methods that treat all non-adjacent nodepairs equally.

The computational procedure is depicted in Fig. 2

HyperCentralities

In this research, we employ several hypergraph specific cen-
tralities, such as hyperdegree, hyperclustering coefficient, 
hyperbetweenness, and hypercloseness, in place of HC. The 
precise mathematical formulations for these hypercentrali-
ties are outlined in Table 2, demonstrating their adaptation 
to hypergraphs for accurately capturing node influence.

Link Prediction based HyperCentralities in 
Hypergraphs

(a)	 Shared Neighbor based HyperCentralities  (SNHC) : 
To calculate the similarity scores between non-adjacent 
nodepairs (i, j) in hypergraphs using average centrality, 
we extend the notion of shared neighbors to incorporate 
hyperedges. The Shared Neighbor based HyperCen-
tralities for hypergraphs, denoted as SNHC , is formally 
defined in Eq. 14: 

SNHC(i, j) = 2
she1 she2

∑

r ∈ Γ(he1) ∩ Γ(he2)
HC(r) ≥ AC(H)

HC(r)
� (14)

	  Here, he1 and he2 represent hyperedges, with she indi-
cating the size of hyperedge he. The term r refers to a 
shared neighbor shared between the hyperedges, while 
HC(r) denotes the hypercentrality score of the shared 
neighbor r. The average hypercentrality, AC(H), is 
defined in Eq. 13.
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average HyperCentrality of the hypergraph is computed 
using Eq. 16: 

AC(H) =
∑

i∈V HC(i)
|V |

.� (16)

	  Here, HC(i) denotes the HyperCentrality of node i, 
as defined by the selected measure. The expression in 
Eq.  16 is general and adapts to any centrality variant 
used. For example, when the chosen HyperCentral-
ity corresponds to hyperdegree, hyperbetweenness, 
hyperclustering coefficient, or hypercloseness, the 
corresponding average values AHD(H), AHB(H), 
AHCC(H), and AHCL(H) are employed respectively.

c)	 Identification and filtering of structurally signifi-
cant shared neighbours. For each non-adjacent pair 
of nodes (i,  j), their shared neighbours are identified. 
Only those neighbours whose HyperCentrality val-
ues exceed the average centrality baseline AC(H) are 
retained for subsequent computation. These structurally 

Table 3  Datasets containing nodes and hyperedges after sampling
Datasets #Nodes #Hyperedges
NDC-classes 640 411
email-Eu 745 4868
cat-edge-geometry-questions 450 247
hyperedges-contact-high-school 317 781

The CLPH algorithm proceeds through the following 
stages: 

(a)	 Computation of node HyperCentralities. For each 
node in the hypergraph, the corresponding Hyper-
Centrality score HC(i) is computed. In this study, we 
employ four distinct hypergraph adapted centrality 
measures like hyperdegree, hyperclustering coefficient, 
hyperbetweenness, and hypercloseness as described in 
Section Centralities and HyperCentralities.

(b)	 Derivation of the average HyperCentrality base-
line. Once individual node centralities are obtained, the 
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	● cat-edge-geometry-questions: In this hypergraph data-
set, nodes represent individual geometry related ques-
tions, while hyperedges are formed by grouping ques-
tions that are conceptually linked, indicating they share 
shared topics and connect multiple questions (nodes) 
within a single hyperedge.

	● hyperegdes-contact-high-school [27]: In this dataset, 
nodes represent individuals at the high school who in-
teracted with each other, while hyperedges correspond 
to the maximal cliques of these interactions, represented 
as simplices, where each hyperedge links all individuals 
who engaged in mutual interactions (see Table 3).

Due to the large size of the hypergraphs, we applied a sam-
pling approach based on hyperedge distribution to reduce 
their scale. The hyperedge distribution function indicates 
the number of hyperedges of each possible size (cardinal-
ity), effectively describing how many hyperedges contain a 
specified number of nodes. In most datasets, pairwise hyper-
edges (size 2) are predominant, while larger hyperedges 
(sizes 3, 4, etc.) occur with decreasing frequency. This dis-
tribution reveals the prevalence of pairwise interactions in 
hypergraphs. Our research, while focused on hypergraphs 
where hyperedges can link multiple no des, primarily con-
siders non-adjacent node pairs (hyperedge size 2). This focus 
is supported by the observation that approximately 60-70% 
of the datasets consist of hyperedges involving exactly two 
nodes, making it efficient and insightful to start with these 
smaller hyperedges. The sampling process organizes hyper-
edges by size to allow for proportional sampling. From each 
size group, a user-defined fraction of hyperedges (e.g., 50%) 
is selected, with at least one hyperedge retained in each 
group to ensure continuity. Isolated nodes, which no lon-
ger connect to any hyperedge, are removed. This approach 
effectively reduces hypergraph size while preserving criti-
cal node relationships, facilitating analysis within time and 
memory constraints. Grouping hyperedges by size and sam-
pling proportionally ensures that the sampled hypergraphs 
maintain a distribution akin to the original data. This study 
was conducted on a system equipped with an 11th genera-
tion Intel(R) Core(TM) i7-8700 CPU, six cores, twelve 
logical processors, and a base clock of 3.20 GHz, running 
Windows 10 Education with 16 GB RAM. Python was used 
for the analysis.

Evaluation Metrices

Although various evaluation metrics exist for link predic-
tion, our study focuses on AUPR, precision, and F1-score 
for several key reasons. AUPR is particularly effective in 
handling class imbalance, a common scenario in link pre-
diction tasks where actual links are sparse, which makes 

influential shared neighbours are then used to compute 
the link prediction scores. In this work, two centrality 
weighted link prediction indices like Shared Neigh-
bour based and Resource Allocation based are utilized, 
as detailed in Section Proposed Work.Computational 
Complexity. The computational cost of the proposed 
CLPH algorithm can be analysed by considering the 
major operations involved in the procedure. Com-
puting the Hypercentrality score for all nodepairs 
requires O(|V | · CHC) time, where CHC  denotes the 
complexity of the selected centrality measure. The 
identification of all non-adjacent node pairs involves 
a worst-case cost of O(|V |2). For each such pair (i, j), 
determining the shared neighbours entails extracting 
the neighbour sets Γ(i) and Γ(j) and computing their 
intersection, which requires O(k(i) + k(j)) time. The 
subsequent filtering of shared neighbours based on the 
average Hypercentrality threshold incurs an additional 
O(|Γ(i) ∩ Γ(j)|) cost. The computation of the Shared 
Neighbour score SNHC  and the Resource Allocation 
score RAHC  also requires O(|Γ(i) ∩ Γ(j)|) time for 
each pair.

Combining these factors, the overall worst-case time com-
plexity of the algorithm is given by

O(|V |2 · ∆),

where ∆ is the maximum node degree in the hypergraph. 
This complexity is consistent with neighbourhood based 
link prediction methods and reflects the inherent cost of 
evaluating pairwise interactions in hypergraph structures.

Experimentation

We utilized four datasets to demonstrate the effectiveness of 
the proposed approach, each dataset sampled from hyper-
graphs available in the ARB repository "​h​t​t​p​​s​:​/​​/​w​w​w​​.​c​​s​.​c​o​r​
n​e​l​l​.​e​d​u​/​~​a​r​b​/​d​a​t​a​/​e​m​a​i​l​-​E​u​/".

	● National Drug Code Directory NDC [26]: In the NDC-
classes dataset, nodes represent class labels assigned to 
drugs, with each node corresponding to a particular label 
linked to a drug. Hyperedges are formed by simplices, 
where each simplex represents a group of nodes (class 
labels) interconnected by a drug.

	● email-Eu: In the email-Eu dataset, nodes correspond to 
email addresses within a European research institution, 
with a hyperedge formed by grouping the sender and all 
recipients involved in a particular email. "​h​t​t​p​​s​:​/​​/​w​w​w​​.​c​​
s​.​c​o​r​n​e​l​l​.​e​d​u​/​~​a​r​b​/​d​a​t​a​/​e​m​a​i​l​-​E​u​/"
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sure for predicting important links. Precision ensures that 
the predicted links are highly accurate, which is crucial for 
practical applications such as biological networks and col-
laboration networks, where incorrect predictions can lead 
to misleading outcomes whereas F1-score strikes a balance 
between precision and recall, ensuring that the model does 
not prioritize one at the expense of the other which assess 
overall performance in link prediction.

	● AUPR  [28]: AUPR refers to the area under the pre-
cision-recall curve, where precision is plotted on the 
y-axis and recall on the x-axis across various threshold 
values. It offers a comprehensive summary of the trade-
off between precision and recall, highlighting the mod-
el’s ability to correctly classify positive instances. In the 
context of link prediction, particularly in hypergraphs, 
datasets are frequently imbalanced, with far fewer links 
(positive class) compared to non-links (negative class). 
AUPR directly addresses this by focusing on how well 
the model identifies true links, while disregarding ir-
relevant connections that could skew other metrics. 
For link prediction tasks involving centrality measures, 
AUPR ensures that the model is evaluated on its ability 
to correctly identify rare but significant links. It provides 
a more accurate evaluation than metrics like accuracy, 
which can be misleading in skewed datasets.

	● Precision [29]: Precision quantifies the proportion of 
correctly predicted links (true positives) among all pre-
dicted links (true positives + false positives). Mathemat-
ically, it is expressed in Eq. 17: 

Precision = TP

TP + FP
� (17)

 where TP denotes true positives and FP represents false 
positives. Precision is critical in scenarios where minimizing 
false positives is a priority. In hypergraphs, predicting non-
existent links can disrupt the understanding of the network 
structure, making precision a key metric in evaluating the 
reliability of a model’s predictions. Precision is particularly 
important in hypergraphs with higher-order interactions, 
where the cost of incorrect predictions can be significant. 
For instance, in protein-protein interaction networks, inac-
curately predicting links can result in false biological infer-
ences, affecting critical research outcomes.

	● F1-score [30]: The F1-score is the harmonic mean of 
precision and recall, providing a balanced evaluation of 
a model’s performance. It is calculated in Eq. 18 as: 

F1 − score = 2 × Precision × Recall

Precision + Recall
� (18)
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it more robust in predicting future links. For the cat-
edge-geometry-questions dataset, RAHD achieves the 
best AUPR score of 0.313, which is 9.4% higher than 
SNHD (0.286). The Resource Allocation based hyper-
degree measure effectively models the direct connec-
tivity and interaction dynamics within geometrically 
organized clusters, demonstrating its superiority in this 
scenario. In the hyperedges-contact-high-school data-
set, RAHD leads with an AUPR of 0.086, surpassing 
SNHD (0.077) by 11.7%. This dataset represents group 
based social interactions where resource allocation 
methods capture the probabilistic formation of links 
within closely-knit communities more effectively than 
shared neighbor-based methods.

	● F1-Score Analysis
	 For the NDC-classes dataset which is in Table 4, SNHD 

achieves the highest F1-score of 0.861, which is 9.5% 
higher than RAHD (0.786). The F1-score balances 
precision and recall, highlighting SNHD’s ability to 
identify future links accurately while minimizing false 
positives. Its superior performance is attributed to the 
hypergraph’s inherent structure, where nodes exhibit 
dense connectivity within hyperedges. In the email-Eu 
dataset, SNHD achieves the highest F1-score of 0.838, 
surpassing RAHD (0.753) by 11.3%. This dataset, char-
acterized by frequent multi-node interactions, benefits 
from hyperdegree centrality’s focus on nodes central 
to existing hyperedges, resulting in more reliable link 
predictions. For the cat-edge-geometry-questions data-
set, SNHD leads with an F1-score of 0.654, which is 
10.5% higher than SNHD (0.591). This improvement 
demonstrates SNHD’s ability to capture dense, local-
ized group interactions within geometrically structured 
hyperedges, outperforming other methods. In the hy-
peredges-contact-high-school dataset, RAHD records 
the highest F1-score of 0.872, marginally outperform-
ing SNHD (0.868) by 0.5%. This slight edge reflects 
RAHD’s strength in recall, which is particularly benefi-
cial for densely connected, group centric datasets.

	● Precision Analysis
	 Precision evaluates the accuracy of positive link predic-

tions while minimizing false positives. For the NDC-
classes,email-Eu and hyperedges-contact-high-school 
datasets which are in Table.4, RAHD achieves the 
highest precision of 0.513, 0.616 and 0.512, which is 
11%, 8.6%, and 1.6% higher than SNHD. Resource 
allocation methods prioritize accurate identification of 
true links, making them particularly effective in hyper-
graphs with well-defined and also emphasizes on direct 
node participation within hyperedges enables resource 
allocation methods to excel in diverse and large-scale 

 This metric combines both precision and recall to offer a 
single, comprehensive measure. The F1-score effectively 
balances the trade-off between precision (minimizing false 
positives) and recall (minimizing false negatives), making it 
especially useful in situations where both types of errors are 
critical. In link prediction tasks, the F1-score ensures that 
the model is not only avoiding false positives (precision) 
but also capturing as many true links as possible (recall). 
In hypergraphs, it is insufficient for the model to only have 
high precision (predicting a few but accurate links). It must 
also achieve high recall by identifying as many true links as 
possible. The F1-score ensures that the model maintains this 
balance, which is essential in domains such as scientific col-
laboration or biological networks, where missing a true link 
can be as detrimental as predicting a false one.

Results

The simulations for the proposed hypergraph based link pre-
diction models were performed using the top 20,000 node-
pairs, with results averaged over 10 data points to ensure 
greater accuracy and reliability. The evaluated HyperCen-
trality measures include Shared Neighbor based Hyper-
Degree (SNHD), Shared Neighbor based HyperClustering 
Coefficient (SNHCC), Shared Neighbor based HyperBe-
tweenness (SNHB), and Shared Neighbor based Hyper-
Closeness (SNHCL), along with their Resource Allocation 
based counterparts (RAHD, RAHCC , RAHB, and RAHCL). 
These hypergraph measures were compared to graph based 
similarity centralities, including SND, SNCC , SNB, SNCL, 
and RAD, RACC , RAB, RACL. Performance was assessed 
using three key metrics: Area under Precision-Recall Curve 
(AUPR), F1 score, and Precision, as summarized in Tables 
4, 5, 6 and 7.

	● AUPR Analysis
	 For the NDC-classes dataset which is in Table.4, the 

highest AUPR of 0.024 is achieved by SNHD, repre-
senting a 26.3% improvement over the graph based 
SND (0.019). This result underscores the effective-
ness of hyperdegree centrality in capturing multi-node 
interactions and dense connectivity patterns character-
istic of hypergraphs. Graph based measures, such as 
SND, rely on pairwise relationships and fail to account 
for the broader structural participation of nodes within 
hyperedges. In the email-Eu dataset, SNHD achieves 
the highest AUPR of 0.121, which is 68% higher than 
SND (0.072). The dataset reflects communication net-
works where nodes frequently engage in multiple hy-
peredges. Hyperdegree centrality excels in identifying 
nodes with diverse and frequent interactions, making 
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communication networks and also Hyperdegree central-
ity’s focus on immediate connectivity ensures highly 
accurate predictions for socially clustered interactions. 
For the cat-edge-geometry-questions dataset, SNHD 
achieves the highest precision of 0.519, which is 3.4% 
higher than RAHD. This result indicates that degree-
based measures perform better in geometric datasets, 
where simpler connectivity patterns dominate. The 
analysis demonstrates that hypergraph based measures, 
particularly SNHD and RAHD, consistently outperform 
traditional graph-based centralities across all datasets 
and metrics. Hyperdegree centrality SNHD excels in 
AUPR and F1-score due to its ability to capture dense 
connectivity and multi-node interactions within hyper-
edges. In contrast, resource allocation-based hyperde-
gree RAHD achieves superior precision by effectively 
minimizing false positives. These findings highlight 
the advantages of hypergraph based methods in model-
ing complex interaction patterns and predicting future 
connections in datasets characterized by multi-node 
relationships.

Evaluation of the remaining centrality measures, including 
Clustering Coefficient (CC) and HyperClustering Coefficient 
(HCC) which is in Table.5, Betweenness (B) and HyperBe-
tweenness (HB) in Table.6, as well as Closeness (CL) and 
HyperCloseness (HCL) in Table.7, reveals consistent trends 
in the data sets for AUPR, F1 score and Precision. For the 
Clustering Coefficient (CC) and HyperClustering Coefficient 
(HCC) in Table.5, CNHCC  outperforms its traditional coun-
terpart CNCC  in most datasets. In the NDC-classes dataset, 
CNHCC  achieves the highest AUPR of 0.024, which is 9% 
higher than CNCC , while its F1-score is 0.898, exceeding 
RAHCC  by 14.2%. This underscores the importance of 
hyperclustering in capturing dense local structures within 
hyperedges. Similarly, in the email-Eu dataset, CNHCC  
achieves the best AUPR of 0.121, 98% higher than CNCC , 
while its F1-score reaches 0.891, further emphasizing the 
effectiveness of hyperclustering in multi-node interactions. 
However, for Precision, RAHCC  performs slightly better in 
some datasets, such as email-Eu, where it achieves a Pre-
cision of 0.525, indicating that resource allocation is more 
effective at minimizing false positives in these settings. For 
datasets like cat-edge-geometry-questions and hyperedges-
contact-high-school, RAHCC  dominates in AUPR, achiev-
ing 0.313 and 0.086, respectively, highlighting the role of 
resource allocation in scenarios involving cohesive group 
structures.

When considering Betweenness (B) and HyperBetween-
ness (HB) from Table.6, SNHB consistently outperforms 
SNHB in AUPR across all datasets. In the NDC-classes 
dataset, SNHB achieves an AUPR of 0.022, which is 
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69.2% higher than SNB. Similarly, in the email-Eu dataset, 
SNHB scores 0.092, 46% higher than SNB. These results 
indicate that hyperbetweenness effectively captures multi-
node bridging roles within hypergraphs. While SNHB often 
excels in F1-score due to its ability to balance precision 
and recall, RAHB demonstrates its strength in Precision, 
particularly in datasets like cat-edge-geometry-questions, 
where it achieves a Precision of 0.483, 2.5% higher than 
SNHB. In the hyperedges-contact-high-school dataset, 
RAHB achieves the highest F1-score of 0.831, surpassing 
SNHB by 6.5%, highlighting its ability to model group-
based social interactions effectively. For Closeness (CL) 
and HyperCloseness (HCL) from Table.7, SNHCL consis-
tently outperforms CNCL in AUPR and F1-score across all 
datasets. In the NDC-classes dataset, SNHCL achieves an 
AUPR of 0.027, 28.6% higher than SNCL, and an F1-score 
of 0.798, surpassing RAHCL by 4.6%. This trend is also 
evident in the email-Eu dataset, where SNHCL records an 
AUPR of 0.97, 70.3% higher than SNCL, and an F1-score 
of 0.812. In contrast, RAHCL demonstrates its strength in 
Precision, particularly in the email-Eu dataset, where it 
achieves 0.528, 6% higher than SNHCL. In the cat-edge-
geometry-questions dataset, RAHCL achieves the highest 
AUPR of 0.312, surpassing SNHCL by 8.7%, emphasizing 
the effectiveness of resource allocation in modeling local-
ized connectivity. However, for F1-score and Precision, 
SNHCL remains competitive, particularly in datasets like 
hyperedges-contact-high-school, where it achieves a Preci-
sion of 0.497, slightly outperforming RAHCL.

Overall, these results demonstrate the advantages of 
hypergraph based measures over their graph based counter-
parts. The hypergraph specific adaptations HCC, HB, and 
HCL consistently outperform traditional centralities CC, B, 
and CL across AUPR, F1-score, and Precision. This high-
lights the ability of hypergraph based methods to cap-
ture complex, multi-node interactions within hyperedges, 
thereby providing a more accurate prediction of future links 
in diverse datasets. Additionally, resource allocation based 
hypercentralities RAHCC , RAHB and RAHCL often per-
form well in Precision due to their emphasis on minimiz-
ing false positives, making them suitable for datasets where 
accurate link prediction is critical.

In addition to the detailed tabular analysis presented ear-
lier, the corresponding visual representations provided in 
Fig. 3a, b, Fig. 4a, b collectively offer a clear and intuitive 
understanding of the performance trends across all datas-
ets and evaluation metrics. These figures present a picto-
rial summary of the same results explained in the tables, 
enabling a direct comparison between graph based and 
hypergraph based approaches across multiple centrality 
perspectives, including Degree, Closeness, Betweenness, 
and Clustering Coefficient. The visual patterns consistently 
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reinforce the quantitative findings reported earlier: hyper-
graph based variants of Shared Neighbors and Resource 
Allocation exhibit superior performance across AUPR, 
F1-score, and Precision, regardless of the underlying cen-
trality framework. By bringing together multiple centrality 
driven analyses into unified graphical formats, the figures 
strengthen the interpretation of performance differences and 
provide an immediate comparative view of how effectively 
hypergraph modeling captures higher-order interactions, 
multi-node participation, and complex structural dependen-
cies within real-world datasets.

Discussion

In the discussion section, we can conduct a comparative 
analysis of the highest performing Shared Neighbor and 
Resource Allocation based hypercentrality measures across 
each dataset, as follows: In terms of AUPR, SNHCC  con-
sistently outperforms all other measures, including RAHC . 
This superior performance of SNHCC  can be attributed to 
its effectiveness in capturing dense local structures within 
hyperedges, a crucial factor in datasets where clustering 
dynamics are predominant. In contrast, Resource Alloca-
tion based measures, such as RAHCC , emphasize the dis-
tribution of resources across connections, which may not 
encapsulate clustering to the same extent as the Shared 
Neighbor-based approach. Comparing SNHCC  to the low-
est performing measure, RAHCL, in this dataset demon-
strates an approximate improvement of 97%, underscoring 
the robustness of SNHCC  in predicting future links based 
on clustering properties. For the email-Eu dataset, SNHD 
achieves the highest AUPR among the proposed measures, 
highlighting the effectiveness of hyperdegree centrality in 
settings characterized by high communication volumes 
across numerous nodes. The focus on hyperdegree enables 
SNHD to capture the frequency and intensity of direct con-
nections, a critical feature in email communication net-
works. Although Resource Allocation-based measures, such 
as RAHD, also utilize hyperdegree, the Shared Neighbor 
approach provides a better representation of direct con-
nectivity patterns. Here, SNHD performs approximately 
75.3% better than least RAHCL measure, emphasizing the 
advantage of focusing on shared neighbors in networks with 
frequent interactions. In the cat-edge-geometry dataset, 
RAHCC  demonstrates the highest performance, surpassing 
SNHCC . This dataset likely consists of geometrically simi-
lar nodes that form cohesive groups, which aligns well with 
the Resource Allocation approach that distributes resources 
across clusters. The hyperclusteringcoefficient within the 
Resource Allocation framework is particularly effective at 
capturing these localized group interactions, as it reflects the 
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of resource-based distribution in hypergraphs with strong 
community structures.

For the F1-score analysis between Shared Neighbor-
based and Resource Allocation based hypercentralities in 
hypergraphs, the following insights emerge based on the 
top performing and lowest performing measures across 
the datasets. In the NDC-classes and email-Eu datasets, 
SNHCC  achieves the highest F1-scores. This success can 
be attributed to the Shared Neighbor approach’s strength in 
datasets where clustering and group dynamics are central. 

resource concentration within cohesive clusters. Similarly, 
RAHCC  achieves the highest performance in the contact-
high-school dataset. This dataset likely consists of tightly 
knit communities where frequent group-based interactions 
occur, such as student groups or classes. The Resource 
Allocation approach with hyperclustering (RAHCC) effec-
tively captures these frequent interactions by distributing 
link prediction weight across clusters, aligning closely 
with group-based social dynamics. Compared to SNHCC , 
RAHCC  shows an superiority, highlighting the importance 

Fig. 3  Performance comparison of 
Centrality based Link Prediction 
in Graphs and Hypergraphs using 
AUPR, F1-score, and Precision
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RAHCL by approximately 12.5% in F1-score. Similarly, 
in the email-Eu dataset, SNHCC  shows an improvement of 
9.4% over RAHCL. These differences indicate that Shared 
Neighbor based measures, particularly those emphasizing 
clustering, are more effective at capturing the connection 
patterns in these datasets than Resource Allocation based 
measures, which focus on resource distribution and may 
not as strongly emphasize local clustering. In contrast, 
within the cat-edge-geometry and contact-high-school 

The SNHCC  measure leverages clustering properties within 
hyperedges, allowing it to effectively capture dense, cohe-
sive structures characteristic of NDC-classes and email-Eu. 
This focus on clustering aligns with the structure of hyper-
graphs in these datasets, where connections are typically 
concentrated within distinct groups. When SNHCC  is com-
pared to the least-performing Resource Allocation-based 
measure, RAHCL, a notable performance difference is 
observed. In the NDC-classes dataset, SNHCC  outperforms 

Fig. 4  Performance comparison of 
Centrality based Link Prediction 
in Graphs and Hypergraphs using 
AUPR, F1-score, and Precision
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link prediction based hypercentrality measures offer a more 
precise and nuanced approach for predicting link formation 
in hypergraphs, especially in graphs characterized by dense 
connectivity and pronounced clustering.

This study focuses exclusively on undirected, unweighted, 
and static hypergraphs, and the reported results may there-
fore not directly generalize to dynamic or multi-modal 
systems. Extending the CLPH framework to incorporate 
temporal evolution, weighted interactions, and multi-layer 
structural information constitutes an important direction for 
future work, enabling its applicability to dynamic financial 
networks, evolving social platforms, and heterogeneous real-
world hypergraph data. Future research will explore hybrid 
models in which centrality weighted shared neighbour fea-
tures derived from CLPH are incorporated into supervised 
learning pipelines or hypergraph neural architectures. Such 
integration may enhance predictive performance, particu-
larly for large-scale, dynamic, or richly annotated hyper-
graph datasets. For future research, we intend to expand our 
exploration beyond local based to global based measures. 
Additionally, rather than considering all non-adjacent node 
pairs, we plan to investigate the impact of limiting the pre-
diction scope to node pairs within specific hop distances, 
such as 2, 3, and beyond. Another key direction is to extend 
our current model—which focuses on non-adjacent node 
pairs of size 2 to include interactions among groups of size 
3, 4, and larger, thereby capturing more complex group 
dynamics. These extensions will enable a more comprehen-
sive understanding of link prediction in hypergraphs, further 
enhancing the model’s applicability to real-world scenarios.
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datasets, RAHCC  achieves the highest F1-scores, surpass-
ing Shared Neighbor-based measures. The effectiveness of 
Resource Allocation in these datasets can be linked to its 
approach of distributing prediction weight across clusters, 
effectively capturing relational dynamics in datasets where 
nodes frequently interact within tightly bound communi-
ties. Resource Allocation-based hypercentralities model 
group-based interactions particularly well, especially in 
contexts where the network structure highlights multi-node 
participation in hyperedges. When RAHCC  is compared to 
the lowest performing SNHCL, a substantial performance 
difference is evident. In the cat-edge-geometry dataset, 
RAHCC  outperforms SNHCL by approximately 27.6%. 
Similarly, in the contact-high-school dataset, RAHCC  
demonstrates an advantage of about 29.5% over SNHCL. 
This significant difference underscores the importance of 
Resource Allocation in accurately modeling resource distri-
bution within densely interconnected clusters, a crucial fea-
ture in community-oriented datasets like cat-edge-geometry 
and contact-high-school.

Although hypergraph centrality distributions may exhibit 
heterogeneity or skewness, the empirical results across all 
datasets demonstrate that the global average hypercentral-
ity serves as an effective and reliable threshold within the 
CLPH framework. The average provides a network wide 
structural baseline that is entirely parameter free and natu-
rally adapts to each dataset, avoiding the added complex-
ity of percentile or region specific thresholds. Importantly, 
the superior performance of the proposed measures indi-
cates that this threshold successfully suppresses low influ-
ence neighbours without excluding structurally significant 
ones, thereby maintaining the predictive stability observed 
throughout our evaluation.

Conclusion and Future Work

In this paper, we proposed a link prediction framework that 
employs hypercentrality measures to address the intricacies 
of multi-node interactions within hypergraphs. By adapt-
ing traditional centrality metrics such as degree, clustering 
coefficient, betweenness, and closeness to the hypergraph 
context, we developed a novel link prediction model that 
leverages the rich structural information of hypergraphs. 
This approach enhances traditional link prediction methods 
by incorporating node importance through hypercentrality 
scores. Our empirical analysis, conducted across multiple 
real-world datasets, demonstrates that hypercentrality-
based models, particularly those utilizing hyperdegree and 
hyperclustering coefficients, consistently surpass exist-
ing link prediction based centrality approaches in terms of 
AUPR, F1-score and Precision. These findings suggest that 
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