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Tart cherry juice has no acute effects on uric acid, vascular function and inflammation:

a randomised crossover trial.

Abstract

Background

Hyperuricaemia increases the risk of gout, and cardiovascular disease, thus dietary
modifications that reduce urate are of interest. Cherries have been reported to lower urate, but
studies examining acute effects have mostly failed to include a control group, despite urate
being known to exhibit diurnal fluctuations, typically falling throughout the day.

Aim

This study aimed to determine the acute effects of a single serving of tart cherry juice on uric
acid metabolism and risk factors for cardiovascular disease relative to a control drink.

Methods
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In an open-label, randomised, controlled, crossover design, 12 healthy adults (mean age 41.1
(£ 11.1) y; mean body mass index 26.4 (+ 4.3) kg/m?; 7 men and 5 women) consumed 250 mL
tart cherry juice (containing 30 mL of concentrate) and 250 mL water (control) on separate
occasions > 7 days apart. Serum uric acid, central and brachial blood pressure, augmentation
index, and pulse wave velocity were measured at baseline, 1, 2, 3, 5, and 24 hours, post-drink,
serum c-reactive protein at baseline, 2 and 5 hours, and creatinine-adjusted urinary uric acid at
0-2, 2-4, and 4-5 hours.

Results

There were no statistically significant main effects of drink type or drink by time interactions
(all outcomes p > 0.05). However, independent of drink type, serum uric acid (p = 0.008),
urinary uric acid (p < 0.001), c-reactive protein (p = 0.023), and measures of blood pressure
(all p < 0.05) changed with different temporal patterns throughout the day (main effects of
time, p < 0.05).

Conclusion

These results indicate that diurnal fluctuations may partly explain the beneficial acute effects
of cherry consumption on uric acid metabolism and inflammation previously reported in

studies without a comparator control group.

Trial registry name and URL: ClinicalTrials.gov https:/clinicaltrials.gov/study/NCT04960527

Trial Registration number: (NCT04960527)

Keywords: cherry juice; uric acid; inflammation; blood pressure; vascular function.

Introduction

Hyperuricaemia has been associated with elevated risk of gout, renal disease, cardiovascular

disease (CVD) and metabolic dysfunction (Kuo et al., 2016; Terkeltaub et al., 2006). Several
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dietary modifications have been proposed for the prevention of hyperuricaemia, including
restricting intakes of purine-rich and fructose-rich foods, limiting alcohol consumption,
remaining hydrated, and increasing cherry consumption (Collins et al., 2019; Schlesinger,
2005). The potential of cherries to prevent hyperuricaemia has been ascribed to their high
content of polyphenols, especially anthocyanins (Chaovanalikit and Wrolstad, 2004; Kelley et
al., 2018; Kirakosyan et al., 2009). Cherry consumption has been suggested to reduce serum
uric acid (sUA) by: (i) inhibiting hepatic xanthine oxidoreductase and/or (ii) increasing the
glomerular filtration of UA and inhibiting its tubular reabsorption, thereby increasing urinary
uric acid (UUA) excretion (Haidari et al., 2009; Jacob et al., 2003; Kirakosyan et al., 2018;
Zhang et al., 2012).
To our knowledge, three studies have reported that cherries decrease sUA in the hours after
consumption (Bell et al., 2014a; Hillman and Uhranowsky, 2021; Jacob et al., 2003), two of
which (Bell et al., 2014a; Jacob et al., 2003) also measured an increase in UUA excretion.
However, these studies had methodological limitations. Two studies (Bell et al., 2014a; Jacob
et al., 2003) had no control group. Whereas the third, which investigated the effect of one and
two daily servings of tart cherry (TC) in capsules and as juice, only contained placebo groups
for the once daily servings (Hillman and Uranowsky, 2021). Since sUA is known to exhibit a
diurnal rhythm, falling as the day progresses (Sennels et al., 2012), the failure to include control
groups complicates the interpretation of these studies. Thus, the primary aim of the present
study was to determine the acute effects of TC juice consumption on sUA and UUA excretion
relative to a control drink.

Hyperuricemia is a risk factor for CVD possibly because it promotes hypertension and
increases arterial stiffness (Borghi et al., 2022; An et al., 2024). Within vascular endothelial
cells, elevated UA promotes oxidative stress, inflammation, and depletes nitric oxide causing

endothelial dysfunction and vasoconstriction (Ndrepepa 2025). The consumption of TC might
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be expected to reduce blood pressure (BP) and arterial stiffness by lowering urate or via the
anti-inflammatory and antioxidant actions of its content of polyphenols. However, the results
of human intervention studies investigating the effect of TC on BP and arterial stiffness have
been mixed (Desai et al., 2021; Keane et al., 2016a; Kimble et al., 2021; Lynn et al., 2014).
Thus, the secondary aim of this study was to determine the acute effects of TC juice on

inflammation, blood pressure (BP), and arterial stiffness.

Methods

This study was reported in line with the CONSORT 2010 statement (Dwan et al., 2019).

Trial Design

The study was an open-label, 2-arm, randomised, placebo-controlled, crossover trial of thirteen
healthy adults. Participants consumed 250 mL of TC juice (30 mL TC concentrate with 220
mL water) or 250 mL of water on two separate occasions, separated by a wash-out period of >
7 days. Blood, urine, and vascular measurements were collected at baseline and multiple time-
points over 24 hours following each drink (Fig 1). Each participant attended each of their test

sessions at the same time (between 9 and 10am).
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Fig. 1 Study protocol. PA; physical activity
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The study opened recruitment in July 2021 and closed at the end of February 2022. It was
approved by Sheffield Hallam University (SHU) ethics committee (ER9199256) and registered
at ClinicalTrials.gov (NCT04960527) before recruitment commenced. The study was

conducted in accordance with the 1964 Declaration of Helsinki and its later amendments.

Participants and settings

A total of 13 healthy, non-smoking, adult volunteers were recruited through word-of-mouth.
Inclusion criteria were, aged between 18 and 85 years, and no history of, gout, type 1 or type
2 diabetes, gastrointestinal disorders, CVD, or kidney disease. Interested individuals were
provided with a participant information sheet containing further details of the study. Potential
participants also received a verbal explanation of the study and were screened for inclusion
criteria. Written informed consent was gained from all participants. Measurements were made

at the Nutrition Research Laboratory of SHU, Sheffield, United Kingdom, United Kingdom.

Dietary Interventions

During the active intervention arm of the study, participants consumed 250 mL of TC juice,
consisting of 30 mL Montmorency TC concentrate (CherryActive®, ActiveEdge™, Hanworth,
UK) and 220 mL low-nitrate water (Buxton®, UK). Analysis of the TC concentrate in our

5
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nutrition research laboratory revealed that each serving contained a mean phenol content of
408 (SD 5.4) mg gallic acid equivalents (Folin-Ciocalteu method; Singleton and Rossi, 1965)
and an anthocyanin content of 3.8 (SD 0.3) mg cyanidin-3-glucoside equivalents (pH
differential method; Lee et al., 2005). During the control arm, participants consumed 250 mL
of low-nitrate water (Buxton®, UK). A low-nitrate water was selected for the control drink to
minimise vascular effects (Hobbs et al., 2013) and avoid bioactive compounds such as
polyphenols. The two study arms were separated by a wash-out period of > 7 days. The wash-
out duration was based on the known pharmacokinetics of cherry polyphenols (Keane et al.,
2016b) and likely transient nature of any effects on the outcome measures. An investigator not
involved in data collection generated a block randomised allocation sequence using
www.random.org (block size 4) and assigned participants to their sequence of interventions.
The use of a water control meant it was impossible to conceal this sequence from participants
or the researcher collecting data.

Participants were provided with a dietary advice sheet containing meal
recommendations to help them follow a low-polyphenolic diet, including avoiding fruits,
vegetables, wholegrains, and nuts, for 48 hours prior to each test day. The evening prior to each
test day participants were provided with a low-phenol spaghetti carbonara ready-meal
(Sainsbury’s PLC, UK), low-phenol dessert (Bonne Maman®, Somerset, UK), and low-nitrate
water (Buxton®, UK) to consume. Participants attended the laboratory following an overnight
fast of > 10 hours, although low-nitrate water was permitted.

Participants remained fasted during the first 5 hours post drink consumption; however,
500 mL low-nitrate water was provided during this time. Participants were advised to drink
when thirsty but avoid consuming large volumes at a single time-point to minimise possible
effects on vascular function (Callegaro et al., 2007). A low-phenol lunch of sandwiches made

from white bread and ham, ready salted crisps, and a plain Greek yoghurt were provided



131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

immediately following the 5-hour measurements. Participants were also provided with low-
phenol snacks, a low-phenol macaroni cheese ready-meal, and low-nitrate water to consume
over the rest of the day. Participants returned to the laboratory following another overnight fast
of > 10 hours for their 24-hour measurements.

Participants were asked to record their dietary intake throughout the first arm of the
study and instructed to replicate this during the second arm. Participants were also asked to
avoid strenuous exercise from 72 hours before each test day until after their 24-hour

measurements.

Outcomes

The primary outcome measure was between-treatment difference in the change in sUA from
baseline to 24 hours post-drink. Secondary outcome measures were between-treatment
differences in the change in the inflammatory marker, serum CRP from baseline to 5 hours
post-consumption, and changes in UUA excretion and vascular function (resting brachial and
central BP and arterial stiffness) from baseline to 24 hours post-consumption. Non-efficacy
outcomes included physical activity (PA) and dietary intake measures, for example

consumption of high-phenolic foods.

Anthropometry

Height (to 0.1 cm) and mass (to 0.1 kg) of participants were measured during their first visit to

the laboratory and used to calculate body mass index (BMI) (mass (kg)/height (m)?).

Arterial Stiffness and Blood Pressure (BP)
A Vicorder® device (SMT Medical, Germany) was used to measure brachial and central BP,
carotid-femoral PWV, and augmentation index (AlIx). Participants were familiarised with the

Vicorder® prior to their first experimental session to reduce the effects of anxiety on BP and
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other vascular measures (Franklin et al., 2013). Familiarisation consisted of practice
measurements with carotid, arm, and femoral cuffs, so participants could become accustomed
to the sensation of each cuff inflating. BP, PWV, and Alx were measured at baseline and 1, 2-
, 3-, 5-, and 24-hours post-drink consumption. Following the Vicorder® instructions, brachial
DBP values were also used as central DBP values. Three replicate measures with 1-minute
intervals were taken at each time-point. Participants rested in a supine position for 15 minutes

before the measurements and remained still throughout.

Collection and Processing of Blood Samples

Blood was collected at baseline, 1, 2, 3, 5, and 24 hours, post-consumption. Samples were
centrifuged at 2500 x g for 15 minutes at 18 °C to separate serum (Hermle Z 36 HK, HERMLE

Labortechnik GmbH, Germany), which was stored at -80°C until analysis.

Serum C-reactive Protein (CRP) and Uric Acid (sUA)

CRP was measured in serum collected at baseline, 2, and 5 hours using a CRP Quantikine
enzyme-linked immunosorbent assay kit (R&D systems, Abingdon, UK). The intra-assay CV
was 5.5%. sUA was determined in serum collected at baseline, 1, 2, 3, 5, and 24 hours using a
UA (Amplex® Red, Invitrogen™, UK) assay kit. The intra-assay CV was 3.9%. Both analytes

were measured on a microplate reader (BioTek synergy HT, Winooski, USA).

Urine collection and analysis

Spot urine samples were collected at baseline and 24 hours post-drink consumption. Urine was
also collected between 0-2, 2-4, and 4-5 hours. Samples were centrifuged twice at 2800 x g for
15 minutes to remove unwanted cells and material (Hermle Z 36 HK, HERMLE Labortechnik
GmbH, Germany) and stored at -80 °C until analysis. Urine samples were analysed for UUA

(Amplex® Red, Invitrogen™, UK) and creatinine (ELISA; R&D systems, Abingdon, UK)
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concentrations, using a microplate reader (BioTek synergy HT, Winooski, USA). The intra-
assay CV was 2.0% for UUA and 2.1% for urinary creatinine. UUA (umol) was corrected for

creatinine concentration (uMol) to provide a UUA to urinary creatinine excretion ratio.

Assessment of Diet and Physical Activity (PA)

From 48 hours prior to baseline until 24-hour post-consumption, participants completed a food
diary. Participants recorded PA in a diary from 72 hours prior to their two main laboratory

sessions until their 24-hour post-consumption measurements.

Statistical Methods

The primary outcome was change in sUA concentration. Change in UUA, CRP, BP, and
arterial stiffness were secondary outcomes. The effect of treatment (TC versus water) on all
outcomes was analysed as the percentage change from baseline using two-way repeated
measures analyses of variance (ANOVA) with Bonferroni post-hoc tests. Partial Eta-Squared
(np?) effect sizes for ANOVA were classified as small (0.01 — 0.059), moderate (0.06-0.137),
and large (> 0.138) (Pallant, 2010). Further exploratory analyses investigating between-sex
differences on the effect of cherry consumption on sUA and UUA were undertaken by adding
sex as a between-subjects factor in two-way repeated measures ANOVAs. Baseline data is
presented as mean (SD) or median and interquartile range (IQR), as appropriate. Results are
reported as mean % and SD for continuous data. All analyses were conducted using IBM SPSS
Statistics v24. The critical value for statistical significance was set at p < 0.05.

A sample size of thirteen was determined sufficient to detect a decrease in sUA of 15

umol/L with 80% power at a significance level of 0.05, using data from White et al. (2018).



198

199

200

201

202

203

204

205
206
207

208
209

210

211

212

Results

Participant Characteristics

Thirteen participants started the study however one dropped out following completion of the
control treatment. Of the 12 participants (7 male/5 female) who completed the study, mean age
was 41.1 (£ 11.1; range 27 to 60) years, and average BMI 26.4 (+ 4.3; range 20.1 to 35.1)
kg/m?. Baseline clinical data did not differ between TC juice and control drink visits (p > 0.05

for all), Table 1.

Table 1 Baseline clinical data of participants prior to the provision of 250 mL tart cherry

juice and 250 mL water. Data are presented as mean + SD or median (IQR)

Tart cherry juice Water (control)

Brachial systolic blood pressure, mmHg 126.2+11.0 123.6 + 8.4
Brachial diastolic blood pressure, mmHg 65.8+6.1 64.9 £ 6.4
Central systolic blood pressure, mmHg 120.3 £ 11.8 118.7 £ 8.6
Pulse wave velocity, m/s 8.2 (2.6) 7.3 (2.0)
Augmentation index, %"* 148+7.3 182+9.8
Serum uric acid, pmol/L 155.4+£59.2 168.3 £57.1
Urinary urate:urinary creatinine, mmol/mmol 04+0.1 0.5+0.2
C-reactive protein, mg/L 0.4 (0.7) 0.6 (1.8)

n =12 for both treatment arms except for  where n = 10.
Dietary Adherence and Avoidance of High-Intensity Physical Activity

Evaluation of participants’ diet and PA diaries indicated that participants complied with the

low-phenol diet and physical activity guidance.

10
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Serum Uric Acid (sUA)

There was a large-sized main effect of time on sUA following consumption of the drinks (Fs ss
=3.529, p = 0.008, np> = 0.243) with a mean 10.4% reduction in sUA between 1 hour and 5
hours post-consumption (p = 0.034) and a mean 8.5% increase from 5 hours to 24 hours post-
consumption (p = 0.022) (Fig 2a, Table 2). However, no drink type (Fi,11 = 2.061, p = 0.179,
np? = 0.158) or drink by time interaction (Fsss = 1.222, p = 0.311, np? = 0.100) effects were
found._Furthermore, there were no between-sex differences in response (Fsss = 1.151, p =

0.347, np® = 0.103).

Urinary Uric Acid (UUA)

As shown in Fig 2b (and Table 2), creatinine-adjusted UUA fluctuated significantly over time
and this main effect was large (Fa44 = 11.656, p <0.001, np? = 0.514). The greatest increase in
UUA above baseline (0 hours) was observed at 2-4 hours (41.0 %; p = 0.001), followed by 0-
2 hours (32.2 %; p < 0.001). UUA was significantly lower at 24 hours than at 0-2 hours (p <
0.001) and 2-4 hours (p = 0.005). There were no statistically significant main effects of drink
type (F1,11=0.015, p=0.906, np>*= 0.001) or drink by time interaction (F4.44=1.084, p = 0.358,
np?= 0.090). There were also no between-sex differences in response (Fa44=1.397, p=0.263,

np>=0.123).

11
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Fig. 2 Effect of tart cherry juice and water on percentage change from baseline values in a)
serum uric acid (sUA) concentration and b) urinary uric acid (UUA) to urinary creatinine ratio.

Data are presented as mean = SD, n = 12 for both outcomes.

C-reactive Protein

There was a large-sized main effect of time for change in CRP from baseline (F2.22 = 4.488, p
= 0.023, np* = 0.290), with a statistically significant 7.4 % reduction between 2 hours and 5
hours (p = 0.020) (Fig 3 and Table 2). Despite this, CRP at 5 hours was not significantly
different from baseline (p = 0.202) and no main effect of drink type (F1,11 = 0.434, p = 0.524,

np*= 0.038) or drink by time interaction (F222 = 0.644, p = 0.525, np? = 0.055) were detected.

12
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Fig. 3 Effect of tart cherry juice and water on percentage change in c-reactive protein (CRP)

concentration from baseline values. Data are presented as mean = SD, n = 12.

Blood Pressure

Brachial Systolic BP (SBP)

A large main effect of time (Fsss = 5.360, p < 0.001, np? = 0.328) was detected for brachial
SBP (Fig 4a, and Table 2), with a mean reduction of 4.6 % between 5 hours and 24 hours (p <
0.001). There was a non-significant large main effect of drink (F1.11 = 3.654, p = 0.082, np* =
0.249); estimated marginal mean for brachial SBP was 3.0 % (95% CI -6.5, 0.5) lower in the
water arm than in the TC juice arm. No drink by time interaction effect (Fsss = 1.459, p =

0.218, np?=0.117) was observed.

Central Systolic BP (SBP)

A large main effect of time (Fs 55 = 3.403, p = 0.009, np? = 0.236) was detected for central SBP,
with a 4.0 % reduction observed between 5 hours and 24 hours (p = 0.014) (Fig 4b, Table 2).
There was no drink by time interaction effect (Fsss = 1.866, p = 0.154, np® = 0.145) or main

effect of drink type (F1,11 = 3.234, p = 0.100, np*= 0.227).

13



254 Brachial and Central Diastolic BP (DBP)

255  Brachial DBP values were used as central DBP values, in accordance with the Vicorder®
256  instructions. There was a large significant main effect of time (Fss5 = 5.908, p < 0.001, np*=
257  0.349) for DBP (Fig 4c, Table 2). On average, DBP fell by 5.4 % between 2 hours and 24 hours
258  (p=0.027) and by 5.9 % between 3 hours and 24 hours (p = 0.001). There was no drink by
259  time interaction effect (Fss5s = 0.718, p = 0.612, np*>= 0.061) or main effect of drink type (F1.11

260 =1.782, p=0.209, np* = 0.139).
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261  Fig. 4 Effect of tart cherry juice and water on percentage change from baseline values in a)

262 brachial systolic blood pressure (SBP), b) central systolic blood pressure (SBP), and ¢) brachial
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and central diastolic blood pressure (DBP). Data are presented as mean (= SD); n = 12 for all

outcomes.

Arterial Stiffness

Pulse Wave Velocity (PWV)

Carotid-femoral PWV fluctuated over the measurement period (Table 2), however, these
fluctuations were not statistically significant (time: Fs 50 = 0.493, p = 0.667, np>= 0.047). There
were no main effects of drink type (Fi,10 = 1.948, p = 0.193, np* = 0.163) or drink by time

interaction (Fss0 = 1.257, p = 0.297, np*=0.112), (n = 12).

Augmentation Index (Alx)

Alx was measured in ten of the twelve participants. For two participants, AIx could not be
consistently measured due to low pulse amplitude so these participants were excluded from
analysis. There were no main effects of time (Fs4s = 1.819, p = 0.204, np>= 0.168) or drink
type (F1.0 = 2.688, p = 0.136, np>= 0.230), and no drink by time interaction (Fs4s = 1.085, p =

0.344, np® = 0.108) for Alx (Table 2).

Harms

No adverse effects were reported.
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Table 2 Acute effects of 250 ml tart cherry juice versus water (control) on vascular function, inflammation and urate'.

Time (hours)

Outcome Study drink Baseline 1 2 3 5 24
Brachial systolic Cherry 1262+11.0 126.1+124  1262+9.8 127.2+10.8  127.4+10.0 122.9+9.0
blood pressure,
Ll Water 123.6+84  1269+113 130.6+122 1283+82  1302+9.7  123.0+£79
(control)
Brachial and Cherry 65.8 +6.1 66.9+5.8 67.1+5.1 67.6+5.4 66.6 + 6.8 64.4+4.5
central diastolic
blood pressure, Water 64.9 £ 6.4 67.0+6.9 68.3+6.9 68.3+6.9 68.3+£6.0 63.7+4.2
mmHg* (control)
Central systolic Cherry 1203+11.8 1204+12.7 120.1+10.8 1202+12.1 119.7£10.0 117.1+8.9
blood pressure,
mmHg* Water 118.7+8.6 121.2+£12.8 1249+ 13.7 122.8+10.1 124.1+10.9 117.2+7.9
(control)
Pulse wave Cherry 79+1.4 72+1.2 73+ 1.7 7.8+1.4 74+14 72+1.4
velocity, m/s,
Water 8.1+2.8 7.6+1.2 74+14 72+ 1.1 7.4+0.8 73+14
(control)
Augmentation Cherry 148+7.3 149+74 14.7+7.5 14.5+89 143+ 8.0 16.1 £6.7
index, %
Water 18.2+9.8 15.5+7.7 152 +8.2 15.2+9.0 152 £ 8.7 16.8+7.7
(control)

17



293
294
295

296
297

Serum uric acid, Cherry 1554+59.2 1702+703 1633+77.6 1602+764 1499+74.0 1658+ 7289
pmol/L* nen

Water 168.3+57.1 171.0+£60.3 1593+59.6 164.0+69.3 163.8+71.8 169.7+61.4

(control)
C-reactive Cherry 0.69+0.61 0.68 = 0.60 0.61 +0.54
protein, mg/L,*

Water 1.16 £1.45 1.13+£1.43 1.04 £1.21

(control)

0-2 2-4 4-5 24
Urinary Cherry 0.42 +0.13 0.57+0.15 0.58+0.14 0.47+0.15 0.41+0.12
urate:urinary
creatinine, Water 0.46 +0.16 0.55+0.17  0.61+£023  0.58+0.19  0.46+ 04
mmol/mmol * (COl’ltI'OI)
292

'All values are means = SD; n = 12 for all outcomes except augmentation index were n = 10. There were no significant main effects of drink type or drink x
time interactions. * indicates a significant main effect of time (p < 0.05)

18
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Discussion

The primary aim of the present study was to investigate the effect of TC juice on sUA. In
contrast to other studies, we did not find evidence that TC juice reduces sUA for up to 24 hours
post-consumption. We also found no evidence that TC juice acutely increases UUA excretion
or lowers inflammation, BP, or arterial stiffness.

The failure of TC juice to reduce sUA and increase UUA excretion contrasts with
previous studies of sweet and tart cherries. Jacob et al. (2003) reported that 280 g of sweet
cherries and Bell et al. (2014a) reported that 30 mL and 60 mL of TC concentrate (diluted with
100 mL of H>0) lowered sUA and increased UUA excretion post-consumption in healthy
adults. This contrast may be partly explained by the failure of Jacob et al. (2003) and Bell et
al. (2014a) to include a control group, because sUA has previously been reported to fall from
morning onwards (Sennels et al., 2012), a phenomenon observed in our participants after
consumption of both placebo and TC drinks. The maximal decrease observed in sUA of 10%
and increase in UUA excretion of 41% was comparable to that reported by Jacob et al. (2003)
(sUA -14% & UUA +69%) in women with similar baseline sUA to our participants, but much
lower than reported by Bell et al. (20.14a) (sUA -36% and UUA +250%), but their participants
had much greater baseline sUA (approximately 480 pumol/L) than our participants (162
umol/L), despite being described as healthy young adults. Notwithstanding the difficulty of
interpreting the results of Bell et al. (2014a) because of the lack of a control arm, it is possible
that the UA lowering effect of TC juice may partly depend on baseline sUA. Hillman &
Uhranowsky (2021) reported that one and two daily servings of TC in powdered form (480 mg
per capsule) and two daily servings of TC juice reduced sUA over a 48-hour period, whereas
one daily serving of TC juice (30 mL of concentrate diluted to 240 mL with H20O) seemed
ineffective leading to a small increase in sUA at 8 hours post-consumption. The lack of benefit

of a single daily serving of TC juice containing 30 mL of concentrate is broadly consistent with
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our findings. Interpretation of the results of Hillman & Uhranowsky (2021) is complicated by
the inclusion of apple juice in their TC drinks, because it is known to increase sUA (White et
al., 2018), and lack of clarity whether reported treatment effects are in comparison to a placebo
(and if so, which of the two placebos in their study) or within arm baseline values. Our findings
challenge the results of previous acute studies reporting beneficial effects of cherries on urate
metabolism and highlight the need for future studies to include a control group. However, our
participants were healthy and there is a need to confirm whether TC acutely alters urate
metabolism in individuals with elevated sUA such as those suffering from gout.

Processed TC products (Ou et al., 2012), whole TC extracts (Seeram et al., 2001), or
anthocyanins found in TC, namely cyanidin-3-glucosylrutinoside and cyanidin-3-rutinoside
(Wang et al., 1999) have been shown to exert anti-inflammatory effects in vitro (Virgen Gen
et al., 2020), reduce exercise-induced inflammation (Bell et al., 2014b, 2015, 2016, Dimitriou
etal., 2015; Howatson et al., 2009; Levers et al., 2016), and lower serum CRP for up to 5 hours
after consumption in an uncontrolled study of purportedly healthy young adults with raised
baseline CRP (Bell et al., 2014a). In contrast, we failed to observe a significant difference
between TC and water with CRP falling between 2 and 5 hours after the consumption of both
drinks. This finding demonstrates the difficulty of interpreting results from uncontrolled
studies. This is further illustrated by studies with longer intervention periods. For example, in
healthy adults with normal CRP at baseline (Lynn et al., 2014) and obese adults with raised
CRP at baseline (Martin et al., 2018) TC failed to lower CRP, relative to control groups,
whereas an uncontrolled study reported that sweet cherry consumption lowered serum CRP
after 14 and 28 days (Kelley et al., 20006).

The consumption of cherries has been proposed to reduce BP by altering the synthesis
and activity of vasodilators and vasoconstrictors (Kelley et al., 2018). However, we observed

no effect of TC juice on brachial or central BP or measures of arterial stiffness. The lack of
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modulation of BP contrasts with two studies that reported that TC reduced SBP for up to 3
hours post consumption in men with early hypertension (Keane et al., 2016a) and middle-aged
adults with moderately raised SBP (Keane et al., 2016c¢). The disagreement with our study may
be explained by the lower baseline BP of our participants. In a review of factors influencing
the effects of dietary anthocyanins on the regulation of BP, elevated baseline BP was
highlighted as a major determinant of whether anthocyanins exerted hypotensive effects
(Vendrame and Klimis-Zacas, 2019). The quantity of TC juice would also be expected to be
important. Keane et al. (2016a) and Keane et al. (2016c) adminstered 60 mL of TC concentrate
whereas we used 30 mL of concentrate. However, 30 mL is the typical suggested serving size
for TC concentrate and therefore may be the amount commonly drunk by consumers. In
agreement with our study, Desai et al. (2021) observed no acute effect of a single 30 mL serving
of TC concentrate on SBP in individuals with metabolic syndrome, but they did report that 24
h ambulatory BP was reduced at the end of a 7-day intervention period. Thus, it is possible that
a longer duration of intake is needed for 30 mL servings of TC concentrate to lower BP,
although Lynn et al. (2014) failed to find an effect of 30 mL/d of TC concentrate consumed for
4 weeks by normotensive adults when BP was measured at laboratory visits.

TC might be expected to reduce arterial stiffness via urate lowering or through putative
anti-oxidant and anti-inflammatory effects. However, we found no significant differences in
PWV or Alx between TC and water over the 24-hour measurement period. This is in line with
Keane et al. (2016a) who reported no effect of 60 mL of TC concentrate on PWV or Alx over
an 8-hour measurement period. The lack of an acute effect of TC juice on PWV and Alx is
consistent with studies of other polyphenol rich fruits (Del Bo et al., 2014; Richter et al., 2017;
Rodriguez-Mateos et al., 2013, 2016), indicating that neither measure of arterial stiffness is

particularly amenable to rapid modulation by polyphenol rich fruits.
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This study has several limitations. First, our participants were apparently healthy, and
TC might only benefit individuals with elevated sUA and markers of cardiovascular risk.
Second, it is possible that TC juice may have changed some outcome markers outside the time-
period we took measurements. Third, the TC concentrate we used may not have supplied
sufficient bioactive compounds to exert an effect. Whilst our analyses of the TC concentrate
revealed that a serving supplied a dose of total phenols within the range shown in other TC
interventions to exert physiological effects (Keane et al. 2016a; Connolly et al. 2006), its
content of intact anthocyanins was relatively low (Martin & Coles 2010; Bell et al. 2014a).
This could partly explain our null findings if intact anthocyanins are the primary compounds
driving the biological actions of TC. Fourth, the study was not blinded, but this might have
been expected to increase the likelihood of finding a treatment effect for an outcome such as
BP which is particularly susceptible to the placebo effect (Howard et al., 2016). Fifth, although
each participant arrived at the same time for both of their study visits we could not control their
wake time, which could have introduced variability into our measurements given that many
have been reported to exhibit diurnal patterns (Shimizu et al. 2023; Hernandez et al. 2024;).
Sixth, the final sample size was one less than the pre-determined sample size, because one
participant dropped out. It is unlikely however that one more participant completing the study
would have meaningfully changed the outcome for sUA, because the difference between TC
and control was not close to statistically significant. The sample size was determined to detect
a change in sUA so the study may have been underpowered to detect changes in other
outcomes. Also, we did not power the study to investigate between sex differences in the
response of urate metabolism to TC so the results of these analyses should be interpreted
cautiously.

This study has several strengths. First, unlike some studies reporting a UA lowering

effect of cherries (Bell et al., 2014a; Jacob et al., 2003), there was a control group. Second, diet
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was controlled during the study by giving participants standardised meals low in polyphenols
the evening before and during the 24-hour measurement periods and by providing clear
guidance on consuming a diet low in polyphenols for the duration of the study. Third, the low-
nitrate water control drink was devoid of factors that could influence uric acid metabolism and
vascular function such as fructose and nitrate (Hobbs et al., 2013).

In conclusion, the present study found no evidence that a single serving of TC benefits
urate metabolism, inflammation, or markers of vascular function in healthy adults compared
with a control drink of water. However, following consumption of both TC and water, changes
in urate metabolism, inflammation and BP occurred over the 24-hour measurement period
likely reflecting diurnal fluctuations. Our findings need to be considered when interpreting the
results of previous uncontrolled studies that have reported beneficial acute effects of TC juice
or sweet cherries in healthy adults. Future controlled studies are needed to determine whether

TC consumption exerts beneficial acute effects in individuals with hyperuricaemia or gout.
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